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Analysis of Order-Statistic CFAR Threshold 
Estimators  for  Improved  Ultrasonic Flaw 

Detection 
Jafar  Saniie, Senior  Member, 

Abstract-An important problem in ultrasonic nondestructive 
evaluation (NDE) is the  detection of  flaw  echoes  in the presence 
of interfering  and  random echoes (i.e., clutter) associated with 
the  microstructure of materials. In the pulse-echo method using 
broadband  transducers, flaw detection can be improved by using 
optimal  bandpass filtering to resolve  flaw  echoes surrounded 
by grain  scatterers.  Optimal  bandpass  filtering is achieved by 
examining spectral information of the flaw and  grain echoes 
where frequency differences have been experimentally shown to 
be predictable in the Rayleigh scattering region.  Using optimal 
frequency band information, flaw  echoes can  then  be  discrim- 
inated by applying adaptive thresholding techniques based  on 
surrounding  range cells. The  paper presents order-statistic (OS) 
processors, ranked  and trimmed  mean (TM), to robustly estimate 
the threshold while censoring outliers. The design of these OS 
processors is accomplished analytically  based on constant false- 
alarm  rate (CFAR)  detection. The OS-based CFAR detectors have 
been evaluated using experimental data  and  their  performance 
is compared with the cell averaging  (CA) method. I t  is shown 
that OS-CFAR and TM-CFAR processors can detect flaw  echoes 
robustly with the CFAR of lo-.' where the  range cell  used for 
the  threshold estimate contains outliers. 

U 
I. INTRODUCTION 

LTRASONIC  flaw  detection in large-grained  materials 
is difficult since  grain  scattering  echoes  interfere  with 

and sometimes mask  flaw  echoes. Therefore,  signal  processing 
methods  are  essential to enhance the defect's  echo  leading to 
reliable  detection.  Fig. 1 shows an  ultrasonic  flaw  detection 
system  where  the  received  ultrasonic  signal  is  passed  through 
a  preprocessor  for  flaw-to-clutter  ratio  (FCR)  enhancement, 
and is then compared to an  adaptive  threshold  for  constant 
false-alarm  rate  (CFAR)  detection.  Enhancement of the  flaw- 
to-clutter ratio is accomplished  by  preprocessing  the  signal 
utilizing  differences in the  frequency  and  statistical  informa- 
tion of the  flaw  and  grain echoes  using  optimal  frequency 
ranges  and  order-statistic  processors.  After  preprocessing,  the 
surrounding  observations  are used to  create  an  adaptive  thresh- 
old to allow  for  fluctuations in signal  power.  However, in 
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Fig. 1. Block  diagram of ultrasonic CFAR flaw detection  system 

certain  instances,  the  existence of multiple  flaws  or  high 
intensity  noise  information (i.e., outliers)  requires  a  robust 
threshold  estimate.  Such  threshold  estimates  can  be  obtained 
using  order  statistics that can  censor  extreme  deviations  from 
observations.  Thus,  the  goal of this  paper  is  twofold: 1) 
to develop  and  evaluate the  effectiveness of preprocessing 
techniques  for  FCR  enhancement,  and 2 )  to analyze  the  design 
of CFAR detectors and  their  performance  using  experimental 
results. 

In  the  Rayleigh  scattering  region, it has  been  shown [l]-[3] 
that  grain  scattering  results in an  upward  shift in the  expected 
frequency of the  broadband  ultrasonic  signal.  Although,  this 
is not  the case  for flaw echoes  since  flaws  are  generally  larger 
in size  than  the  grain  and  behave  like  geometrical  reflectors. 
In fact  flaw  echoes  often  display  a downward  shift in their 
expected  frequency  caused  by  the  overall  effect of attenuation. 
This  downward  frequency  shift of the  flaw is  a  productive 
attribute  since  the  grain  noise  and  flaw  echoes  are  concurrently 
received  and  preprocessing  methods  can  improve  the  flaw-to- 
clutter  ratio. I f  the  information-bearing  frequency  bands  that 
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Fig. 2. Split-spectrum  processing schematic. 

are  dependent  on  the  specific  characteristics of materials  are 
known a priori, optimal  bandpass  filtering can  be employed. 
However, if this  information is unknown,  other  alternative 
flaw  detection  techniques  that  show  less  sensitivity to the 
environment  are  desirable. 

Effective  techniques  for  detecting  targets in  coherent  noise 
are  frequency  agility  or  diversity  that  have  been  investigated in 
radar  detection  for  several  decades  [4],  [5]  and  more  recently 
in ultrasound  [6]-[9]. In an  ultrasonic  imaging  system,  a 
practical  adaptation of these  techniques  has  been  examined 
and is referred  to  as  split-spectrum  processing (SSP). This 
method is based  on  transmitting  a  broadband  signal  into  the 
media  that,  when  received, is partitioned in several  narrowband 
channels  as  shown in Fig. 2. The  output of these  channels  is 
then  processed to extract  the  flaw  information in the  channels 
with  the  highest  flaw-to-clutter  ratio. 

Several  split-spectrum  processors  such  as  maximization, 
median,  minimization,  averaging,  and  the  quadratic  detector 
[6]-[9] have  been  utilized in the  past.  An  attractive  procedure 
was  shown  to  be  minimization,  specifically when in which 
the  flaw is  stationary  and  present in  all of the  channels [S], 
although,  this  requirement is not always  satisfied in general 
[6]. If the  flaw  information is not  present in some  frequency 
bands,  minimization  will  perform  poorly  and  the  median  and 
maximization  processors  will  perform  more  robustly  [6]. In 
this  paper, optimal bandpass  filtering  is  applied to experimental 
data  where  the  frequency  characteristics of flaws  and  grains 
are  predicted  using calibratedsamples. An  additional  degree of 
improvement in resolution  is  achieved  by  applying SSP when 
all selected  narrow  frequency  bands  comprise  regions of high 
flaw-to-clutter  ratios.  The  split  spectrum  technique  provides  a 
set  of  observations  corresponding to different  frequency  bands 
that will  decorrelate  the  microstructure  noise.  Furthermore, 
the  performance of order-statistic  processors in conjunction 

with  the  split-spectrum  processing  technique is analyzed in 
the  context  of  FCR  enhancement  and  resolution. 

From  the  preprocessed  data,  the  presence of the  flaw is 
then automatically determined  using  CFAR  detection.  CFAR 
detectors  have been  utilized in radar  systems  where the  clutter 
environment is partially  unknown  and/or  has  varying  statistical 
properties  (e.g.,  power).  An  effective  method of compensating 
for  changes in the  clutter  statistics is to use  local  threshold 
estimates  from  background  clutter  observations. In this  paper, 
order-statistic (OS) and trimmed-mean  (TM) CFAR  detectors 
are  considered  for  robust  threshold  estimation.  The  design 
of these CFAR  detectors is modeled  and  compared  with  the 
experimental  results  when the  background  observations  are 
contaminated  with  flaw  information. 

11. FREQUENCY ANALYSIS OF ULTRASONIC  SIGNALS 

The exploration of the  frequency  content of ultrasonic 
backscattered  signals  can  give  spectral  energy  profiles  cor- 
responding to the  grains  and  the  larger  geometric  reflectors 
(i.e., defects).  The  energy  loss of ultrasonic  signals is caused 
by the  microstructure of the  propagating  media  through  which 
scattering  and  absorption  occurs.  The  model  for  the  overall 
frequency-dependent  attenuation coefficient a ( f )  is  defined  as 

4 f )  = & ( f )  + % ( f )  (1) 

where a,(f) is the scattering  coefficient  and n,(f) is  the  ab- 
sorption  coefficient.  The  intensity of scattering is a  nonexplicit 
function of the average  grain  diameter,  ultrasonic  wavelength, 
inherent  anisotropic  character of the  individual  grains,  and  the 
random  orientation of the  crystallites. 

In the  Rayleigh  region  (i.e.,  the  wavelength is larger  than 
the  size  of  the  grains),  the  scattering  coefficient  varies  with 
the  average  volume of the  grain  and the  fourth  power of 
the wave  frequency,  while  the  absorption coefficient  increases 
linearly  with  frequency [lo].  The attenuation  coefficient  can 
be  modeled  as 

.(f) = U l f  + U * D 3 f 4  (2) 

where a1 is  the  absorption  constant, u2, is the scattering 
constant, D is the  expected  grain  diameter,  and f is the 
transmitted  frequency. 

The  composite  effects of scattering and  attenuation  due 
to grains can  be  characterized in terms of transfer  functions 
derived  from  the  spectrums of measured  signals.  The  transfer 
function  associated  with  the  scattering  and  attenuation of the 
grains is evaluated  experimentally  using  two  type  1018  steel 
specimens (i.e., Sample I and Sample 11) where  Sample I 
was not  heat-treated  and  Sample I1 has  been  heat-treated  at 
a  temperature of 1900"  for  4 h. The mean  grain  sizes of 
Samples I and I1 were  found to be 14 and 50  pm  (see Fig. 
3j, respectively.  The  backscattered  ultrasonic  signals and  their 
spectrums  are  shown  in  Fig. 4 for  different  points in the 
steel  blocks.  Fig.  4(a)  shows  the  front  surface  echo, r f ( t ) ,  
and  spectrum, IR,(f) I of the flat front  surface  of  the  steel 
block  positioned in the  far field of the  transducer.  This  front 
surface  echo  represents  the  response of the  transducer  impulse 
function, V( f ) ,  the  pulser,  receiver  amplifier,  and  the  water 
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Fig. 3. Ultrasonic pulse-echo measurement schematic of steel blocks and  the 
micrographs of the two steel specimens used for experimental studies. 

propagation  path. In the RF frequencies (1- to 15-MHz range), 
the  characteristics of the  pulserireceiver  and  water  propagation 
path  are  frequency  independent.  Therefore,  the  received  signal 
is proportional to the  impulse  response of the  transducer: 

In,(f)l x I U ( f ) l .  (3 )  

The spectrum, 1 LT ( f  ) I can  be  modeled as  a  bandpass  Gaussian- 
shaped  spectrum  centered  approximately at 7 MHz with  a  3-dB 
bandwidth of 3 MHz. 

The  effects of attenuation  due to scattering  and  absorption 
of the  propagating  media  are  shown in Figs.  4(d)  and  (e)  where 
a flat back  surface  echo  travels 20 cm  round  trip  into  the  steel 
samples I and 11, respectively. The  spectrum of the  received 
signal, R ( f ) ,  can  be  modeled  as 

IW)I x I A ( ~ ) I I W ) I  (4) 

where A ( f )  is the  transfer  function  corresponding to the 
attenuation  characteristics of the  signal  propagation  path. In 
Fig. 5(a), a  heuristic  evaluation of ] A ( f ) l  is given by the 
ratio of the spectrums of the  previously  measured  signals 
IRb( f ) l / iR f ( f ) l .  It can  be  seen  that  there is a  definite  shift or 
emphasis of the  lower  frequencies.  This  indicates that echoes 
associated  with  flaws  significantly  greater in size  than  the 
wavelength  have  dominant  energy in lower  frequencies. 
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Fig. 4. Ultrasonic measurements and corresponding spectrums at different 
points (see Fig. 3) in  the steel samples I and I1 with  grain sizes of 14 p m  and 
50 Irm, respectively. (a) A front surface echo (Sample I).  (b) Grain echoes 
of Sample I .  (c) Grain echoes  of Sample 11. (d) Back surface echo  of Sample 
I. (e) Back  surface echo  of Sample 11. 

The  spectrum of the  signal  received  from  grains  alone is 
shown in Figs.  4(b)  and (c), which  can  be  modeled  as 

t4J(f)l I A ( f ) l l ~ ( f ) l l ~ ~ ( f ) l l ~ ( f ) l  ( 5 )  

where IA(f)l is  defined in (4), IS(f)l is  the  frequency- 
dependent  scattering  function,  and lG(f)l is  a  frequency 
modulation  function  due to the  sum of small  scatterers  with 
random  orientations  and  phases [ 2 ] .  The  function G ( f )  causes 

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2020 at 05:19:51 UTC from IEEE Xplore.  Restrictions apply. 



SANIIE  AND NAGLE: AKALYSIS OF ORDER  STATISTIC  CFAR  THRESHOLD  ESTIMATORS h21 

Samole I Samole II 

Frequency (MHz) Frequency (MHz) 

Sample I Sample II 

Frequency (MHz) Frequency (MHz) 

(b) 

Fig. 5. Scattering  and  attenuation  transfer  functions of ultrasonic  measurements,  where  (a) shows l . - I ( f j l  (i.e., / R b l / / R f ( f ) l )  and 
~ . A ( f j ~ ~ S ( f ) ~  (i.e., I f iy ( f ) l / lRf( f ) l )  for Samples I and 11, and (b) shows IS(f)l (i.e., / f i g ( f ) l / l R b ( f j l )  for  Samples I and 11. 

sporadic  cancellations of frequency  components and conse- 
quently  results in the  noisy  spectrum shown in Figs.  4(b) 
and  (c).  To  eliminate  the  effect of G(f) ,  homomorphic  spec- 
tral smoothing  techniques  [2]  are  applied to measured  grain 
signals in which  the  resulting  smooth  spectrum, hg(f)  x 
I A ( f ) l l S ( f ) l l U ( f ) I ,  is shown in Figs.  4(b)  and (c)  (dashed 
line)  using  a 28ps (approximately  equivalent to the  duration of 
a  single  echo  governed  by  the  characteristic of the  transducer) 
shortpass  lifter.  Note that  this  duration for the  shortpass 
lifter is chosen  to  provide  sufficient  smoothing [2]. The 
scattering  function, S(f), can  be  found by the  ratios of the 
spectrums of the  grain echoes ((5)) and  the  back  surface 
echo ((4)), Rg(j)/Rb(f), which  is  displayed in Fig. 5(b) 
for  steel  samples I and 11. These  results  indicate  that  grain 
scattering  causes  the  lower  frequencies  to  become  poorly 
backscattered  (i.e.,  attenuated)  resulting in an upward  shift in 
the  expected  frequency of the  grain  spectrum.  Thus, in order  to 
take  advantage of this  property in flaw  detection,  frequencies 
where the  grain  scattering is minimal  should  be  emphasized 
in order to maximize the  flaw-to-clutter  ratio. 

In the  Rayleigh  region  (i.e.,  wavelength of signal  is  greater 
than  the  grain  diameter),  the  scattering  and  attenuation  results 
of both  steel  samples  (see  Fig.  5(b)), in spite  of  significant 
differences in their  grain  sizes,  show  very  similar  frequency 
responses.  Both  flaw  and  grain  echoes  display  predictable 
frequency  dynamics  associated  with  the  physical  properties of 
the  steel  sample.  These  results  also  indicate  the  frequencies 
where high  flaw-to-clutter  ratios  exist  and  can  be  utilized 
in the preprocessing  stage of  the  block  diagram of Fig. 2. 

These  characteristics  are  advantageous and  lead to obtaining an 
optimal  frequency  range  containing  high  flaw-to-clutter  ratios 
for the SSP of the  preprocessing  stage. 

111. OPTIMIZED SPLIT SPECTRUM PROCESSING 

The  disparity in the  energy of lower  frequencies of the 
grains and  flaws  allows  bandpass filtering techniques to extract 
the  flaw  information in the  preprocessing  stage of Fig. 1. 
However,  additional  improvements in flaw-to-clutter ratio and 
resolution  can  be  obtained  through SSP techniques  that  focus 
on the  statistical  information in the  frequency  region of high 
flaw-to-clutter  ratios.  Thus, this section  includes  an  outline of 
SSP techniques  and  presents the optimal  performance that can 
be  obtained  using  experimental  measurements.  Split  spectrum 
processing  entails  transmitting  a  broadband  signal  into a media 
and  partitioning  the  received  signal  into  several  narrowbands 
as  shown in Fig. 2. The  observations  from the  output of TI 

channels  are  normalized with  respect to the  power  (i.e.,  the 
output of all channels  has the same  power), ( ~ i ,  1: = 1 , 2 .  . . . ~ 71,, 

and  passed to an order-statistic  processor.  From  here,  the SSP 
output is passed to the CFAR detector  for  decision  making  as 
shown in Fig. 1. 

It is  critical  to  choose  the  parameters of the SSP appropri- 
ately  in order to effectively  enhance  the  flaw-to-clutter  ratio 
[3], [7], [g], [ll], [12].  The  frequencies of the  channels  must 
reside  within  the  information-bearing  frequency  range of the 
received  signal,  in  particular. 2.5-5 MHz  as  shown in Fig. 5. 
Also,  the  bandwidth of the channels  must  be  large  enough 
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Fig. 6. Experimental  ultrasonic flaw measurements,  where  (a)  has a single 
flaw  reflector, (b) three  closely  spaced  unresolvable  flaws,  and (c) two  spatially 
separated flaws. 

(0.5-1.0 MHz) to maintain  the  resolution  integrity of the 
echoes.  These  constraints  limit the  number of observations 
attainable  without  excessive  frequency  overlap  between  bands. 
Correlation  is  not  as critical as  choosing  frequency  range  with 
strong flaw  information.  Thus,  typical  frequency  steps  between 
channels  will be 0.2-0.5 MHz. 

To  evaluate  the  importance of the  optimal  frequency  range, 
three  different  experimental  signals  (shown in Fig. 6 and 
referred to as  Data I, Data I 1  and  Data 111) containing flaw 
echo  with  comparable  amplitude to the  clutter  intensity  (i.e., 
zero  dB  flaw-to-clutter  ratio)  are  used.  Fig. 7 shows  the  flaw- 
to-clutter  ratio  profiles  for  various  ideal  bandpass  filters in 
terms of center  frequency  and  bandwidth  applied to Data 
I, 11, and 111. In Fig.  7(a),  the  Data I set  from Sample I 
indicates  that  the  frequencies  near 3.5 MHz  will  give  the  best 
performance  when  bandwidths  are 0.8 MHz  or  larger.  Larger 
bandwidths  offer  robust  performance  for flaw  detection  since 
they  will  maintain  the  flaw  information  for shifts in different 
channels and  also  reduce  the  correlation of grain  noise  between 
channels.  The flaw  signal in Fig. 6(b), Data 11, from  Sample 
11, has  a  similar  frequency profile (see  Fig. 7(b)) as  with 
Sample I. Comparisons of results  shown in Figs.  7(a)  and (b) 
indicates  that  the  frequency  differences  due to grain  size  can  be 
considered  insubstantial  enough to significantly  alter  the SSP 
optimal  parameters.  Therefore,  using  a  typical  specimen  as the 
calibration tool for  optimal  frequency  range is quite  reliable. 

The  case  for Data I11 from  Sample I1 in Fig.  6(c)  indicates 
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Fig. 7. Flaw-to-clutter  ratio  profiles of ideal bandpass  (rectangular  window) 
filtering  with  various  center  frequencies  and  bandwidths  using  (a)  Data I 
(maximum  FCR  enhancement  at 11.2 dB) and  (b)  Data 11 (maximum FCR 
enhancement at 13.4 dB), and (c) Data 111 (maximum FCR enhancement at 
11.5 dB). 

that,  for  certain  frequencies  bands,  interaction  between  the 
two  flaw  echoes  and  the  grain echoes  (shown in the  FCR 
profile of Fig.  7(c))  have  more  fluctuations yet indicate  similar 
conclusions  (i.e.,  the  FCR is low  and  unacceptable  when  the 
center  frequency  is  beyond 6 MHz,  and  the  FCR  is  relatively 
high  when  the  center  frequency is around 3.5 MHz and  the 
bandwidth is about 0.8 MHz)  as  previously. The  importance 
of this  conclusion  can  be  seen  more  clearly  where  five  channels 
are used in the  frequency  range  of 3-5 MHz  (see  Fig. 8) and 
the SSP output  signals  are  shown in Fig.  9(a). As expected, 
each  channel  contains  high  flaw  energy  that is then fed  to  the 
order-statistic filter (see  Fig. 2) to improve  echo  resolution 
and  the  flaw-to-clutter  ratio. 

The next step  is to use the  partially  uncorrelated  observa- 
tions and  make use of statistical  differences in the  channels 
(i.e.,  corresponding to random  phase  information in the re- 
ceived  grain  echoes) to improve the  flaw-to-clutter  ratio  and 
resolution of the  received  echoes.  The OS filter is shown in 
earlier  work to be  a  quantile  estimator [l31 of  the  input  density 
function  that  describes  a  specific  point  on  the  probability 
distribution  function. The performance of the  detector  can  be 
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Fig. X. Data 111 experimental  signal  and  spectrum  with five SSP filters used in 
the  high flaw-energy frequency  range. 

Fig. 9. SSP channels  and  respective OS outputs with five bandpass  filters of 
l-MHz bandwidth  equally  spaced  between 3 and 5 MHz using Data 111. 

An important  step  for  optimizing  the OS filter involves 
finding  the  relationship  between  the  input  and  output  statistical 
behavior of the  data.  Assuming  the  input  observations, :I:, 

are  independent  and  identically  distributed  with  distribution 
F<y(.z), the  order  statistic  is  known to be  a  consistent  and 
asymptotically  unbiased  estimator of the  quantile: 

,L lim - m E[x(,)] = F*G'(U..) (7) 

where U, = ( r  - l) /(n - 1) is  a fixed  constant,  and E[X( , ) ]  
is the  expected  value  for  the  output of OS filter. In the 
aforementioned  limit  both T and 71 approach infinity but ,ur 
remains  a  finite  ratio of T and n. For infinite n ,  the OS filter is 
an  unbiased  estimator.  With finite observations, 71, the  estimate 

T'T 

improved by choosing  the  position of the  estimate  where  there 
are large  statistical  differences  between  the  two  hypotheses 
(flaw  present, H I ,  or not  present, Ho). 

The OS filter ranks  a  set of 71 input  values  corresponding to 
simultaneously  sampled  values of the n channels of the SSP 
output: ( 5 1 , 5 2 , 2 3 >  . . . zn) ,  

where  a  given  order  or  rank, r is chosen  and  is  passed 
to the  output.  This  processor is the  median filter when T = 
(71 + 1)/2 (for  odd n), the  maximum filter when r = 71 and 
the  minimum filter when r = 1. 
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will  have  some  dispersion  about  the quantile  value. U,, that 
allows the  values of neighboring  quantiles to influence  the 
output [14]. It should  be  noted  that  the  performance of the 
OS filter will  generally  improve  with  increasing  observations 
71 since  the  variance  will  decrease (i.e., the  random  nature of 
the  grains  echoes  will be  reduced).  The  lower-ranked  order 
statistics  have  been  shown in the  past to give  improvement 
in the  resolution of echoes  and  the  flaw-to-clutter  ratio [6 ]  
provided all channels have  significant  flaw  information.  The 
performance of all  the  ranked outputs of the SSP with five 
channels is shown in Fig.  9(b) in which all ranks  show 
moderate  improvement in the  flaw-to-clutter  ratios.  The  lower 
ranked  outputs  show  slightly  better  resolution that is  attractive 
in imaging  multiple  flaws. 

Optimal SSP has  been  applied to several  signals  with 
various  types of flaws  in  steel  samples.  Three  experimental 
flaw  measurements  from  steel  samples I ,  11, and 111 are  shown 
in Fig. 6 where  Data I has  a  single  simulated  flaw (flat bottom 
hole),  Data I1 has  a  complex  flaw  constituting  three  closely 
spaced (i.e., beyond  the  resolution of the system)  flat-bottom 
holes,  and  Data 111 has  two  simulated  flaws  separated  by 
1.25 cm.  The  performance of the  SSP  with 11 channels of 1- 
MHz  3-dB  bandwidth  equally  spaced  between  the  frequency 
range of 3-5 MHz  using  minimum,  median,  and  maximum 
order  statistics is shown in Figs. 10-12 for Data I, 11, and 
HI,  respectively.  These  figures  show  that  the  lower  ranks 
provide  improved  resolution  while  maintaining  the  flaw-to- 
clutter  level.  Fig. 13 shows  the  SSP  outputs  with  highest FCR 
of experimental  signals  using  low-ranked  order  statistics.  The 
next  step is  to  utilize  the  optimized SSP output  in  reliable 
detection of the  presence  and  position of flaw echoes  where  the 
background  cluttedgrain  noise  power  fluctuates  from region 
to region. 

IV. ADAPTIVE CFAR THRESHOLD ESTIMATORS 

In  ultrasonic  systems,  the  effect of interfering  echoes  from 
the  microstructure  can  degrade  the  detection of a  flaw  within 
a  particular  range  cell.  When  the  clutter  distribution in a 
measurement  is  unknown,  the  performance of the  optimal 
(i.e.,  Neyman-Pearson  fixed-threshold  detector)  detector  dete- 
riorates  significantly,  and  the  need  arises  for  a  nonparametric 
or CFAR  detector  that is designed  to  be  insensitive  to  changes 
(e.g., power) in the  density  functions of the  clutter. 

In the  past,  CFAR  detectors  have  been  implemented  using 
local  observations in surrounding  range  cells to create local 
estimates  of  the  threshold  when  these  observations  contain 
predominant  clutter  information [15]. A  schematic of the 
CFAR  detection  system  considered  here  is  shown in Fig. 1. 
A  single test observation, y, is classified to belong  either to 
the  null  hypothesis  (clutter), H,,, or the  alternative  hypothesis 
(flaw-plus-clutter)? H I ,  by  using a local  threshold, T ,  estimated 
from  a  set of assumed  clutter  observations  (belonging to Ho). 

It has  been  shown  that  the cell  averaging  (CA) CFAR 
detector ( i.e., T 'x x i )  performs  optimally  (offers 
maximum  probability of detection)  for  homogeneous  and 

x = {XI. 22.. ' . , : x n } .  
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Fig. 10. SSP results  with 11 channels of l-MHz bandwidth  equally  spaced 
between 3 and 5 MHz using the (a)  minimum, (b) median,  and (c) maximum 
OS outputs for Data I. 
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Fig. 11. SSP results  with 11 channels of l-MHz bandwidth equally spaced 
between 3 and 5 MHz using the (a) minimum, (b) median, and (c)  maximum 
OS outputs for Data 11. 

exponentially  distributed  clutter  observations: 

where FD(.) is the  clutter  distribution  and / L  is the  unknown 
scale  parameter  (i.e.,  related  to  the  clutter  power).  The  CA- 
CFAR  detector is based  on  an  application of the invariance 
principle [16]-[l81  since  the  threshold  estimator is a  sufficient 
and  complete  estimator of the  scale  parameter p. However, 
the  performance of this  optimized  detector  can  significantly 
deteriorate  when  the  assumption of homogeneous  observa- 
tions is violated  (e.g.,  the  introduction of flaw  information 
and/or  spurious noise). Thus,  alternate  methods that censor 
undesirable  information  (outliers)  from  the  threshold  estimate 
are  required  that  will  make  the  detector  perform  robustly. 

The  performance  of  the  CFAR  detector  depends  on  the 
validity of assumed  clutter  observations, z. Potential  flaw 
information  contained in the surrounding  cells of z will  gen- 
erally  degrade  the  probability of detection  while  maintaining 
the  CFAR  constraint.  However,  CFAR  performance  may  be 
degraded by sharp  transitions in the  grain  signal  power  (due to 
boundaries of materials) that is dependent  on  the  size of clutter 
window, n. Taking  these  two  scenarios  into  consideration, an 
intuitive  solution  can  be  obtained  by  censoring  the  clutter 
observations  from  large  deviations (i.e., outliers) that  would 
lessen  the  effects of the  outliers,  and  consequently,  improve 
the  detector's  performance.  The  censoring of data  can  be 
accomplished by  using order statistics. This  deviates  from 
the  application of order  statistics in the SSP where the goal 
was  to  emphasize  strong  statistical  differences in conjunc- 
tion  with improving the  resolution  through  nonlinear  signal 
processing  techniques. In recent  studies,  censoring  techniques 
have  been  implemented  using  OS-CFAR  detectors  [l91  and 
TM-CFAR  detectors  [20]  for  radar  applications.  Utilizing 
the  two  estimates for  required  censoring  needs,  the OS- 
and  TM-CFAR  threshold  estimates  can  be  designed  robustly 
resulting in improved  detection  for  heterogeneous  background 
observations. 

The  ideal CFAR  threshold, T ,  for  the  one-sample  test  is 
given  by 

where F,'(.) is the  inverse  distribution  function for the  null 
hypothesis  (i.e.,  grain  echoes or  clutter)  and  the  constant a is 
the  probability of false  alarm  of  the  detector.  Since F;' (.) is 
not  completely  known a priori, the  null  observations, x, are 
used to estimate the  threshold, T ,  as shown in Fig. 1. 

The  probability of false  alarm  for  the  CFAR  detector, PFA 
is  given  by 

where Y is the  random  variable  corresponding to the test 
observation  with a distribution  function & ( x )  and  a  density 
function f o ( x : )  under  the  null  hypothesis Ho. Note that T is a 
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random  variable  with  a  distribution  function F ~ ( T ) ,  a  density 
function fy(~), and  observed  values of T denoted  by 7 .  P F ; ~  
can  be  expressed  as 

This  expression  shows  the  effect of the  density  function 
of the  threshold  estimate, f f ( ~ )  on PFA. If the  threshold 
estimate is asymptotically  unbiased  and  consistent, f + ( ~ )  
should  converge to a  delta  function, 6 ( ' ~  - Ft'(1 - a ) ) ,  
as n approaches infinity. However,  for finite samples  there 
will  generally  be  spreading  about  the  actual  threshold  value T 
governed  by f f ( 7 ) .  In order to satisfy  the CFAR  constraint 
described by (9), the  threshold  estimate  must  be  adjusted, 
resulting  generally in a  biased  estimate  that  can  lower  the 
probability of detection. 

The  threshold  estimate  for  the  CA-CFAR  detector is given 
here: 

n 

where # is  the  scaling  parameter,  determined  from the proba- 
bility of false  alarm  relationship of (11). 

The censored  TM-CFAR  threshold  estimate  corresponds to 

a=r+l 

where T and .S are  the  number of smallest  and  largest  censored 
observations,  respectively,  and # is the  CFAR  design parame- 
ter. This  incorporates  several  order  statistics that are  combined 
linearly  with  equal  weighting  referred  to  as  the  TM-CFAR 
detector. 

The  OS-CFAR  threshold  is  given  by  a  scaled-order  statistic: 

as  this is the  special  case of the  TM-CFAR  detector  when 
r = i - l a n d s = i + l .  

The  design  parameter B of CA-CFAR [15], OS-CFAR [l91 
and  TM-CFAR  [20]  detectors  for  exponentially  distributed 
observations can  be  found in a  similar  manner  from  (1 1). The 
P F . ~  for the  CA-CFAR  detector [15] is  given  by 

The I 'F .~  for  the  TM-CFAR detector is given by [20]: 
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Fig. 12. SSP results with 11 channels of l-MHz bandwidth  equally  spaced 
between 3 and 5 MHz using the  (a) maximum,  (b)  median,  and  (c) minimum 

I 

OS outputs for Data 111. 
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Fig. 13. Optimal SSP outputs for Data I. 11, and I11 using ranks. (a) I '  = 2 .  
(b) r = 1. (c) I' = 1. 

The PFA for  the  OS-CFAR  detector is given  by  [19]: 

where B(.) and l?(.) are  Beta  and  Gamma  functions  [21], 
respectively. In this  study,  OS-CFAR  and  TM-CFAR  detectors 
are  implemented  for  different  censoring  scenarios their perfor- 
mance  are  examined  and  compared  with  CA-CFAR  detector 
using  experimental  data. 

V. CFAR FLAW DETECTION-EXPERIMENTAL  RESULTS 

To  implement  the  CFAR  detector  effectively,  the  parameters 
of the  detector  must  be  chosen in accordance  with  the  resolu- 
tion of the  flaw  echoes  and  the  number of flaws  present.  For 
this  study,  experimental  measurements  and SSP outputs  (Figs. 
6 and 13,  respectively)  are  used  to  illustrate  different  flaw 
scenarios  where  the  preprocessed  signals  have  comparable 
flaw-to-clutter ratios of approximately 11 dB. In Fig.  13(a), 
the  signal  shows  a flaw from  a  single  reflector.  Fig.  13(b) 
shows  a  complex  flaw  echo  with  broader  duration  representing 
information  relating to three  closely  spaced  flat-bottom  holes. 
An  example  with  two  resolvable flaws is shown in Fig. 13(c). 
These  cases  will  be  applied  to  the  previously  mentioned CFAR 
processors  where  the  parameters  are  chosen to provide  robust 

performance  at  equivalent  levels of probability of false  alarm 

Since only one  observation is used  for  testing  (i.e..  flaw 
information),  the  resolution of the  flaw echoes  requires  guard 
cells to separate  the  samples  containing  concurrent  flaw  in- 
formation  from  the  threshold  estimate of background  clutter 
observations.  The  resolution of this  system  for  the  transducer 
center  frequency of approximately 7 MHz  (see  Fig. 4(a)) and 
3-dB  bandwidth of 3 MHz and sampling rate of 100 MHz is 
approximately 25 samples. It is important to select  a  guard  cell 
larger  than  the  duration of a  flaw echo to avoid  contributing to 
the  threshold  estimate.  The  window  size, 71, for  estimating the 
threshold  must  be  large  enough to cover  adequate  information 
related to clutter. In this  study, 71. is equal to 128 data  points, 
which  covers  approximately 12 periods of clutter  signal  (note 
that  the sampling  rate is 100 MHz and the  expected  center 
frequency  for  the  clutter  signal  is  about  10  MHz  (see  Figs. 
4(b)  and (c)). If 71 becomes too large,  the  threshold  estimate 
becomes  less  adaptive to local  clutter  and  the  possiblity  of 
including  the  outliers  increases. if ' I t ,  becomes too small,  then 
the  threshold  estimate  will  have  a  higher  variance that leads 
to random  performance. 

An example of the  performance of OS-CFAR,  TM-CFAR, 
and  CA-CFAR detectors for Data I is given in Fig.  14  for 
n = 128 and guard  cells of 128 samples.  This  figure  indicates 
that the  guard  cells  maintain  comparable  clutter  threshold 
levels  for  the  region of the  flaw,  however, the presence of 
the two large peaks on either  side of the  flaw  will  prevent 
detection of other  potential  flaws in that region when  multiple 
flaws  occur.  Results in this  figure  illustrates  moderate  (Fig. 
14(a))  and  extreme  (Fig.  14(b))  censoring  properties of  the 
OS-CFAR  and  TM-CFAR  detectors  and  how  they  reduce  the 
effect of contaminating flaw  information. It should  be  noted 
that  the  scaling  factors  derived  from (15)-(17) assume  that 
the  clutter  observations  are  exponentially  distributed in which 
deviations in  the  probability of false  alarm  may  exist.  The 
performance of the  OS-CFAR in this  instance  shows  lower 
levels than  the TM-CFAR  threshold,  however  the  TM-CFAR 
threshold  has  less  variations,  hence  the  TM-CFAR  threshold 
would  empirically  perform  with  a  lower  incident of false 
alarm. 

The CFAR  performance  using  the  same  parameters  as 
done  previously  using  Data 11, containing  a  composite  flaw 
consisting  of  several  unresolvable  echoes, is shown in Fig. 
15. This figure shows  results  similar to Data I. For  Data 111, 
where  multiple  flaws  are  present,  Fig. 16  shows  the  case  where 
CA-CFAR  fails  to  detect  flaw  echoes  due to contamination. 
Fig.  16(a)  presents  the  moderate  censoring  case  with  guard 
cells of 444  where the  flaw  information is contaminating  the 
threshold  estimate of the  neighboring  flaw. In this  example  the 
OS reduces  the  effect of the  outliers  considerably  producing 
thresholds  comparable  with  the  flaws  where  only  the  smaller 
flaw echo  was not  detected.  The  TM-CFAR  threshold  estimate 
shows the  best  performance in reducing  the  threshold  bias 
and  detects  both  flaws in the  midst of high contamination. In 
the  extreme  censoring  case  with  guard  cells of 128 samples 
(see  Fig.  16(b)),  similar  robust  performance of the  threshold 
estimate  can  be  seen. In contrast to the performance of the 

(Pj7-4 = 10-4) .  

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2020 at 05:19:51 UTC from IEEE Xplore.  Restrictions apply. 



h3X 

2.5 

2 

1.5 

1 

0.5 

( 

IEEE rRANSACTlONS OK ULTRASONICS.  FERROELECTRICS. AND FREQUENCY CONTROL. VOL. 39, NO. 5 .  SEPTEMBER 1 Y W  

CFAR THRESHOLD  PERFORMANCE CFAR THRESHOLD  PERFORMANCE 
2.5 

- CA (n=128) - CA (n=128) 
-----TM (n=128, r=O, & s=32) -----W (n=128, r=O, & s=64) 

OS (n=128 & i=96) OS (n=128 & i=64) - ,  
128 Guard Cells 
PFA=O.OOOl 

Data I 1 II\ 

b 

j ; ,  

CFAR THRESHOLD  PERFORMANCE 
1.8 

1.6 

1 

-CA (n=128) 
- -----TM (n=128, r=O, & s=32) 

OS (n=128 & i=96) n 
1.4} 128 Guard Cells 

PFA=0.0001 

1.2 Data I1 t 
0.4 

0.2 

0 

Time (sec) 
(a) 

CFAR THRESHOLD  PERFORMANCE 
1 P  
L . 0  

-CA (n=128) 
. . - - - ~  (n=128, r=O, & ~ ~ 6 4 )  

128  Guard Cells 

1.6 - OS (n=128 & i=64) 

- PFA=O.OOOl 

- Data I1 

0.8 

0.6 1 

Time (sec) 
(h) 

CA-CFAR  detector,  both  OS-CFAR and TM-CFAR  thresholds 
robustly  detect  flaws in the  presence of contaminating  flaw In this  paper,  we  have  presented a theory  and  application 
information. of Ssp parameters  and  CFAR  detection in  ultrasonic  flaw 

VI. CONCLUSION 
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Fig. 16. Adaptive  threshold  performance  for OS-: TM-, and CA-CFAR  detectors  for (a) moderate  and (b) extreme  censoring  using 
Data I11 with P p 4  = lo-”. 

detection.  The  theory  suggests  that  the  optimal SSP can  be 
found  upon  the  knowledge of the  frequency  ranges  that  can 
be  determined  through  calibration. We have  shown  through 
experimental  results that lower-ranked  order  statistics  applied 
to the SSP perform  well  in  terms of enhancing  the  flaw-to- 
clutter  ratio  and flaw  resolution,  although  they  require that all 
channels  contain flaw  information.  Furthermore,  the  adaptive 
threshold  has  shown  to  maintain CFAR performance  when  the 
a priori knowledge of the  distributions  is  incomplete.  This 
paper  introduces  the  application of CA-CFAR, OS-CFAR, and 
TM-CFAR threshold  estimators for ultrasonic  flaw  detection 
in NDE application.  These  estimators  have been  applied to 
experimental  data  and  results  indicate  that for the  case of 
multiple  targets,  the OS-CFAR and TM-CFAR detectors  show 
more  robust  performance  than  the CA-CFAR detector. 
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