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Abstract—In this study, a robust flaw detection algorithm
using Neural Networks (NN) is presented for NDE applications.
A three-layer feedforward NN which can perform a complex
nonlinear mapping process has been used as a detection processor
following the subband decomposition of the measured signal.
The neural network architecture is trained to suppress the
clutter echoes while maintaining the integrity of flaw echoes. The
training process allows the neural network to learn about the
statistics and the variation of the clutter signal. The robustness
of the NN method is examined through testing materials with
different grain sizes and multiple flaws. It has been shown that
NN can improve the flaw-to-clutter (FCR) ratio significantly when
the input experimental signal has FCR equal to 0 or less. Experi-
mental results show that a typical FCR improvement of 40dB can
be achieved using NN post detectors as opposed to 15dB with the
conventional techniques including minimum, median, average,
geometric mean and polarity detectors. The experimental results
also confirm that the NN detector is capable of distinguishing
two adjacent flaw echoes whereas the conventional techniques
detect the presence of a single anomaly only. Furthermore, due
its trainability, NN performs robustly when some of the subband
signals used for detection have little or no flaw information.

I. INTRODUCTION

Ultrasonic target detection and classification in the presence
of high grain scattering echoes is a significant NDE problem.
In the ultrasonic testing of materials, it has been reported that
the grain scattering echoes are randomly distributed across the
entire frequency bands of the measured signal while the flaw
signal is more visible in lower frequency bands [1]. Split spec-
trum processing (SSP) is an effective solution to decompose
the broadband measured signal into several subbands [2]. The
SSP combined with a post-detection processor can be used to
enhance the flaw-to-clutter ratio (FCR). In this study, we eval-
uate the performance of several different processors including
neural networks [3], median, minimum, average, polarity and
geometric mean detectors. Neural networks provide superior
FCR performance when compared to the other post-detection
processors. Furthermore, realization of neural networks as an
embedded processor is quite practical and the feasibility of a
hardware/software realization of neural networks for real-time
ultrasonic target detection systems has been reported in [4].

II. SPLIT SPECTRUM PROCESSING

The block diagram of an ultrasonic target detection system
using SSP is shown in Fig. 1. The received ultrasonic signal,
r(n), is the input to SSP, zi(n) is the output of the ith bandpass
filter, and αi is the scaling factor to obtain the equally powered

output signals of the SSP channels. Fig. 2 shows experimental
data in the time domain (Fig. 2(a)) and frequency domain
(Fig. 2(b)) as well as the frequency response diagram of the 8-
channel SSP bandpass filters (Fig. 2(c) and Fig. 2(d)). Fig. 2(d)
shows the frequency responses of the 8 subbands filters which
cover the full frequency spectrum of the signal. In this case,
some subband filter outputs may have zero or very low FCR
and are considered to be null observations. Therefore, a robust
flaw detection method which offers minimal sensitivity to the
frequency coverage of filters is desirable. In this study, we
evaluate the performance of different conventional detectors
compared to neural networks applied to subbands spanning
different spectrum ranges of the experimental signal.

III. NEURAL NETWORKS

Neural networks are nonlinear mapping processes that allow
training and adaptability for signal classification applications.
The learning process enables neural networks to recognize
the target patterns without mathematical models of the target
signals. In this study, three-layer feedforward neural networks
are used as the post-processor of the ultrasonic flaw detector.
A diagram of a three-layer feedforward neural network with
SSP is shown in Fig. 3. The neural nods in the second layer
(which is called the hidden layer) receive the weighted inputs
from the SSP outputs and then perform the activation function
which is a non-linear mapping calculation. The mathematical
equation for the neural nodes can be expressed by

yj = ϕ(
∑

i

wjixi + bj) (1)

where xi is a set of inputs of each neuron, yj is a set of outputs
of each neuron, and bj is a set of bias of each neuron. Each
input is multiplied by a weight coefficient wji. The subscript
ji refers to the input i in neuron j. The term ϕ is an activation
function. The activation function used in the hidden layer is
the sigmoid function which can be expressed by

ϕ(x) = (1 + e−x)−1 (2)

The output neural node sums up the weighted output of
the hidden layer without an activation function. The learn-
ing process gives neural networks the ability to learn their
environment and improve their performance. We adopt the
backpropagation algorithm to train the neural network for
the ultrasonic target detection system. The backpropagation
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Fig. 1. Block diagram of split-spectrum processor
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Fig. 2. Frequency spectrum of the experimental signal and bandpass
filter locations

learning process is accomplished by adjusting the weights
and bias values based on a set of input patterns and the
corresponding set of desired output which is composed of
an impulse for the flaw echo position and zeros for the
microstructural scattering echoes. The neural networks have
8 input nodes and 5 hidden nodes.The number of input nodes
is same as the number of SSP channels. The number of
hidden nodes is chosen to achieve an acceptable detection
performance by trial and error method.

IV. PERFORMANCE EVALUATION OF POST-PROCESSORS

Neural networks results are compared with the other con-
ventional post-processor such as minimum, median, averaging,
geometric mean and polarity detectors [5], [6], [7].
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Fig. 3. A three-layer feed forward neural network with SSP

The equations of these techniques are as follows:
Averaging:

φav(n) =
1
k

k∑
j=1

|zj(n)| (3)

Median:

φmed(n) = median [|zj(n)|] , j = 1, 2, ..., k (4)

Minimum:

φmin(n) = min [|zj(n)|] , j = 1, 2, ..., k (5)

Geometric Mean:

φgm(n) = k

√√√√
k∏

j=1

|zj(n)| (6)

Polarity Thresholding:

φp(n) =




if zj(n) > 0 or
z(n) if zj(n) < 0

for all j = 1, 2, ..., k

0 otherwise

(7)

where zj is the SSP output on channel j, and k is the total
number of the SSP channels.

For performance evaluation, the experimental A-scan data
is acquired from a steel block (type 1018, grain size 50µm).
The A-scan measurements were conducted using an ultrasonic
transducer of 0.5 inch diameter with 5 MHz center frequency
and 100 MHz sampling rate. Flaws are formed in the steel
block by drilling several holes (1.5 mm diameter). For per-
formance evaluation, flaw-to-clutter ratio (FCR) is calculated
from the ratio of the maximum flaw echo amplitude and the
largest amplitude of clutter echoes. Therefore, FCR can be
defined as

FCR = 20 ∗ log10(F/C) (8)

where F is the maximum flaw echo amplitude and C is the
maximum clutter echo amplitude.
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(a) FCR improvement results when SSP filters cover the low frequency
region of the signal
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Fig. 4. Comparison of post-processing methods for experimental ultrasonic data with a single flaw

TABLE I
FLAW-TO-CLUTTER ENHANCEMENT OF VARIOUS FLAW DETECTORS USING EXPERIMENTAL DATA WHEN SSP FILTERS COVER

THE LOW FREQUENCY REGION OF THE SIGNAL

Trial No Input FCR Neural Network Minimum Median Average Geometric Mean Polarity Threshold
detector detector detector detector detector detector

1 2.2dB 41.7dB 9.2dB 5.4dB 5.2dB 6.1dB 0.1dB
2 0.0dB 44.6dB 6.5dB 6.6dB 4.1dB 5.9dB 0dB
3 1.5dB 47.1dB 7.3dB 8.2dB 6.0dB 6.9dB 0dB
4 2.7dB 55.4dB 5.7dB 5.8dB 2.8dB 6.6dB 0dB
5 0.0dB 45.5dB 5.0dB 7.8dB 5.0dB 7.7dB 0dB
6 0.0dB 46.7dB 13.6dB 8.9dB 7.0dB 9.2dB 0dB

Mean 1.1dB 46.8dB 7.9dB 7.1dB 5.0dB 7.0dB 0dB
STD 1.2dB 4.6dB 3.1dB 1.4dB 1.5dB 1.2dB 0dB

TABLE II
FLAW-TO-CLUTTER ENHANCEMENT OF VARIOUS FLAW DETECTORS USING EXPERIMENTAL DATA WHEN SSP FILTERS COVER

THE FULL FREQUENCY SPECTRUM OF THE SIGNAL

Trial No Input FCR Neural Network Minimum Median Average Geometric Mean Polarity Threshold
detector detector detector detector detector detector

1 2.2dB 26.3dB 0dB 0dB 1.7dB 0dB 1.1dB
2 0.0dB 44.6dB 4.7dB 0dB 0.8dB 1.6dB 0dB
3 1.5dB 22.5dB 0dB 2.6dB 2.5dB 2.3dB 0dB
4 2.7dB 22.2dB 2.8dB 0dB 1.5dB 2.5dB 0dB
5 0.0dB 13.6dB 0dB 0dB 0dB 0dB 0dB
6 0.0dB 16.9dB 2.4dB 3.3dB 2.0dB 2.4dB 1.0dB

Mean 1.1dB 23.7dB 1.7dB 1.0dB 1.4dB 1.5dB 0.3dB
STD 1.2dB 10.8dB 2.0dB 1.5dB 0.9dB 1.2dB 0.5dB
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(a) FCR improvement results when SSP filters cover the low
frequency region of the signal
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Fig. 5. Comparison of post-processing methods for experimental ultrasonic data with two interfering flaw echoes

The comparison results of various detectors applied to SSP
channels covering the low frequency region (ranging from 1.5
MHz to 6 MHz) are shown in Fig. 4(a). In this frequency
region, there are no null observations. With the NN detector,
the flaw echo is sharply detected without visible clutter.
The other detectors improve the visibility of the flaw echo
moderately. Fig. 4(b) shows the comparison results of various
detectors applied to SSP channels covering the full frequency
spectrum (ranging from 1.5 MHz to 9 MHz) of the ultrasonic
data. It is important to point out that null observations exist
in this frequency range. Neural networks can still detect the
flaw signal; whereas the other detectors barely detect or fail
to distinguish the presence of the flaw echo. Table I and Table
II show the FCR results of the original input data and six
different post-processors with two different subband filters
coverage. These results confirm that the NN detector not only
outperforms the conventional flaw detection methods but also
shows less vulnerability to null observations.

The detection of two adjacent flaws is another challenging
problem due to the interference between two flaw echoes. Fig.
5(a) and Fig. 5(b) show the comparison results of various
ultrasonic target detectors for the detection of two adjacent
flaw echoes with subbands spanning two different frequency
ranges. These results show that neural networks can distin-
guish two adjacent flaw echoes whereas conventional post-
detection processors fail to detect the presence of two flaws.

V. CONCLUSION

In this paper, we have presented a comparative study of neu-
ral network ultrasonic flaw detection techniques with respect to
conventional post-processing methods including the minimum,
median, average, geometric mean and polarity detectors in two
different SSP conditions. The neural networks show superior
results not only for single flaw echo but also for multiple flaw
echoes even in the presence of null observations.
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