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Abstract— The speed of the addition operation can play an
important and complicated role in various signal processing al-
gorithms. Parallel prefix adders have been one of the most notable
among several designs proposed in the past. The advantage of
utilizing these adders is the flexibility in implementing the tree
structures based upon on the throughput requirements. Recently,
a new technique has been proposed that utilizes the parallel prefix
adder but modifies it to yield a new adder capable of performing
simple increment and decrement operations. An extension to this
adder has also been proposed enhancing the functionality of the
same to allow the addition of any arbitrary number. This paper
compares the performance of this unique adder design in terms of
power, area, and delay by using the Brent-Kung, Kogge-Stone and
the Ladner-Fischer tree structures. It also presents the advantage
of using these kinds of adders over conventional adder designs
to perform the same operation.

I. INTRODUCTION

Addition circuits are utilized in a variety of applications
ranging from cryptography, digital signal processing to the
design of a simple ALU. Adder delays can determine the min-
imum clock cycle time in a processor. A small improvement in
the design of an adder can result in significant improvements
in the performance of an entire processor [12].

Many applications require the addition of two numbers
followed by augmentation of the result by a constant. One
example is changing the brightness of an image. In many
cases, integrating this constant within a given architecture is
not easy, resulting in utilizing two or more carry propagate
adders in the design of the data path. The conditional sum
adder provides a solution to the problem by generating a pair
of sum and carry bits for each position. One pair assumes
a carry-in of ’1’ and the other assumes a carry-in of *0’.
Subsequently, a tree of multiplexors are used to select the
appropriate sum and carry values. However, the conditional
sum adder suffers from large fan-out and large area constraints
[11] [13] [15].

Parallel prefix adders [8] have proven to be particularly
attractive due to their regular structures and efficient design,
compared with the prohibitive structures of carry lookahead
and conditional sum adders. The underlying technique for
these adders is to express addition as a prefix computation [10].

Using prefix computations offers the flexibility of having more
than one implementation for intermediate structures within
the adder, allowing trade-offs between the amount of internal
wiring and the fan-out of intermediate nodes, therefore, result-
ing in a more advantageous combination of speed, area and
power. The parallel prefix adders can be modified to yield a
new design called the flagged prefix adder [3], [4]. The flagged
prefix adder uses a simple technique [5] of inverting only
selected sum bits to derive increment (A+B+1) and decrement
(A+B-1) results in addition to normal addition (A+B) and
subtraction (A-B) outcomes. This architecture can be further
extended with small modifications in hardware [14] to invert
the required sum bits and obtain the result of adding any
arbitrary constant (A+B+M) following the addition/subtraction
of two numbers.

This paper investigates the effects of the hardware modifica-
tions to the flagged prefix adder, for realizing arbitrary constant
addition and subtraction with different prefix tree architectures
[8]. The concept of the flagged prefix adder and the required
modifications are reviewed in Section II. The three different
prefix tree adder architectures considered in this paper are
presented in Section III. In Section IV, the trade-offs in area,
speed and power are evaluated among the enhanced prefix
adder architectures. Area, delay and power numbers are also
provided for a carry save adder [17] and a dual adder [3] to
verify the advantage of the proposed architecture. The final
conclusions are presented in Section V.

II. BACKGROUND

The key to fast addition is to calculate the carry signals for
all bit positions in parallel [16]. The recurrence relationship
presented in Eq. 1 achieves this conveniently by introducing
the generate or g signal given by g; = a;-b;, and the propagate
or p given by p; = a; +b;, where { represents the bit position.

Civt = Gi +Pi -G (D

The parallel prefix adder accomplishes the same by expressing
binary carry propagate addition as a prefix computation. Prefix
adders perform an n-bit addition in time O(logn), using area
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O(nlogn) [2]. Parallel prefix logic combines # inputs using
an arbitrary associative operator o to n outputs, so that the
outputs Sum; depend only on the input operands [6]. The
parallel prefix adder computes the sum in three stages. This
is illustrated in the block diagram in Fig. 1 [14].
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Fig. 1. Block Diagram of Parallel Prefix Adder

In the block diagram, illustrated in Fig. 1 x and vy represent
the n bit operands. p and g represent the generate and
propagate signals described earlier. These signals are utilized
to compute the carries through the recurrence equation given
in Eq. 1. The prefix carry tree is an interconnection of a
number of black, gray and buffer cells where the logic for
each cell is illustrated in Fig. 2.
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Fig. 2. Logic gates within the Prefix Carry Tree

The black cell is a complex logic gate that performs the
associative o dot operation. G, .nand Py, ., represent the
Group Generate and Group Propagate signals across the
bits from significance m up to and including significance n
respectively [4]. The inputs to these cells come from the pre-
processing stage of the adder. The gray cell is similar to the
black cell, except that it does not output the Group Propagate
signal. These cells are connected to form a multilevel tree
structure. The output of the tree is then passed on to the post
processing stage to produce the final sum.

A. Flagged Prefix Addition

The flagged prefix adder [3] [4] is a slightly modified
version of a conventional prefix adder . The prefix carry tree
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in the modified version computes the so called flag bits in
addition to the carry signals. These flag bits are utilized to
invert the required sum bits. This can be better understood
with the following example. Here, operand x=9 and operand
v =78 [14].

X = 0 0 0 0 1 0 0 1

y = 0 1 0 0 1 1 1 O
Sum = 0 1 0 1 0 1 1 1
F = 0 0 0 0 1 1 1 1
Sum+1 = 0 1 O 1 1 O O O

The result Sum+1 is a result of XORing the flag bits, F and
the Sum bits. The flag bits are shown to be easily generated
from the prefix carry tree [1]. The flag bits are related to
the Group Propagate signals [3] and therefore they can be
obtained at the output of the prefix carry tree, while the carry
is being computed. Consequently, computation of the flag bits
does not affect the critical path. The block diagram of a flagged
prefix adder is shown in Fig. 3 [14].
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Block Diagram of a Flagged Prefix Adder

Fig. 3.

The difference between the prefix adder shown in Fig.
1 and the flagged prefix adder illustrated in Fig. 3 is the
output of the prefix carry tree. In the second case, the prefix
carry tree is modified to output, P,,_; ., the Group Propagate
signal as shown in the figure. Also, two new inputs are
introduced named as, incr and cmp. These are two control
bits to select and invert the appropriate sum bits to achieve
the desired result. A straightforward implementation of the
flagged inversion logic is shown in Fig. 4 [3]. Therefore, the
modifications required to achieve the design of the flagged
prefix adder are as follows [3]:

o Convert the gray cells of a conventional prefix carry tree
to black cells, in order to obtain the Group Propagate
signals at the output

« A minimal amount of additional logic is required in order
to compute the flag bits from the Group Propagate signals

o The necessary Flagged Inversion Logic will also be
required to invert the appropriate sum bits depending on
the control bits, incr and cmp.
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Fig. 4. Flagged Inversion Logic

B. Enhanced Flagged Prefix Adder

As presented in [14], the flagged prefix adder can be further
extended to include another function of adding an arbitrary
constant to the sum of two input operands. Assume that R is
the result of adding two arbitrary inputs A and B, and R needs
to be augmented/decremented by a value, M. The full adder
equations can be written as

Sumy = R & My & ¢
Chp1 =Ry - My + Ry, - e, + My, - ¢ (2)

Here, k represents the bit position.

Utilizing these new equations, the new sum needs to be
computed such that R + M = R @ F where F is the flag
function. The flag bits can be seen as bits that indicate whether
the current value is flagged to change. Consequently, the flag
bits can be computed based on speculative elements of the
constant. The concept behind computation of the flag bits is
similar to the one used in a conditional sum adder. Two bits
of the constant are examined to determine whether or not the
carry bit from the constant affects the current position.

Rk~ck7 Zka:O
R {RkJrClm if Mp=1 )
- Ck, Zka:O
= {a if Mi=1 *

Assuming M= 0 and My_;= I, utilizing the relationships
in equations 2, 3 and 4, we obtain

Ck+1:Rk~Ck Zka:O

=Ry 14+cp 1 if M 1=1

Cocke1 = By - Fy,
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e =Ry 1 +F,—1 (5

Table 1 shows the complete set of equations for both, carry
and the flag

TABLE I
OUTPUT LOGIC FOR SELECTION OF REQUIRED RESULT [14]

[ My [ My | Ci I Iy, |
0 0 Ri_1- 1 Ri_1- i1
0 1 Re 1+ Fr_1 | Re—1+ Fra
1 0 Re1-Fr 1 Rr1-Fr 1
1 1 Re1+Fra | RBooa-Fra

However, the computation can be simplified by utilizing
the output carry signals from the prefix tree and selecting the
appropriate logic function based on the output carry. The flag
equations can be rewritten as shown in Table II.

TABLE I
MODIFIED OUTPUT LOGIC FOR SELECTION OF REQUIRED RESULT
UTILIZING CARRY PRODUCED FROM THE PREFIX CPA [14]

[ M | Mea | Fr,(a=0) | Fr,(ce=1) ]

0 0 Re1-Fr 1 Rr1-Fr 1
0 1 Re 1+ Fr1 | RBoo1-Fra
1 0 Re1-Fro1 | B+ Fra
1 1 Re1-Fr 1 Re1-Fr 1

In order for the equations, to be computed correctly, the
following initial conditions are assumed

Ri=M 1=F1=0 (6)

Fy = M,

Continuing with the same example as presented before, with
x=9, y=78 and M=0011_1001,= 5710, we get

M = 0 0 1 1 1 O 0 1

X = 0 0 0 0 1 0 0 1

y = 0 1 0 0 1 1 1 O
Sum = 0 1 0 1 O 1 1 1
F = 1 1 0 0 0 1 1 1
Sum+¢57 = 1 0 0 1 O O O O

In order to accomplish the extra functionality as a part of
the flagged prefix adder, minimal extra logic depending on
the specific constant needs to be included. The flag equations
rely on the carry produced from the prefix carry tree, thus
not significantly affecting the critical path. If another constant
is chosen, the logic for the flag changes according to Table
II. Fortunately, the logic functions implementing the flag can
be pre-computed. It is however possible that specific designs
incorporating a particular constant may incur more delay than
other constants.

This paper investigates the performance of the approach de-
scribed above implemented in three different prefix structures
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and the trade-offs in area, power and delay. The implementa-
tion will determine the tree that would be the most appropriate
to use in order to exploit the usefulness of the design. The
different tree structures considered in this paper are described
in Section III and the implementation results in Section I'V.

ITI. PREFIX CARRY TREE IMPLEMENTATIONS

Prefix adders have become popular due to their regular
structures and the fast computation of carry values compared
to the carry lookahead adders. All prefix structures exploit
the associativity of the dot operator [17], which is defined
according to the following equation

(g,p)o(g,p) =@+ g)p ) (7

Here, ¢,¢’,p, and p’ represent pairs of bit generate and
propagate signals. This in turn leads to regular and easily
implementable structures as described in [2], [10], [9]. All
prefix trees, use the same black and gray cells as shown in
Fig. 2 to produce the carry values for each bit position at the
same time. However, the performance of each tree differs due
to the difference in interconnectivity of these gates, amount of
fanout required at each level, and the wiring density.
Addition was successfully expressed as a prefix computation
by Ladner and Fischer [10]. The cotresponding prefix carry
tree is shown in Fig. 5 . The Ladner-Fischer tree aims at
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Fig. 5. Ladner-Fischer Tree
reducing the depth of the tree in order to compute the carry
signals. The complexity measure for this case is the gate count
and speed. However it does not perform well in terms of the
capacitive fan out load. Contrary to this is the Brent-Kung
structure that addresses the fan out restrictions, but the logical
depth of the tree is increased as seen in Fig. 6. Therefore the
Brent-Kung tree [2] has a more regular structure, which is
easy to implement in terms of chip design and wiring density.
Another approach was proposed to target the fan out issue
and that led to the Kogge-Stone tree [9], shown in Fig. 7. The
Kogge-Stone structure limits the lateral logic fanout to unity
[8] at each node, but increases the number of lateral wires at
each level. This leads to an increase in area and also in the
complexity of interconnections. However, in terms of speed,
the adder performs better than the previous two designs.
Parallel prefix Adders utilizing each of these prefix trees
are implemented in the 0.18um System-on-Chip design flow
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Fig. 6. Brent-Kung Prefix Tree
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Fig. 7. Kogge-Stone tree

to investigate the power, area and delay trade-offs. Synthesis
is performed with Cadence Build Gates and Encounter [7].
Layouts are generated for the adders and parasitically extracted
to obtain accurate numbers for area, delay and power. The
results presented are for 16-bit designs and represent worst-
case input/output transitions.

TABLE III
POST-LAYOUT ESTIMATES FOR BRENT-KUNG, KOGGE-STONE AND
LADNER-FISCHER ADDERS

| Adder/Parameters ” Area (mmz) | Delay(ns) | Power(mW) |

Brent-Kung 0.2756 16.825 5.63E-04
Ladner-Fischer 0.2763 14.025 5.81E-04
Kogge-Stone 0.4961 11.412 7.778E-04

As listed in Table III, each tree has an interesting power,
delay, area trade-off relationship. The Brent-Kung adder sac-
rifices speed in order to get minimal area. However, the
regularity of the structure and minimal fan out result in
attractive power dissipation results. The Ladner-Fischer adder
due to the least number of logic levels performs better in terms
of speed by approximately 17% compared to the Brent-Kung
adder. However, it lags behind in area and power dissipation,
but the difference is not very significant since the number of
black and gray cells required by each tree are approximately
the same. A noticeable difference in performance, is observed
in the design of the Kogge-Stone adder. The Kogge-Stone
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structure due to the increased wire density required to connect
the cells and the increased number of black cells, sacrifices
area and power in order to achieve the best speed among all
three designs. The latter is 32% times faster than the Brent-
Kung design but dissipates 38% more power.

IV. IMPLEMENTATION OF THE ENHANCED FLAGGED
PREFIX ADDER

The prefix carry trees described in the previous section
are implemented using the enhanced version of the flagged
prefix adder. Each tree is modified in order to incorporate the
flag logic according to Table II. In each prefix tree, the gray
cells are converted to black cells in order to obtain the Group
Propagate signals in addition to the Group Generate signals,
since these signals are utilized to generate the flag bits for each
position. Furthermore, the post processing stage is modified
to include XOR gates that invert the appropriate sum bits
based on the flag bits generated. Multiplexors can also be used
instead. In order to better understand the advantages of this
adder design, two additional adder structures were designed
and implemented to perform the same operation. The first one
is a multi- operand adder, the carry save adder [17] which
avoids carry propagation by treating the intermediate carries
as outputs instead of advancing them to the next higher bit
position. This adder accepts three binary input operands,(A,
B, and M) and produces a redundant result consisting of two
binary numbers, S(sum bits) and C(carry bits). The final result
is produced by utilizing a carry propagate adder to add S and
C. The second option is the use of two consecutive stages
of an adder. The first stage computes A+B. The second stage
augments this result by M. This scheme is called the dual adder
design due to the use of two adders. A Brent-Kung adder has
been utilized for this architecture.

The results presented are for 16-bit designs and represent
worst case input/output transitions. The value of M has been
chosen as 57. The designs were implemented using TSMC
0.18um technology and the synthesis was performed using the
same tools as mentioned in Section III. The nominal operating
voltage is 1.8V and simulation is performed at T' = 25°C.

TABLE IV
RESULTS FOR FLAGGED PREFIX ADDER

Adder/Parameters || Area(mmz) | Delay(ns) | Power(mW) |

Brent-Kung 0.2921 16.901 8.08E-04
Ladner-Fischer 0.2933 14.242 8.34E-04
Kogge-Stone 0.5462 11.526 1.12E-03
Carry-Save 0.3236 16.832 1.37E-03
Dual Adders 0.6011 28.344 1.84E-03

The extra logic required to generate the necessary flag
bits depends on the constant chosen. The flag bit at every
subsequent position is computed depending on the flag bit
computed in the preceeding position. This results in a rippling
structure at the last level of the design. The extra hardware,
however will always comprise of n gates, where n is the size
of the input. This can be easily concluded from the results
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presented in Table II. Therefore, although the logic changes
depending on the constant, the amount of additional logic stays
consistent for every prefix tree. The increase in area therefore,
is not expected to vary significantly between different prefix
structures. Internal wiring within the prefix trees could play
a small role in increase in area. The critical delay of each
adder depends on the prefix tree utilized and also the flag bit
produced at each bit position. For a particular constant, the
logic added to the critical path for each prefix architecture
stays the same. For adding constants that have low amounts
of entropy, this method achieves small amounts of additional
hardware and high amounts of throughput without requiring
an additional carry propagate adder.

For the presented simulation results the value of M was
chosen as 57. It is observed that the performance of the
flagged prefix adders is favorable compared to that of a carry-
save adder or a dual adder to perform the same operation.
The carry-save adder consumes more area compared to the
Brent-Kung and Ladner-Fischer prefix architectures by ap-
proximately 11%. Although, it has a better number for area
when compared with the Kogge-Stone adder, it lags behind
in delay and power. The Kogge-Stone adder has the best
performance in terms of speed among all adder designs. The
dual adder design consumes approximately twice the area and
has twice the delay due to the fact that two consecutive stages
are used to perform the addition of three different numbers.

Comparing Tables III and IV, it can be noticed that there is a
minimal increase in area and delay due to the changes made to
the prefix tree and the extra logic required to generate the flag
bits. However, the power dissipation rises by approximately
40% due to the increased fan out and added wire interconnec-
tivity. The automated tools are used to optimize the circuit for
area. However, custom layout implementations could reduce
the required area since the flag logic could be implemented
more efficiently at physical level. Due to the similarity in
the structures of the Brent-Kung and Ladner-Fischer, the
increase in area due to extra hardware is approximately 6%
for both designs. A significant increase in area, by about 10%
is observed upon changing the Kogge-Stone structure. The
wiring becomes progressively complex once the gray cells are
changed into black cells, increasing the wire density between
the cells. The critical delay in all three structures is only
slightly increased compared to the delay of plain prefix adder
designs. The advantage of the proposed design lies in the fact
that additional logic stays consistent with each prefix design,
thereby allowing flexibility in the choice of which prefix tree
to utilize. The choice of the prefix tree can be made based
on what area, power, and delay requirements for the targeted
application.

V. CONCLUSION

This paper describes the implementation of the enhanced
version of flagged prefix adder using three different prefix
carry tree structures. The impact of each prefix tree structure
is examined for the enhanced flagged prefix adder design with
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respect to area, speed and power. It is noticed, that the Brent-
Kung adder performs the best in terms of power dissipation
due to the restricted fan-out and the structural regularity that is
not affected by the additional hardware. Also, the Kogge-Stone
adder is a good compromise between speed and power since
it provides the best results in terms of delay and the increase
in power is approximately the same as for the Ladner-Fischer
and Brent-Kung trees.
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