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Abstract— In this investigation, a comparative study of two time-

series analysis techniques, singular spectrum analysis (SSA) and 

empirical mode decomposition (EMD), is carried out for ultrasonic 

NDE applications. Unlike transform-based approaches, the SSA 

and EMD are fully driven in the time domain by the data itself. 

The SSA method captures the trend of signals via eigenvalues from 

a trajectory matrix. Whereas EMD searches intrinsic mode 

functions (IMF) via local maxima and minima, then the 

instantaneous frequency of IMFs is used to disclose the signal 

trends. Simulation shows that the trend tracking becomes 

problematic for defect assessment when signal trends become too 

complicated. As a remedy, a technique combing these two methods 

is proposed. Experimental and simulation results reveal the 

effectiveness of the collective effort from EMD and SSA. The study 

demonstrates that the data-driven nature is unique and attractive 

to characterize non-stationary ultrasonic signals where scattering, 

absorption and dispersion effects become dominant. 

Keywords– Singular spectrum analysis, empirical mode 

decomposition, Ultrasonic NDE 

I.  INTRODUCTION  

In the ultrasonic NDE of materials, the returning ultrasonic 

signal carries the scattering, absorption and dispersion effects 

along the propagation path, and these physical phenomena 

impact the quality of echoes backscattered from the 

discontinuities and defects. The random and highly complex 

nature of the backscatter echoes makes it challenging to extract 

and quantify the necessary diagnostic information for quality 

assessment. Therefore, it is of great interest to devise ultrasonic 

signal processing methods for detecting and characterizing 

defects in materials. The non-stationary feature of ultrasound 

echoes makes classic signal processing methods impractical. 

Various methods have been developed to tackle the problem. In 

[1-4], different transforms such as short-time Fourier transform, 

Wigner-Ville distribution, Gabor transform, and discrete 

Wavelet transform, are utilized to analyze ultrasonic signals in 

the joint time-frequency domain. They all have shown their own 

strength and effectiveness in ultrasonic signal processing for 

certain applications. Additionally, signal modeling, parametric 

estimation and detection techniques have been studied to 

achieve better quantitative signal analysis [4-5]. Nevertheless, 

the challenge remains as of choosing an appropriate transform 

kernel with desirable resolution to unravel signal information.  

Recent research progress in time-series analysis has drawn a 

lot of attention. Unlike transform-based algorithms where signal 

space expansion is done in the transform domain, time-series 

analysis is fully driven by the signal itself. Two mostly discussed 

methods are empirical mode decomposition (EMD) and singular 

spectrum analysis (SSA). Both methods fall in the category of 

data driven analysis. However, they deal with signal analysis 

from different angle. EMD is carried out as a part of Hilbert 

Huang transform. It searches intrinsic mode functions (IMF) via 

local maxima and minima. The instantaneous frequency of IMFs 

is used to disclose the signal trends. EMD has been utilized in 

numerous applications such as climate data analysis, medical 

imaging, underwater acoustic feature extraction, vibration signal 

analysis, and ultrasonic NDE [6-9]. In the SSA, a four-step 

processing, which is embedding, SVD, grouping and diagonal 

averaging, is used. Eigenvalues from a trajectory matrix derived 

from the signal are used to capture the signal trends. The SSA 

has also been explored in many applications such as biomedical, 

geophysical, speech and ultrasonic NDE [10-13].  

In this investigation, EMD and SSA are comparatively 

studied in trend tracking for defect assessment in the context of 

ultrasonic NDE applications. The simulation result shows that 

this tracking is problematic when signal trends become too 

complicated. For instance, multiple trends are captured in a 

single IMF, where no further signal decomposition can be done. 

The grouping of eigenvalues from the trajectory matrix turns to 

be difficult and uncertain. As a remedy, a new technique 

combing EMD with SSA is proposed to take advantage of 

collective efforts from both methods. The proposed technique is 

evaluated through simulation and experimental study.  

This paper is organized as follows: Section II briefly reviews 

both SSA and EMD. Section III presents results of a comparative 

study through simulation. Section IV discusses the proposed 

technique which combines SSA and EMD. It also includes 

simulation and experimental results for ultrasonic NDE 

applications. Section V concludes the paper.  

II. REVIEW FOR SSA AND EMD IN TREND TRACKING 

SSA and EMD shares a similar goal, which is to decompose 

a signal into a linear combination of functions in time domain, 

where these functions ideally embody the intrinsic trends of 

signal. 

                    𝑠(𝑡) = ∑ 𝑔𝑖(𝑡) + 𝑟(𝑡)
𝑚

𝑖=1
                         (1) 

where 𝑠(𝑡) denotes the given signal,  𝑔𝑖(𝑡) denotes the 𝑖th 

trend functions, and 𝑟(𝑡) denotes the residue. 
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As mentioned in the Introduction section, a four-step 

processing, which is embedding, SVD, grouping and diagonal 

averaging, is applied in the SSA.  

The procedures of SSA are briefly described below [13]. 

Without losing generality, 𝑠(𝑡)  can be represented as a 

sequence,𝑠(𝑛), where 0 ≤ 𝑛 ≤ 𝑁 − 1. 

1. Embedding 

A 𝐿 × 𝐾  trajectory matrix, 𝐓 , is formed from 

multidimensional vectors derived from the sequence 

𝑠(𝑛), where 𝐿 denotes the length of segmented data of 

each column vector and 𝐾 = 𝑁 − 𝐿 + 1 

𝐓 = [
𝑠(0) 𝑆(1)      ⋯ 𝑠(𝐾 − 1)

⋮     ⋮           ⋱ ⋮
𝑠(𝐿 − 1) 𝑆(𝐿)       ⋯ 𝑆(𝑁 − 1)

]               (2) 

2. Singular value decomposition (SVD) 

The trajectory matrix, 𝐓, is decomposed as 

               𝐓 = 𝐔

[
 
 
 
 √𝜆1 0       ⋯    0

 0 √𝜆2     ⋯    0
   ⋮      ⋮     ⋯   ⋯

    0     0      ⋯ √𝜆𝐿]
 
 
 
 

𝑽′                      (3) 

where 𝐔 = [𝐔𝟏 𝐔𝟐   ⋯ 𝐔𝑳 ]  

                  ‖𝐔𝒊‖ = 1  for 1 ≤ 𝑖 ≤ 𝐿 

                   𝑽′ = [𝐕𝟏 𝐕𝟐   ⋯ 𝐕𝑳 ]
′ 

                   𝜆𝑖  denotes the sorted eigenvalues of the  

                  𝐿 × 𝐿 matrix, 𝐓𝐓′  (𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 𝜆𝐿 ≥ 0) 

                  and  𝐓′ denotes the transpose operation of 𝐓 

Then Equation (3) can be rewritten as  

                                           𝐓 = ∑ 𝐓𝐢
𝐿
𝑖=1                              (4) 

                         where 𝑻𝒊 = √𝜆𝑖𝐔𝑽′ 

3. Grouping 

From Equation (4), those matrices, 𝐓𝐢, can be regrouped 

into m  disjoint subsets 

                                    𝐓 = ∑ 𝐘𝐢
𝑚
𝑖=1                             (5) 

A common way of obtaining subsets is to group those 

𝐘𝐢  whose eigenvalues are close with each other. There 

are different strategies to identify subsets [14]. The 

grouping process can be viewed as a form of harmonic 

identification.  

4. Diagonal averaging 

Time sequences can be obtained from those subset 

matrices, 𝐘𝐢  (see Equation 5) through diagonal 

averaging. The 𝑖th time sequence can be written as  
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where 𝑦𝑙,𝑘denotes the element (𝑙, 𝑘) in 𝐘𝐢 

As a result, through the four steps in SSA, the sequence, 

𝑠(𝑛), can be decomposed into 𝑚 components. 

                    𝑠(𝑛) = ∑ 𝑔𝑖(𝑛) + 𝑟(𝑛)
𝑚

𝑖=1
                        (7) 

where 𝑔𝑖(𝑛) denotes the 𝑖th component, 𝑟(𝑛) denotes 

the residue. 

From above, it can be seen that the decomposition results, 

𝑔𝑖(𝑛), are computed in a single step through diagonal averaging. 

Whereas the decomposition process in EMD is completed 

through sifting process in an iterative fashion. The procedures of 

EMD for a given signal, 𝑠(𝑡), are described below [9]. 

1. Initialization: Set 𝑥(𝑡) = 𝑠(𝑡) and the iteration index 

𝑖 = 1  

2. Locate local extremes: search and find all local maxima 

and minima of 𝑥(𝑡) 

3. Envelop forming: Form maxima envelop, ℎ𝑚𝑎𝑥(𝑡) , 

and minima envelop, ℎ𝑚𝑖𝑛(𝑡), by interpolating the local 

maxima and minima, respectively. The mean envelop, 

𝑚(𝑡) , can be obtained by averaging ℎ𝑚𝑎𝑥(𝑡)  and 

ℎ𝑚𝑖𝑛(𝑡). 

4. IMF checking: Let ℎ(𝑡) = 𝑥(𝑡) − 𝑚(𝑡), check if ℎ(𝑡) 

satisfies the conditions to be an IMF.  

 The common conditions are   

a) |𝑁𝑒𝑥𝑡𝑟𝑒𝑚𝑒 − 𝑁𝑧𝑒𝑟𝑜−𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔| ≤ 1 

             where Nextreme denotes the number of local  

                    extreme points in ℎ(𝑡) and Nzero−crossing  

                    denotes the number of zero-crossing points 

b) The mean envelop of ℎ(𝑡) is close to zero. 

If ℎ(𝑡) is an IMF, move on to step 5. Otherwise, update 

𝑥(𝑡) with ℎ(𝑡) and go back to step 2.         

5. IMF saving: save 𝑔𝑖(𝑡) = ℎ(𝑡), then update the signal 

residue with 𝑥(𝑡) = 𝑠(𝑡) − 𝑔𝑖(𝑡)  

6. Sifting condition checking: Check the signal residue 

from previous step. If it is a constant or monotonic 

function, save all IMFs and stop the sifting process. 

Otherwise, update the iteration index 𝑖 = 𝑖 + 1, repeat 

steps 2 to 6. 

Authorized licensed use limited to: Illinois Institute of Technology. Downloaded on October 02,2020 at 15:09:52 UTC from IEEE Xplore.  Restrictions apply. 



After the iterative sifting process, the signal can be 

represented as Equation (1) where 𝑔𝑖(𝑡) denotes the  𝑖th IMF 

instead, and 𝑟(𝑡) is the residue.  

III. A COMPARATIVE SIMULATION STUDY 

In [9, 13], EMD and SSA have been used for ultrasonic NDE 

applications. It has been reported that both of them can 

effectively track the trends in ultrasonic echoes, especially when 

these echoes are well separable or lightly overlapped. In this 

study, EMD and SSA are comparatively studied through 

simulation. In particular, ultrasonic signal with highly-

overlapped echoes and severe noise is utilized for performance 

evaluation. In the context of ultrasonic NDE application, chirplet 

echoes are often encountered in ultrasonic backscattered signals. 

They represent a vast variation of echoes including dispersive or 

non-dispersive, narrow or broad band echoes. As such, an 

ultrasound signal, 𝑠(𝑡) , can be modeled as [5]. 

                   𝑠(𝑡) = ∑ ℎ𝑖(𝑡; Θ𝑖) + 𝑛(𝑡)
𝑙

𝑖=1
                    (8) 

where 𝑛(𝑡) denotes White Gaussian noise; 

          ℎ𝑖(𝑡; Θ𝑖) denotes 𝑖th chirplet echo 

         ℎ𝑖(𝑡; Θ𝑖) = 𝑎𝑖𝑒
−𝛼1𝑖(𝑡−𝜏𝑖)

2

𝑐𝑜𝑠(2𝜋𝑓𝑐𝑖(𝑡−𝜏𝑖)+𝛼2𝑖(𝑡−𝜏𝑖)
2
+𝜃𝑖) 

and the parameter vector Θ𝑖 = [𝜏𝑖 , 𝑓𝑐𝑖 , 𝑎𝑖 ,   𝛼1𝑖,   𝛼2𝑖,  𝜃𝑖] , 

where𝜏𝑖 denotes time-of-arrival, 𝑓𝑐𝑖 denotes center frequency,𝑎𝑖 

denotes amplitude, 𝛼1𝑖  denotes bandwidth factor, 𝛼2𝑖  denotes 

chirp rate, and 𝜃𝑖 denotes phase. 

An ultrasonic signal including multiple heavily overlapped 

echoes and noise is simulated, where these echoes can be viewed 

as representations of intrinsic trends. The parameter vectors of 

echoes are listed below. 
   Θ1 = [2.0 𝜇𝑠   8 𝑀𝐻𝑧   1.0    20 𝑀𝐻𝑧 2   25 𝑀𝐻𝑧 2   0  𝑟𝑎𝑑/𝑠] 
 Θ2 = [2.5 𝜇𝑠   5 𝑀𝐻𝑧   0.8   15 𝑀𝐻𝑧 2    15 𝑀𝐻𝑧 2   1 𝑟𝑎𝑑/𝑠] 

   Θ3 = [3.0 𝜇𝑠    4 𝑀𝐻𝑧   1.0    25 𝑀𝐻𝑧 2   25 𝑀𝐻𝑧 2   0  𝑟𝑎𝑑/𝑠] 

             
Figure 1. a) Simulated noisy ultrasonic signal superimposed with the 

simulated noise-free ultrasound echoes, b) The first IMF, c) The 

second IMF, and d) Residue 

 

EMD is applied to process the simulated signal. The results 

are shown in Figure 1. Figure 1a shows the simulated noisy 

signal superimposed noise-free ultrasound echoes. Figure 1b 

illustrates the first IMF, which is mainly the decomposed noise. 

It shows that EMD is very effective in terms of denoising. Figure 

1c shows the second IMF, which captures the first ultrasound 

echo. However, the other two ultrasound echoes are not 

identified individually in Figure 1d. It demonstrates that trend 

tracking becomes much more challenging in the screnarios of 

high interfering ultrasound echoes.  

 
Figure 2. a) Simulated noisy ultrasonic signal, b) The noise-free 

signal superimposed with the signal recovered from the first 12 

eigenvalues, and c) Signal residue 

 

SSA is applied to the same set of simulated signal, where the 

window size 𝐿 is set to 60. The results are shown in Figure 2. 

Figure 2b displays the noise-free signal superimposed with the 

signal reconstructed from the 12 dominant eigenvalues. Figure 

2c shows that the SSA process reduces noise in a certain degree. 

It is noticed that SSA does not show the same level of 

effectiveness in terms of signal decomposition as the EMD does. 

The ultrasound echoes are not fully separable in this case. 

  

IV. EXPERIMENTAL AND SIMULATION STUDY OF THE 

PROPOSED METHOD 

From the simulation from Section III and [13], it is reasonable 

to conclude that the trend tracking becomes problematic in the 

scenarios of highly overlapped and noisy ultrasound echoes. 

Neither EMD nor SSA can successfully obtain desired results 

alone due to their own limitation. As such, we propose a remedy 

by combing EMD with SSA to take advantage of collective 

efforts from both methods. The procedures are described below. 

First, EMD is applied to the simulated noisy ultrasonic signal 

(See Figure 1a). Based on the result of EMD, the signal in Figure 

1d is selected to be further tuned using SSA. To facilitate the 

SSA, a windowing approach is utilized to prepare the data. The 

EMD process is mainly based on local extremes through 

interpolation. Applying a window generates an incomplete echo, 

which breaks the intrinsic behavior of signal and triggers the 

boundary problem in EMD. Whereas SSA tracks signal 

statistically. An incomplete echo does not fully disrupt the 

statistical behavior of signal. Figure 3 shows the result of the 

proposed method on the simulated ultrasonic echoes. It can be 

seen that the signal in Figure 1d is further decomposed into two 

parts (see Figure 3c and 3d). It shows that the proposed method 

is effective in terms of trend tracking and denoising.  
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Figure 3. a) Simulated noisy ultrasonic signal superimposed with the 

simulated noise-free ultrasound echoes, b) The second IMF 

superimposed with the noise-free echo #1, c) The first recovered echo 

(in red) from SSA of the signal in Figure 1d (in blue), d) The second 

recovered echo (in red) from SSA of the signal in Figure 1d (in blue), 

and e) Signal residue 

As an experimental study, the proposed method is utilized to 

analyze ultrasonic backscattered signal, which is acquired at the 

sampling rate of 100 MHz with 5 MHz transducer. A steel block 

with an embedded target (i.e, flat bottom hole) is used as the 

specimen. Figure 4a shows the experimental signal. After 

EMD, the signal is decomposed into IMF#1, IMF#2 and signal 

residue. For the IMF#2, SSA is applied to further tune the trend 

tracking. It turns out there are about 8 non-zero eigenvalues 

during the SSA process (See Equation 3). Two components are 

generated from the IMF#2 (see Figure 4c and 4d), where the 

target information is well presented in the fine-tuned IMF#2 

(Figure 4c) 

Figure 4.  a) Experimental ultrasonic backscattered signal, b) IMF #1, c) 

Signal recovered using eigenvalues from #3 to #8 in SSA of IMF #2, d) 

Signal recovered using eigenvalues from #1 to #2 in SSA of IMF #2, and 

e) Signal residue 

V. CONCLUSION 

In this study, both SSA and EMD are utilized for ultrasonic 

signal processing. Experimental and simulation results show that 

it is challenging to track trends using SSA or EMD alone for 

highly overlapped ultrasound echoes in the presence of severe 

noise. EMD shows better performance in characterizing 

ultrasonic signal. Our study shows that it could be more effective 

by taking collective effort from EMD and SSA, where EMD is 

utilized to obtain IMFs, the SSA is applied to further fine tune 

the trend extraction from the IMFs. The data-driven nature of 

techniques discussed in the study make these methods unique 

and attractive to characterize non-stationary ultrasonic signals 

where scattering, absorption and dispersion effects becomes 

dominant.  
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