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Abstract 

By combining the conventional order statistic filtering 
concept with the split-spectrum processing (SSP) technique, a 
new method called frequency diverse statistic filtering is  
introduced in this paper. Three types of frequency diverse 
statistic filters, namely weighted mean, median and absolute- 
minimization are examined. The analysis shows that if the target 
and the clutter spectra are known individually, the Wiener filter 
can be realized by frequency diverse statistic filtering using a 
linear operation (i.e. weighted mean). However, if only the 
input signal is known, the frequency diverse statistic filter with a 
nonlinear, order statistic operation (i.e. median or absolute- 
minimization) can be used resulting in SNR enhancement. Both 
computer simulation and experimental data have been used to 
evaluate the performance of the filters and verify the theoretical 
analyses. 

1. Introduction 

Although the optimal linear filtering theory was developed 
almost a half century ago and found wide applications in the 
areas of signal processing, control and communications, 
nonlinear and statistic filtering methods are still under 
investigation in many situations in which the linear filtering is 
inadequate. More recently, a statistical scheme called median 
filtering has been used with some success in the area of signal 
processing [I]. The median filtering is realized by replacing the 
input signal value at each point by the median of the sample 
values in a finite neighborhood (n - L/2, n + L12) about that 
point 

y(n) = OS,[ x(k), k = n-L12, ..., n+L12] (1) 

where OShl(.) is the median operator. It is also possible to 
apply this concept to an ensemble of signals with different 
spectral contents. One method which yields such an ensemble is 
the split-spectrum processing (SSP) technique introduced in the 
late 70's to enhance target detection in ultrasonic non-destructive 
testing [2]. This technique creates a frequency diverse ensemble 
of decorrelated narrowband signals by windowing the spectrum 
of the received wideband signal and using linear or nonlineat 
statistic algorithms to form the output signal. In the past, 
considerable success has been reported in signal-to-noise. ratio 
(SNR) enhancement using this technique [2]. 

In this paper, a more generalized scheme is introduced 
called the frequency diverse statistic filter shown in Fig. 1, 
which combines the SSP technique with the statistic filtering 
theory. The filter output can be defined as 

y(n) = STA-OP [ xl(n), ..., xM(n) 1 (2) 

where STA OP represents a statistic operation (i.e. mean, 
median, minhization, and so on), and xi(n) are the narrowband 
signals centered at different frequencies. 

Fig. 1 Implementation of frequency diverse statistic filter 

2. Theory 

Since the theoretical analysis of a generalized frequency 
diverse statistic filter is difficult and requires numerical methods, 
several assumptions will be made to permit an analytical 
solution. However, it can be shown that the basic conclusions 
presented here remain valid for the simulated and experimental 
data. The input signal x(n) which consists of the target signal 
s(n) and the noise term n(n) is assumed to exist over the entire 
frequency range. The filtered narrowband signals xi@) shown 
in Fig.1 contain only a unique single frequency component (i.e. 
harmonics of x(n) ). Therefore, 

xi(n) = - A ~  1 co@i (n - t.)] for i=o, I, ..., N-1 (3) N N I  

where Ai and ti are the amplitude and time delay of the ith 
frequency component, respectively. Furthermore, it will be 
assumed that the noise is a bandlimited stationary random 
process with known spectral terms ai (i=O, 1, ..., N-I), yielding 
harmonics 

ni(n) =-ai N co&i N (n - .ri)l 

where Ti , (i=O, 1, ..., N-1) are assumed to be independent 
random variables uniformly distributed over the interval (0, 1, 
..., N-1). Since the target signal s(n) is assumed to be white 
with fixed time delay T 
si(n) = L c o s [ a i  (n - T)] 

1 for i=o, I ,  ..., N-1 (4) 

for i = 0, I ,  ..., N-I (5 )  N N  

and Wiener F&r& 
The weighted mean of the input signal harmonics xi(n) is a 

basic statistic operation which can be expressed as 

N-1 

i-0 
y(n) = C wi xi(n) for n=O, 1, ..., N-1 (6) 

1349 
CH2673-2/89/OOlW1349 $1.00 0 1989 IEEE 

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on September 18,2020 at 15:10:44 UTC from IEEE Xplore.  Restrictions apply. 



where wi (i=O, 1, ..., N-I) are the weighting factors. Since 
each xi(n) contains a single frequency component, the "optimal 
linear" weighting factors wi can be found directly from the 
Wiener filter transfer function [3] 

(7) 

where S( f )  and N(f) are the signal and the noise power spectra, 
respectively. From Eqs.(4) and (5 )  it can be shown that S(i)=l 

and N(i)* [4]. Therefore, 
a2  

1 
wi = H(i) =- for i=O, 1, ..., N-1 (8) 

a2 
1 ++ 

Based on the above analysis, Wiener filtering (i.e optimal 
weighted mean filtering) can be realized by using the system 
structure of Fig.1 with the weighting factas in Eq.8. 

Since the target signal s(n) is assumed to be a 6 function (i.e. 
white), signal-to-noise ratio can only be enhanced if the noise 
spectrum is non-white. In practice, it has been shown that the 
target and noise spectra do not completely overlap [ M I .  
Therefore, the Wiener filter can be used to enhance target 
detection. 

In this paper, the normalized output signal-to-noise ratio 
(SNR) will be defined as 

(9) 

Hence, the maximum output SNR becomes unity for the 
noise-free case. The SNR for the weighted mean filtering case 
can be derived as 141 

Substituting Eq.(8) into &.(lo), yields the S N R  for the Wiener 
filter [4] 

The input SNR can be found from Eq.(lO) by setting w,=l 

The SNR enhancement for the Wiener filter is the ratio 
(SNR),I(SNR)x based on Eqs.(ll) and (12), which yields a 
measure of performance. 

2.2 Media- . .  . . 

The frequency diverse median filter can be defmed as 

ytn) = x(N,2+l)(n) (13) 

where { Xo,(n) 1 is obtained from the ordered sequence of N 
harmonics of the input signal 

x (1) (n) L x (2) (n) L . .. S xn,z,(n) L ~ ( ~ ~ + , ) ( n )  5 .. . x np) (14) 

The performance of the frequency diverse median filter can only 
be demonstrated experimentally, since an ana1yt:cal 
representation has not k e n  obtained. 

Another type of frequency diverse statistic filter is the 
absolute-minimization filter, which can be represented as 
follows 

y(n) = min(lxo(n)l, Ixl(n)L ..., Ix,&)l) (15) 

where xi(n) (i=O, 1, ..., N-1) are the ith harmonics of the input 
signal. The probability distribution function for y(n) can be 
obtained as 

N - l  

i-0 
FY(.)b) = 1 - n [1 - Flxip)l(Y)l (16) 

where, F,+,)l(. ) is the distribution function of I%(")/. 

input signal harmonics become 
In the limit that noise contains only the kth harmonic the 

L m & i  (n-p1+Cm&i(n-Tj)l fori-k,N-k N N  
(17) 

{ N  k m s t f t i  (n - ekewhen 

x i W  = 

where ak=aN,=C and zi is a random variable. Note that for i#k 
and i+N-k (i.e. signal only case), the results are non-random 
and may be characterized by [4] 

F ~ ~ ~ ( ~ ) ~ (  txi(n)l = U( Ixi(n)l - I c o s [ F i  (n - T)II (18) 

The remaining two terms (i=k and i=N-k), which correspond to 
the signal plus noise. casqyield random terms. It can be shown 
that the non-random terms characterized by Eq.(18) will 
dominate the output distribution function in Eq.(16), regardless 
of the statistics of the random terms. Therefore, in general it can 
be shown that [4] 

In other words, the output of the absolute-minimization filter 
N y(n) will be zero except for n=T (target location) and n=T- 

(ghost location). Furthermore, we can prove that 

E{y2(T+~)}=E{y2(T)}. N Therefore, the signal-to-noise ratio at 
the output of the absolute-minimization filter becomes 
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Note that the SNR is independent of C. Finally, the 
performance of the absolute-minimization filter (SNR)M/(SNR)x 
can be obtained based on Eqs.( 12) and (20). 

Since the absolute-minimization filter contains a nonlinear 
statistic operation, it cannot be characterized by a conventional 
spectral representation. However, if we examine the filtering 
process, it is clear that at each time instant n, only one of the 
harmonics xi(n) will be selected and the corresponding value 
will be recorded as the process output y(n). Since each 
narrowband window corresponds to a specific frequency, the 
statistical distribution of the narrowband windows selected 
within a given signal interval N can be used to characterize the 
frequency response of the ahsolute-minimization filter in a 
statistical sense, termed the spectral histogram. Thus, the 
spectral histogram is defined as the distribution (histogram) of 
each frequency component (i.e. harmonics) of the input signal 
selected to form the output and may be considered analogous to 
the Wiener filter transfer function [7]. It can be shown that 
adaptive frequency divme statistic filters can be obtained based 
on the spectral histogram. 

The SNR enhancement for the Wiener and the absolute-, 
minimization filters are plotted in Fig2 for N=64. It can be 
shown that the best performance for the Wiener filter occurs 
under the single frequency noise assumption described by 
Eq.(17) [4]. Figure 2 shows that the performance of the 
absoluteminimization filter is lower than the Wiener filter due to 
the distortion (ghost echo) effect described above. However, 
the distortion can be. removed by further processing. For 
example, a modified absoluteminimization filter can be achieved 
using the additional samples obtained by linearly combining the 
neighborhood harmonics of the input signal [4]. As seen in 
Fig.2, the performance of this modified absolute-minimization 
filter is slightly superior to the performance of the Wiener filter. 
Note that in the above analysis, the noise spectrum is assumed to 
be a single frequency, which is the ideal case. Therefore, the 
results obtained above give the upper bound for the filter 
performance. Furthermore, it can be shown that the optimal 
SNR enhancement  values are  given by 
lim [(SNR),J(SNR)x] = N - 2 and 
C- C-1- 
for the Wiener and the modified absolute minimization filters, 
respectively [4]. However, it is important to note that the major 
difference between the two filters is that the Wiener filter 
requires the the knowledge of the signal and noise spectra, while 
the absolute-minimization filter can be achieved without this 
information. 

lim [(SNR),/(SNR),] = N, 

3.Simulation Results 

Simulation results for the frequency diverse statistic filters 
with N=64 are examined in this section. The time domain 
signals and the corresponding spectra are shown in Figs.3 and 
4, respectively. Note that in the simulation example, the noise 
power spectrum is not limited to a single harmonic but covers a 
range of frequencies as shown in Fig.4. From Fig.3 it is clear 
that SNR enhancement can be achieved by all three filters with 
the modified absolute-minimization filter resulting in the best 
performance. Note that the Wiener filter is obtained based on 
the signal and noise power spectra shown in Fig.4, while the 
frequency diverse median and absolute-minimization filters do 
not require this information. In addition, Fig.4 shows that the 
spectral histograms of the median and absolute-minimization 
filters have shapes similar to the Wiener filter transfer function. 

4. Experimental Results 

The frequency diverse statistic filters have also been tested 
using ultrasonic flaw detection data as shown in Figs.5 and 6. 
The input signal is obtained using a 5 MHz transducer and 
corresponds to a cylindrical shaped heat treated stainless steel 
sample of average grain size 160 pm. A flat-bottom hole inside 
the sample simulates the flaw. Note that in this case, the input 
signal is bandlimited to frequencies between 3-8 MHz as shown 
in Fig.6, but cannot be separated into signal (target echo) and 
noise components. Figure 5 shows that the target echo 
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component of the input signal is completely masked by noise. 
Since the location of the target is known, the optimal bandpass 
filter parameters can be found by trial and error, yielding the 
transfer function shown in Fig.6, which approximates the 
Wiener filter [6]. It is clear that the target can easily be identified 
at the Wiener filter output. However, the Wiener filter approach 
is not practical, because it requires U priori target information. 
The frequency diverse median and absolute-minimization filters 
were also examined using 50 narrowband signals with 
bandwidth b=0.4 MHz and frequency separation Af=0.2 MHz 
in the 0-10 MHz region of the input signal spectrum. It is clear 
that the median filter provides only limited improvement with 
high probability of false alarm, while the flaw target can be 
readily identified by the absolute-minimization filter as shown in 
Fig.5. 

Similar to the simulation case, the spectral histograms for the 
median and absolute-minimization filters produce high values 
about the passband of the Wiener filter as shown in Fig.6. 
Therefore, instead of the trial and error approach, it is possible 
to design a Wiener filter based on the spectral histograms of the 
median or absolute-minimization filters. In addition, if the input 
signal is reprocessed using the median and absolute- 
minimization filters in the frequency range suggested by the 
spectral histograms, the target detection can be further improved 
as shown by the last two curves in Fig.6. These techniques are 
referred to as the adaptive median and the adaptive absolute- 
minimization filters, respectively. 

5. Summary 

By combining the statistic filtering concept with the SSP 
technique, a class of frequency diverse statistic filters were 
developed in this paper. Mathematical analysis shows that the 
Wiener filter can be realized based on the frequency diverse 
weighted mean filtering. However, the frequency diverse 
;absolute-minimization filtering can produce comparable results 
to the Wiener filter even when the signal and noise spectra are 
unknown. Simulation and experimental data presented here 
support the theoretical analysis and indicate that the frequency 
diverse median fiter can be used as an alternative technique. 

Although only three types of frequency diverse statistic 
filters have been presented in this paper, the work can be 
extended readily using alternative statistic operations. 
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