
Multidimensional Representation of Ultrasonic Data
Processed by Reconfigurable Ultrasonic

System-on-Chip Using OpenCL High-Level
Synthesis

Spenser Gilliland, Clementine Boulet, Thomas Gonnot and Jafar Saniie
Department of Electrical and Computer Engineering

Illinois Institute of Technology, Chicago, Illinois, USA

Abstract—Ultrasonic non-destructive testing has been widely
used to determine the properties of materials, and more impor-
tantly their integrity. However, these techniques often require
capturing massive amounts of data and intensive signal processing
for processes such as image formation, analysis, characterization,
classification and diagnosis. Our study is focused around utilizing
a Reconfigurable Ultrasonic System-on-Chip Hardware (RUSH)
platform to process ultrasonic signals in real-time. To this end,
OpenCL has been utilized in the RUSH platform to provide a
means to accelerate computation using the FPGA fabric while
providing consistent memory and execution models to enable
portability. To visualize the ultrasound data, a Graphical User
Interface (GUI) for the Analysis of Multidimensional Ultrasonic
data on RUSH (GAMUR) has been incorporated. GAMUR
utilizes C++/QT and OpenGL to enable enhanced visualization
and control features within the RUSH platform. The interface
not only features the ability to view the ultrasound signals in
one dimension, two dimensions, or three dimensions; but also to
command and configure the hardware accelerators built using
OpenCL. Therefore, the system provides a means for analyzing,
visualizing and accelerating the extraction of information from
multi-dimensional ultrasound data.

I. INTRODUCTION

In industry, material quality can be of critical importance
to safety and efficiency. Small cracks or fatigue in airplanes or
submarines can lead to significant damage when placed under
stress. Therefore, the testing of the materials from the inside
out is of great importance to guarantee the reliability of the
structure. However, it is neither practical nor reliable to cut
a material in order to test it’s integrity. So, industry relies on
ultrasonic probing, a non-invasive, non-destructive technique
to test materials. Submerged ultrasonic testing is commonly
used to maximize the energy transmitted to the material under
test. However, the principle of submerged ultrasonic probing
utilizes ever increasing ultrasonic frequencies to penetrate deep
into the material [1]. Therefore, these tests require high speed
data acquisition techniques and signal processing that can only
reasonably be achieved using System-on-Chip (SOC) design
with FPGAs or ASICs.

The use of hardware design for signal acquisition and
processing normally requires knowledge of languages such as
VHDL or Verilog. However, recent developments in high-level
synthesis let us use languages such as C and C++ to design
hardware. OpenCL is a vendor neutral standard maintained

by the Khronos Foundation. It was originally created as the
alternative to the NVIDIA CUDA programming environment
for AMD based GPUs; however, it has quickly been adopted
by other vendors including Intel, Qualcomm, and Texas In-
struments. Originality created for use by GPUs, OpenCL has
recently started to receive attention on FPGAs by Altera [2]
and Xilinx [3]. OpenCL allows a designer to portably create
C programs which target various types of accelerators.

OpenCL solves a unique problem with respect to the cur-
rently available heterogeneous parallel programming APIs. At
its core, the standard provides common methods for memory
management, and execution control. This alleviates the need to
produce a custom kernel driver for each accelerator and ensures
that memory management occurs in a consistent manner across
devices from many different vendors. This greatly increases the
portability of the platform from one generation to the next and
alleviates the need to implement several of the plumbing layers
commonly required in accelerator development.

QT and OpenGL are commonly used together to produce
graphical user interfaces (GUI). QT provides common two di-
mensional layout and windowing support while OpenGL adds
hardware accelerated three dimensional rendering capabilities.
Using these libraries it is possible to build advanced user
interfaces that accurately portray data in both two and three
dimensions.

In section II, we present the base system for the submerged
ultrasonic testing, using a reconfigurable architecture for signal
processing. Section III and IV detail the implementation of
these algorithms and their interfacing with the microprocessor
using OpenCL High-Level Synthesis (HLS). Then section V
presents the GUI in charge of presenting the acquired data
using multidimensional graphics. Finally, section VI concludes
this paper.

II. SYSTEM DESCRIPTION

The system is composed of two distinct parts: the ultrasonic
platform, RUSH, and the Graphical User Interface, GAMUR.
RUSH is designed for ultrasonic testing using submerged trans-
ducers. In the experiment, shown in figure 1, the ultrasound
transducer is connected to a pulsar-receiver that sends an
ultrasonic burst into the material under test, and listens for
echoes. In order to reliably measure the echoes, the signal from

1936978-1-4799-7049-0/14/$31.00 ©2014 IEEE 2014 IEEE International Ultrasonics Symposium Proceedings

10.1109/ULTSYM.2014.0481

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2020 at 06:20:45 UTC from IEEE Xplore. Restrictions apply.

Figure 1. RUSH Experimental Setup for Submerged Ultrasound

the pulsar-receiver is amplified and fed to an analog-to-digital
converter which is read by the RUSH platform [4].

The Zynq SoC [5], the center of the RUSH system, acquires
the sampled data. The Zynq SoC contains a Xilinx Kintex 7
series FPGA fabric integrated with a dual-core ARM Cortex-
A9 microprocessor. In our system, the signal is acquired
through the FPGA fabric and processed in either the CPUs or
the remaining FPGA fabric. The microprocessor runs a Linux-
based OS and integrates a server for the GUI to control data
sampling and retrieval. This server is custom built for each
platform and sends the available options to the user interface
using a custom protocol.

While most of the ultrasonic devices have an integrated
display, or a separate display, this project utilizes the network
to provide data to a remote or local operator. The GAMUR
GUI connects to the server via TCP/IP and retrieves the
platform information including the options available on the
connected platform. Consequently, the data collection can be
measured and managed from anywhere on the Internet.

The user is able to alter the configuration using GAMUR
to select the appropriate parameters for their experiment. Once
the platform is fully configured to the user’s requirements,
the user can perform a capture operation which will initiate
the pulsar-transducer and begin the experiment. When the
capture is complete, the OpenCL based accelerator can begin
processing the data. Finally, the processed data is transferred
and displayed using a multidimensional representation in either
one, two or three dimensional formats.

III. OPENCL BASED HIGH-LEVEL SYNTHESIS

The OpenCL kernel language is a subset of the C program-
ming language. In general, the programming model is based
on a single instruction multiple data (SIMD) execution model.
In this model, a single program will be loaded by the target
device. The program is then run to completion across an array
of processors. In OpenCL terms this ”array of processors” is
called a work group, and the executable code run on the ”array
of processors” is called a kernel.

The basic run time cycle for an accelerator from the
host’s perspective is ”allocate memory”, ”copy memory to
device”, ”execute kernel”, and ”copy memory from device”.
The ”allocate memory” method, clCreateBuffer, allocates a
device accessible buffer in the accelerator to hold the data
to be processed. The ”copy memory to device” method,
clEnqueueWriteBuffer, then copies the data from host mem-
ory to device memory. The ”execute kernel” method, clEn-
queueNDRangeKernel, then triggers execution of the acceler-
ator. Finally, the ”copy memory from device” method, clEn-
queueReadBuffer, copies the results from the accelerator back
to the host processor.

Figure 2. An example OpenCL Context with FPGA, CPU, and GPU

In order to attain the highest possible throughput, OpenCL
implements the concept of execution queues as shown in
figure 2. The language allows a user to create queues for
each OpenCL capable device in the system. These queues are
used to order operations such as memory allocation, memory
copies, and kernel initiation. When a kernel is en-queued, the
number of compute units requested may be larger than the
number of compute units in the work group. OpenCL hides
the complexity of multiplexing the range of kernel to the range
of the work group from the user.

It is fairly obvious to see how OpenCL maps to com-
mon GPU based systems which use SIMD based processors.
However for FPGA’s, the system must map the logic defined
in the OpenCL kernel to an FPGA configuration. To this
end, high-level synthesis is used to transform the OpenCL
program code into an RTL representation. This RTL can then
be synthesized and instantiated in the FPGA using either
dynamic reconfiguration or JTAG programming.

High level synthesis is an umbrella term for current tech-
nologies which will translate higher level languages such
as C, and C++ to synthesizable RTL netlists in VHDL or
Verilog. The authors of this paper are currently using an
early access version of an OpenCL solution from Xilinx. The
Xilinx OpenCL system utilizes Vivado HLS in the backend to
generate RTL level representations of OpenCL program code
which are synthesized, placed, and routed using the Vivado
tools.

IV. OPENCL IMPLEMENTATIONS

Several applications were implemented using OpenCL. Un-
fortunately, no performance results can be presented until the
OpenCL product is publicly released. Therefore, this section
will describe the processes used in the implementations. For
additional, information on the algorithms described below and
performance estimates for execution on ARM, please see [6].

A. Split Spectrum Processing

Split spectrum processing was implemented on the device
using a single kernel. This kernel is called multiple times
by the host and performs both the filter and inverse FFT
portions of the algorithm. Additionally, it offers a secondary
mode that performs the initial FFT without windowing. The
decision to make a secondary execution mode for the kernel
instead of implementing an additional kernel reduces the time

1937 2014 IEEE International Ultrasonics Symposium Proceedings
Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2020 at 06:20:45 UTC from IEEE Xplore. Restrictions apply.

Figure 3. GUI showing one dimensional data

Figure 4. GUI showing two dimensional data

spent performing FPGA reconfiguration while allowing the
maximum possible FFT size in the fabric.

B. Chirplet Signal Decomposition

The chirplet signal decomposition algorithm was imple-
mented on the device using a single kernel for similar reasons
as the FFT. This kernel simply generates a chirplet with
specified parameters and compares the result to the original
signal. The host is then responsible for altering the chirplet
parameters to attain a higher correlation.

V. MULTIDIMENSIONAL DATA REPRESENTATION

The GUI receives data directly from the RUSH platform
via a network connection. The data can be of one, two or three
dimensional and is represented accordingly. For instance, the
two dimensional data can be displayed using a two dimensional
plot, or the user can select a one dimensional waveform by
fixing a value in the x direction. This same principle applies
for three dimensional data that can be displayed as one, two
or three dimensional data.

Figure 5. GUI showing three dimensional data

Figure 6. 3D representation of the data for different threshold values. From
right to left: T=53, 71, 99, 127

A. One-Dimensional Representation

The one dimensional data usually represents the acquisition
of the signal corresponding to a depth of an ultrasonic echo,
called an A-scan. The result is a curve containing the amplitude
of different echoes representing potential flaws along the depth
of the material.

In figure 3, we can see the raw signal provided by the
acquisition board. Additionally, we can see the interface with
the signal processing and acquisition options of the platform.
Note that only the one dimensional plot is available for one
dimensional data.

B. Two-Dimensional Representation

In two dimensions, there are two ways of observing the
data, a B-Scan or a C-Scan. For a B-Scan, the two dimensional
data represents the echoes from different pulses along a x or
y axis where the z vector represents the depth of the material.
The B-scan is obtained by combining many single axis A-
scans. In a C-scan, samples are shown at constant depth across
both x and y axis. The C-scan requires a scan in both the x and
y directions using either a two dimensional pulsar transducer
array or a two-axis CNC scanner.

In figure 4, we can see an example of two dimensional plot,
more specifically a B-scan. We can see the echoes in red and
blue colors representing the positive and negative extremes of
the signal.

C. Three-Dimensional Representation

The three dimensional data representation is designed to
show the localization and intensity of the different echoes
measured from the material. Arising from this representation,
there is the possibility that echoes will occlude each other from
the view of the user. To minimize this byproduct, the GUI
makes use of the OpenGL transparency properties. Therefore,

1938 2014 IEEE International Ultrasonics Symposium Proceedings
Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2020 at 06:20:45 UTC from IEEE Xplore. Restrictions apply.

if an echo is strong, it will show as solid red. However, if
the echo is faint, it will be shown in a light blue color with
representative transparency. All echoes between these extremes
will be represented using the full color spectrum from red to
blue, and the full range from solid to completely transparent.

In order to optimize the representation, the information
needs to be simplified. This simplification requires two main
operations to take place. First the data undergoes a sub-
sampling process. Among the thousands of samples in an
A-scan for example, only about a hundred discrete positions
are displayed. The second operation is to determine the peak
energy of the echo and display it as cubes, representing the
energy in that location. In addition, a threshold parameter
allows the user to limit the display to the echoes with sufficient
energy to make the flaws more visible.

Figure 5 shows the user interface when displaying data in
three dimensions. We can clearly distinguish the high echo
energy areas in solid red from the lower ones in translucent
blue. We can see in the interface a selection slider to change
the threshold for displaying echoes. Figure 6 shows the repre-
sentation of the same data for different values of the threshold.

VI. CONCLUSION

In this paper, we presented a complete framework for sub-
merged ultrasonic testing. The design relies on OpenCL based
high-level synthesis for the implementation and utilization of
hardware signal processing algorithms and is complemented
by a networked GUI application that allows multidimensional
representation of the acquired data and control of the capture
parameters.

REFERENCES

[1] S. MacIntosh, D. N. Sinha, G. Kaduchak, ”Noninvasive noncontact
fluid detection in submerged containers using swept frequency ultrasonic
technique,” Ultrasonics Symposium, 2001 IEEE, vol. 1, pp. 689-692
vol. 1, 2001

[2] Altera, ”Altera Opens the World of FPGAs to Software Program-
mers with Broad Availability of SDK and Off-the-Shelf Boards
for OpenCL,” available at http://newsroom.altera.com/press-releases/
nr-altera-sdk-opencl-conformance.pdf

[3] Xilinx, ”Software-based system realization with C/C++ and OpenCL”,
[Online]. http://www.xilinx.com/content/xilinx/en/products/design-
tools/all-programmable-abstractions/#software-based

[4] Gilliland, S.; Saniie, J.; Aslan, S., ”Linux based reconfigurable platform
for high speed ultrasonic imaging,” Circuits and Systems (MWSCAS),
2012 IEEE 55th International Midwest Symposium on , vol., no.,
pp.486,489, 5-8 Aug. 2012

[5] Xilinx, ”Zynq-7000 All Programmable SoC Technical Reference
Manual”, UG585 (v1.5) March 7, 2013 [Online]. Available:
http://www.xilinx.com/support/documentation/user-guides/ug585-Zynq-
7000-TRM.pdf

[6] Gilliland, S.; Govindan, P.; Gonnot, T.; Saniie, J., ”Performance evalua-
tion of FPGA based embedded ARM processor for ultrasonic imaging,”
Ultrasonics Symposium (IUS), 2013 IEEE International , vol., no.,
pp.519,522, 21-25 July 2013

1939 2014 IEEE International Ultrasonics Symposium Proceedings
Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2020 at 06:20:45 UTC from IEEE Xplore. Restrictions apply.

