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Abstract – Ultrasonic signal processing applications require 
huge amounts of data to be processed. Further, high 
computational performance is essential to meet the real-time 
requirements. Compression of the signal helps to reduce the 
data size and storage requirements as well as allow for rapid 
transmission of data to remote locations. High signal fidelity is 
significant in many of practical applications like ultrasound 
medical imaging and nondestructive testing. In this study, we 
discuss two methods for ultrasonic signal compression which 
offer high signal fidelity – Discrete Wavelet Transform and 
signal decimation with the Nyquist rate limit. The compression 
algorithm is implemented on a reconfigurable system-on-chip 
platform using programmable hardware logic as well as in 
software using an embedded processor. The implementation 
details and the performance of the compression algorithms on 
both the hardware and software are analyzed in this paper.  
  

I. INTRODUCTION 
 

   Ultrasonic systems are widely used in industrial and 
medical imaging applications for diagnosis, object 
recognition and classification. One of the major challenges 
in ultrasonic signal processing applications is the large 
volumes of data to be processed. Another challenge is the 
requirement of real-time processing of compute–intensive 
signal processing algorithms. The acquired data is send to 
remote locations for analysis via low bandwidth 
communication channels; so, the data transmission time has 
to be reduced by compressing the signal as much as possible 
without degrading the reconstruction quality.  
   Noise will be generated as part of the sampling process.  
Some uncertainty in the timing of the sampling interval, 
particularly the initiation of the sampling process, results in 
jitter. In addition, the jittering noise will be pronounced 
when minor geometrical or mechanical variation occurs in 
the experiment. Sampling at a rate higher than Nyquist will 
help to remove some of the noise, allowing a good quality 
signal to be reproduced. This oversampling also helps 
reduce aliasing. The SNR can be improved in an 
oversampled signal by averaging out the noise. The 
oversampling technique can distribute the quantization 
noise outside the signal band.   Since most of the time, the 
signal is oversampled to get the above benefits; the sampled 
signal will have a lot of redundant information. This will 
create storage problem and also will cause a large delay in 
transmitting the data to a remote location; thus, the signal 
needs to be compressed. Signal compression is meant to 

remove the redundancies in the signal. Also the 
compression involves removing the irrelevant components 
of the signal. Where the function has more desirable 
features, we can use higher sampling rate, and where the 
function is smooth, we can use fewer samples and still get a 
good quality of signal information. 
 

II.    COMPRESSION METHODS 
 

   In this section, we present and evaluate two methods for 
compression for ultrasonic imaging applications, with the 
objective to maintain higher compression ratio, exceeding a 
predefined peak signal-to-noise ratio. One method is 
compression using discrete wavelet transform and the other 
one is compression using decimation. 
  
A.     Compression using Discrete Wavelet Transform 

    

   One of the most common and efficient methods for 
compression is the Discrete Wavelet Transform (DWT). In 
wavelet based compression, a technique called “sub-band 
coding” is used. In sub-band coding, the input samples are 
filtered to reduce the bandwidth of the signal, thus 
generating a sub-band of the input signal. This will be again 
subsampled to get a narrower band.  The subsampled signal 
generates smaller size transform coefficients which can be 
synthesized to reconstruct the original signal.  This 
approach helps to identify the redundant components which 
are not needed to reconstruct the original signal. Thus the 
signal becomes frequency localized. A majority of the 
significant portions of the signal will be localized to a 
particular frequency region, especially the low frequency 
region for most of the practical applications of ultrasonic 
testing. 
   DWT is a signal filtering process and is equivalent to 
convolution of the signal with impulse response of the filter 
as shown: 

x(n) * h(n) = ∑ .ሺ݇ሻݔ ݄ሺ݊ െ ݇ሻஶୀିஶ       (1) 
 

where h(n) are the lowpass filter coefficients.  In the DWT, 
the resolution is affected by filtering. The scale is changed 
by subsampling. The lowpass filtering reduces resolution by 
2, but scale is unchanged. The subsampling by 2 doubles the 
scale. The filtering and subsampling is: 

y(n)  = ∑ ݄ሺ݇ሻ. ሺ2݊ݔ െ ݇ሻஶୀିஶ                      (2) 
In (2), 2n shows subsampling by 2. 
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One level decomposition into lowpass and highpass 
components is expressed using (3) and (4). 
 

yhigh(k)  = ∑ .ሺ݊ሻݔ ݃ሺ2݇ െ ݊ሻ                      (3) 
ylow(k)  = ∑ .ሺ݊ሻݔ ݄ሺ2݇ െ ݊ሻ                      (4) 

In each level of decomposition, 2j-1 coefficients are 
generated, j is the level, where 2 j is the ‘scale’, j < J, where 
2J is the number of samples in the original signal.  
 
   The dilation (or refinement) equation and wavelet 
equation are given by (5) and (6) respectively. 

 
Φ(t) = ∑ √2  ݄ሺ݊ሻ Φሺ2t –  n)                (5) 
ψ(t) = ∑ √2  ݃ሺ݊ሻ Φሺ2t –  n)                (6) 
 

where h(n) are the lowpass filter coefficients and g(n) are 
the highpass filter coefficients. The lowpass filter 
determines the scaling function Φ(t). The highpass filter 
determines the wavelet function ψ(t). The wavelet filter is 
the mirror reflection of the scaling filter with alternating 
signs. For example, if the scaling filter coefficients are hk = 
(h1, h2, h3, h4), then the wavelet filter coefficients are gk = 
(h4, -h3, h2, -h1).  Different wavelet basis can be generated 
by using different filter coefficients h & g [4] [5].  
   A volumetric image of 128*128*2048 ultrasonic data 
samples is used for the compression analysis. Fig. 1 
represents such a 3D block of data. This experimental data 
is generated using a 2 inch by 2 inch steel block sample. 
Data are sampled at a rate of 100 MHz by using a 5 MHz 
transducer.  This oversampling is done to retain very fine 
features of the ultrasonic signal. Each measurement (i.e., A-
scan) has 2048 samples (An example of A-scan can be seen 
in Fig. 6a). A total of 128 such A-scans are taken per line in 
y-direction.  These 128 A-scans are repeated 128 times in z-
direction to get the 3D block of data (Fig. 1). 
   3D ultrasonic data compression is implemented by 
applying 1D-DWT for x, y and z coordinates. A-scans will 
have a significant amount of redundant information due to 
the oversampling. To get maximum compaction of the A-
scans, a high-order wavelet Daubechies-10 (db10) is used to 
compress the signal in the x-direction.  Our experiments 
show that Daubechies wavelet basis is more compatible for 
the ultrasonic signal compression because of the similarity 
between the Daubechies wavelet function (Fig. 2) and the 
ultrasonic signal echo [9].  
   In the x-direction, the packet decomposition method is 
used as shown in Fig. 3. Here, apart from further 
decomposing the lowpass (L) components, selected 
highpass (H) components with higher energy distribution   
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
are also decomposed to improve the data compaction, which 
leads to a higher compression ratio [2].  But the 
reconstruction is complex since the non-zero wavelet 
coefficients are spread between lowpass and highpass 
regions.  
   For the y and z directions, we utilize the correlation 
properties of the neighboring A-scans [7]. Fig. 4 shows the 
correlation plot of 8 neighboring A-scans in a line in y-
direction (This is similar in z-direction also). The 
correlation between the first A-scan and all the 8 A-scans 
are calculated. It can be observed from Fig. 4 that there is a 
high correlation between the neighboring A-scans. So it is 
clear that there are some redundancies between nearby A-
scans, which can be removed. To reduce the computation 
time, a simple Haar kernel is used for DWT in y and z 
directions. 
   According to Fig. 3, the DWT coefficients {LLLL, 
LLLHL, LLLHH, LLHL, LLHH, LH, H} for one particular 
A-scan is plotted in Fig. 5. By discarding the low energy 
coefficients (H, LH & LLHL), 79% compression is 
achieved in x-direction.  By applying Haar wavelet in y & z 
direction, an additional 75% reduction of the compressed 
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Fig. 1.   3D  block of  ultrasonic  data. 
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Fig. 3.  Wavelet packet decomposition in x-direction

Fig. 4.   Correlation between neighboring A-scans

Fig. 2.   Daubechies -10  wavelet function 
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results from x-direction is obtained because of the low 
energy content of H & LH coefficients in y & z direction. 
Thus, the total 3D ultrasonic data compression is 98.7%.  
Fig. 6 shows the original A-scan and the recostructed A-
scan by performing the inverse-DWT on the 98.7% 3D 
compressed data. High signal fidelity can be observed from 
Fig. 6. 
 
B.   Compression by Decimation 
 
   Another method to perform compression is by decimation. 
Since the signal is oversampled, there will be a lot of 
redundant information which can be removed by performing 
signal decimation. To reconstruct the signal, interpolation is 
performed.  Signal samples that are removed through the 
process of decimation for compression can be recovered by 
interpolation method. The interpolation is achieved by 
padding zeros in the frequency domain representation of the 
signal which is explained below in detail. 
   Suppose a sequence x(n) is sampled periodically by 
keeping every J-th sample of x(n) and deleting (J-1) samples 
in between. This is called decimation. So we get a new 
sample sequence (which is the compressed signal) 

xj(n) = x(nJ) 
   Suppose we have N1 samples in x(n) within a time interval 
t2 – t1, where t1 is the starting instance of time and t2 is the 
ending instance of time for capturing the signal. Let T1 be 
the sampling period and fs1 be the sampling frequency (fs1 = 
1/T1). 
   If we increase the number of samples of xj(n) to N2 (N2 > 
N1) by keeping (t2 – t1) constant, then the new sampling 
period T2 will be less than T1, because  
 

N1 . T1 = N2 . T2 = t2 – t1                                                           (7) 
 

 
 

 

If we plot the frequency spectrum with N2 samples, we can 
see that the frequency components beyond fs1 will be close 
to zero, provided fs1 and fs2 are higher than the Nyquist rate. 
Also the new sampling frequency fs2 = 1/T2, will be greater 
than fs1. Hence, we can write 

       
   ௦݂ଶ  ൌ  ேమேభ  . ௦݂ଵ                   (8) 

 
The ratio ேమேభ is called the ratio of interpolation. Maximum 
value of fs2 is the sampling frequency of the original signal 
(before decimation), which is 100 MHz in our experiment. 
By extensive evaluation of sampled ultrasonic signal using a 
5 MHz broadband transducer, we have found that 
decimation beyond 5 samples will result in degradation in 
signal fidelity.  Therefore, we fix fs1 = 20 MHz and 
consequently  ேమேభ becomes 5.  
   To reconstruct the original signal, the following steps are 
performed (Fig. 7 exhibits decimation and interpolation 
results applied to one A-scan of 2048 samples with 80% 
compression).  
 
1) Perform FFT of the decimated signal (Fig. 7b). 

 
2) Expand by 5 times the frequency bins using Step1 by 

padding zeros above fs1 (in the high frequency region in 
the middle of  the spectrum, see Fig. 7c). 
 

3) Perform IFFT of  the expanded spectrum which is 
scaled by 5 to compensate for reduced signal energy 
resulting from decimation. The reconstructed (or 
interporlated) signal is shown in Figure 7d.  The 
interpolated result closly matches the actual signal 
prior to compression. 

 
 

III.    COMPRESSION PERFORMANCE  
 

Fig. 5.   DWT coefficients for one A-scan 

Fig. 7.   Compression by decimation and reconstruction by 
interpolation

Fig. 6.   Original A-scan (top trace) and the DWT reconstructed signal 
(bottom trace) 
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   III.    COMPRESSION PERFORMANCE  
 
   The ultrasonic signal compression algorithms are 
implemented in both hardware and software. Each of these 
implementation schemes has its own advantages and 
disadvantages. The performance of the compression 
algorithm based on these two schemes is explained below.  

 
A.     Hardware implementation on reconfigurable platform 
 
   The compression algorithm using 3D wavelet transform 
has been implemented on a reconfigurable ultrasonic 
system-on-chip hardware platform (RUSH). Daubechies 
wavelet basis is used to perform DWT in the x-direction. 
Haar wavelet basis is used for spatial decomposition. In the 
x-direction, four-level decomposition is used to generate 
maximum compression, while in the y and z direction, only 
two-level decomposition is used to improve the processing 
time. The RUSH platform integrates a Xilinx Virtex-5 
FPGA with an embedded Microblaze processor [8]. Three 
processing units for compression in each directions (x, y 
and z) are implemented which run in parallel. There are 
three FIFOs to store data temporarily for each of these 
processing elements. Furthermore, there are three memory 
interface modules for accessing data to/from the external 
memory for each of the three axes. After processing, the 
result is stored into the external memory. This architecture 
is a modified version of the implementation given in [3].    
Using this hardware implementation, a volumetric image of 
128*128*2048 (8bits) samples (33 Mbytes) are compressed 
to 0.4 Mbytes giving a compression ratio of 98.7%. The 3D 
compression algorithm implemented in the RUSH platform 
takes around 0.5 second to compress 33 Mbytes of data into 
0.4 Mbytes.  
 
B.  Software implementation on embedded processor 
 
   The ultrasonic signal compression algorithm is 
implemented on the Xilinx Zynq-7020 all programmable 
system-on-chip platform. The Zynq integrates a dual-core 
ARM Cortex-A9 processor based system and Xilinx 
programmable logic in a single device. The ARM Cortex-
A9 CPUs are the main component of this system which also 
includes on-chip memory, external memory interfaces, and 
a rich set of I/O peripherals. The processors run at a 
frequency of 1 GHz. Each processor has its own single 
instruction multiple data (SIMD) media processing engine 
(NEON), memory management unit (MMU), and separate 
32 KB level-one (L1) instruction and data caches. The 
Cortex-A9 processor implements the ARMv7-A 
architecture with full virtual memory support and can 
execute 32-bit ARM instructions. The NEON coprocessor’s 
media and signal processing architecture adds instructions 
that target audio, video, image and speech processing and 
3D graphics [11] [12]. These advanced SIMD instructions 
help to execute the ultrasonic signal processing algorithms 
at a very high rate.  

   The execution of 3D DWT algorithm for the volumetric 
image of 128*128*2048 samples takes 16 seconds on the 
dual core Cortex processor. The execution time can be 
improved by decimating the original A-scans by a factor of 
4 so that we get four-time faster performance without 
affecting the signal fidelity. The performance can be further 
increased by implementing it on Zynq programmable 
hardware logic.     
  

IV.    CONCLUSION 
 

   Ultrasonic signal compression is implemented using DWT 
and also using decimation.  DWT provides options to 
choose the right wavelet basis to maximize the signal 
fidelity and compression rate.  Moreover, based on the 
levels of decomposition, the compression ratio can be 
further increased in DWT. By decimation method, the 
algorithm implementation becomes simpler than DWT. 
Nevertheless, both methods offer high signal fidelity. Thus, 
our study indicates that there are several alternative designs 
to implement the ultrasonic signal compression algorithm 
based on signal fidelity, computational cost and 
development time. 
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