
Design Flow of Blowfish Symmetric-Key

Block Cipher on FPGA

Piotr Palka, Rafael A. Perez, Tianyang Fang and Jafar Saniie

Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu/)

Department of Electrical and Computer Engineering
Illinois Institute of Technology, Chicago, IL, U.S.A.

Abstract— Cryptography is an essential topic for modern

digital systems. In the past two decades, FPGA-based encryptions

has proved to be effective. Through this project, we explore a

cryptographic application of FPGAs by implementing the

Blowfish symmetric-key block cipher on a Xilinx ZedBoard. The

motivation behind this is to explore how FPGAs can be used to

accelerate the performance of a symmetric-key block cipher. Our

goal is to compare the performance of a hardware implementation

of Blowfish to a software implementation. Our Blowfish block

cipher is implemented in VHDL and is functionally verified

against a Python reference model. The design as a whole supports

user input of various keys for key initialization along with full

encryption and decryption functionality. Furthermore, the design

was successfully synthesized and implemented on the ZedBoard

FPGA. A performance evaluation was conducted between the

hardware implementation and a Blowfish library running in

Python by comparing the time it takes to perform the key

initialization and encrypt/decrypt operation.

Keywords— Block cipher, FPGA, cryptography, blowfish.

I. INTRODUCTION

Cryptography is defined as the practice and study of
techniques for securing communication. This is typically
achieved through various encryption algorithms which define
protocols for parties to communicate in the presence of an
adversary. Encryption algorithms include classical examples
such as Caesar and substitution ciphers and modern examples
such as Data Encryption Standard (DES) and Advanced
Encryption Standard (AES). The main functionality of these
algorithms is to take a plaintext, encrypt it in a way that cannot
be understood by adversaries, and have a method of decryption
for the receiver to retrieve the original plaintext. With this being
said, modern-day cryptography extends beyond just encryption
and decryption and addresses aspects such as authentication,
confidentiality, data integrity, and non-repudiation. Modern-day
cryptography includes hash functions, message digests,
certificates and signatures, public-key exchange, and a plethora
of other techniques which make up various cryptosystems.
Applications of modern-day cryptography include and are not
limited to: e-commerce, credit card transactions,
cryptocurrency, data storage, and secure communication.

Field Programmable Gate Arrays (FPGAs) on the other hand
are defined as an integrated circuits that can be reconfigured for
various applications by the user. FPGAs are characterized by
their high parallel processing capabilities, low power
consumption, and flexibility due to their ability to be
reconfigured. With this being said, FPGAs are typically utilized

as hardware accelerators. They can be paired with a computing
resource such as a server and configured to execute a specific
function. The advantage of this is that greater efficiency and
performance are achieved when running a specific function on
hardware compared to software. Software implementations
execute on a traditional server where the CPU needs to be shared
with other applications. In hardware implementations, the
resources on the FPGA are dedicated to that specific application.
In addition to this, there is less overhead on the entire system in
a hardware implementation compared to a software
implementation.

Due to the advantages mentioned above, there is increasing
interest in the topic of FPGA-based cryptography systems. Paper
[1] implements a pipelined version of AES on an FPGA. Paper
[2-7] all concentrated on the implementation of the Blowfish
Cipher, although they focused on different aspects that impact
the performance: paper [2] explored the feasibility of the design
in an IoT application; paper [3] provided a pipelined
implementation of the algorithm which improved the
performance of Blowfish on FPGAs; paper [4][5] discussed the
power consumption and throughput of the proposed designs,
while paper [5] also claimed that the low complexity of
Blowfish, compared to the standardized AES, means it’s better
suited for FPGA implementations; paper [6] proposed an
enhanced Blowfish algorithm, which provided the potentials of
improving the block cipher system on the theoretical side; paper
[7] designed a hybrid cryptosystem consisting of both Blowfish
and RSA on an FPGA. Through this project, we explore
cryptographic applications of FPGAs by implementing the
Blowfish symmetric-key block cipher on a Xilinx ZedBoard
FPGA. Our goal for this project is to explore the differences in
performance of a hardware implementation of the Blowfish
cipher compared to a software implementation. Our choice of
the Blowfish cipher over something more traditional such as
AES revolves around its uniqueness and flexibility. Blowfish is
a valid block cipher that is easy to make sense of and is highly
effective. It was invented by Bruce Schneier to replace DES in
1993 and is not subject to any patents meaning anyone is free to
use it. Blowfish is also flexible in the sense that it supports
varying key lengths from 32-bits up to 448-bits. An FPGA
implementation for this makes perfect sense as the design can be
adapted to support varying key lengths. In addition to this,
Blowfish also has a small memory footprint (~4KB) meaning it
can be a viable encryption solution for smaller embedded
applications.

In the next chapter, we will first introduce the Blowfish
Block Cipher algorithm, which includes the algorithm’s key
initialization, encryption, and decryption; Chapter III talks about
the implementation of Blowfish on FPGA in a modularized
nature; Chapter IV discusses the performance of the proposed
implementation and compares it with running the algorithm with
CPUs; finally, Chapter V concludes the paper.

II. BLOWFISH BLOCK CIPHER

Blowfish is a symmetric-key block cipher that operates on
blocks of 64-bits at a time. It was invented in 1993 by Bruce
Schneier to replace DES. Blowfish operates with variable key
lengths which are chosen by the user and can be anywhere from
32-bits to 448-bits. This allows the user to experiment with a
tradeoff between speed (shorter keys) and security (longer keys).
Blowfish is based on a 16-round Feistel network that utilizes
four different s-boxes within the F-function for each round of
encryption and decryption.

A. Key Initialization

Prior to encrypting or decrypting, Blowfish goes through a
key initialization process which encrypts the initial values in
each P-array and S-box with the keys supplied by the user. This
key initialization process is summarized as the following:

1) A P-array holding 18, 32-bit entries and four S-boxes
each holding 256, 32-bit entries are initialized with the
hexadecimal values of PI.

2) The keys supplied by the user can range from 32-bits
to 448-bits in length. The user can supply anywhere
from 1 to 14 of these keys in a chosen length.

3) A bitwise XOR operation is performed on each P-array
entry with the keys supplied by the user. Keys are
reused once the last element in the P-array is reached:

��⨁��, ��⨁��, … , ���⨁���, ��	⨁��, …

4) A process of encrypting each P-array entry and each S-
box entry is started. This is done by encrypting a 64-bit
block of all zeros. The result is assigned to P-array
entries 1 and 2. Encryption continues for each P-array
and S-box entry by encrypting the output of the
previous encryption:

��, �� � �0�; ��, �� � ��� ∥ ���; �	, �� � ��� ∥ ��� …

��,�, ��,� � ���� ∥ ����; ��,�, ��,� � ���,� ∥ ��,�� …

B. Encryption and Decryption

In total around 4KB of memory is required to store all the
entries within the P-array and all the entries from the four S-
boxes. The Feistel structure along with the functionality of the
F-function is summarized in Figures 1 and 2. Encryption occurs
through a 16-round Feistel structure with the addition of a final
output whitening round which reverses the last swap and
performs an XOR operation to get the output. Decryption is
easily done through Blowfish by reversing the order in which
the P-array entries are used. For encryption, entries are used in
the order from 1 to 18 and for decryption, entries are used in the
order 18 down to 1. Each round of the Feistel network utilizes
an F-function. The F-function takes a 32-bit input and splits that
up into 8-bit portions which are used as inputs for each S-box.

Outputs from the S-boxes and either added together with modulo
2�� addition or bitwise XORed.

Figure 1. Sixteen Round Feistel Structure of Blowfish (encryption)

Figure 2. F-function within a single round of Blowfish [8]

Figure 3. Blowfish FPGA implementation flow chart

III. BLOWFISH FPGA IMPLEMENTATION

This section gives an overview of the system design of the
Blowfish FPGA implementation, which is visualized in figure 3.
The implementation is composed of four main VHDL modules
which are all described in the subsections which follow.

A. Definitions Package

The definitions package defines various constants and
functions used within the Blowfish implementation. These
constants include the number of rounds within the Feistel
network, the number of entries within the P-array and S-boxes,
key length, etc. The purpose of this package is to have a
centralized file where the constants can be changed to modify
the implementation of Blowfish. In addition to this, the
definitions package also defines types for the P-array and S-
boxes and defines various functions used within the
implementation. These functions include initializing the P-array
and S-box entries with the hexadecimal values of PI and
converting the output of Blowfish into an ASCII format which
could be displayed on the OLED of the ZedBoard.

B. Feistel Network

The Feistel Network VHDL module implements the
functionality of the 16-round Feistel network of Blowfish
described in the “background” section above. This module
supports both encryption and decryption by utilizing an input
signal which is specified by the user. This module also
implements the F-function which is utilized in each round of
encryption or decryption.

C. Blowfish Functionality

The Blowfish Functionality module facilitates the key
initialization process and the main encryption/decryption
operations based on control signals passed to the module. Key
initialization is started with the user asserting the “key_init”
signal. The user specifies how many keys (1 - 14) they are
supplying the module one by one. Key initialization begins by
reading in these keys and populating an array of them. Once all
keys have been taken in, the key-encryption process begins as
described in the “background” section above. With the key
initialization process completed, all P-array and S-box entries
are properly encrypted and Blowfish is ready to encrypt or
decrypt user input. The encryption/decryption operation starts
with the user setting the 64-bit input, setting the “enc_dec”
signal to specify encryption or decryption operation, and then
asserting the “exec” signal to start the process. The “ready”
signal will be asserted once the process of encrypting is finished.
The output can then be read from the output line of the module.

D. FPGA Top Module

The FPGA Top Module ties together all the previously
discussed modules into a single module which gets synthesized
and implemented on the FPGA. It utilizes an OLED controller
module to be able to display the output to the OLED display on
the ZedBoard and a clock divider IP core to be able to set a
frequency for the design utilizing the onboard clock. The entire
design is implemented on the programmable logic of the
ZedBoard. The input switches are utilized for user input, where
each switch corresponds to a set of preprogrammed inputs which
are entered as soon as the switch is toggled. The output is then
displayed on the OLED display on the ZedBoard.

E. Python Reference Implementation

Lastly, to verify the functionality of the VHDL
implementation another Blowfish cipher was implemented
entirely within Python. The functionality of this Python
implementation was verified against a Python Blowfish library.
The reason for this custom implementation was to be able to
display every internal operation and compare it against the
VHDL implementation. The P-array and S-box entries were
initialized to the hexadecimal values of PI and encrypted with
the same keys used in our VHDL implementation. Through this,
the proper functionality of the VHDL implementation was
verified as every internal signal matched the internal operations
of the Python model.

IV. EXPERIMENT RESULTS AND EVALUATION

Verifying the Blowfish implementation began in software
via a behavioral simulation in Vivado. The waveforms and
internal signals from this simulation were compared to the
reference Python implementation. The hardware
implementation was verified to be correct as the output along
with all the internal signals matched those of the Python
reference implementation. A test bench was created to start the
key initialization process, encrypt user input, and decrypt user
input. The keys used for this simulation were: FEDCBA98 and
76543210, both being 32-bits in length. Once the key
initialization process was completed, a sequence of encryption
and decryption operations were performed. The 64-bit input:
0123456789ABCDEF was first encrypted. The expected output
of this operation is 0ACEAB0FC6A0A28D. Following this, the
output was then decrypted to retrieve the original input. Both
encryption and decryption operations take 18 clock cycles. This
makes sense in our implementation as one clock cycle is needed
to load the input, 16 rounds are needed within the Feistel
structure, and one final round is needed for the output whitening
stage. After 18 clock cycles, the output of encryption or
decryption is visible on the output line. This output then gets
picked up a clock cycle later. In addition to this, we also found
that the entire key initialization process (from asserting the key-
init signal to the time the ready signal rises) takes a total of 9398
clock cycles. These results are in line with the 521 total
encryption operations which are required during the key
initialization process [8]. It takes 9 encryptions to initialize the
entire P-array of 18 entries and 128 encryptions for each of the
four S-boxes. Each encryption operation takes 18 clock cycles
so this equates to a total of 9378 clock cycles. Before the
encryption step, there are 18 total XOR operations which when
added to the total number of clock cycles results in 9396. The
last two clock cycles are accounted for as overhead with setting
the key init signal at the beginning and then asserting the ready
signal at the end.

Following this, the design was synthesized and implemented
on the actual FPGA. The FPGA Top Module was utilized to
interact with our design through the hardware. Interaction with
the design begins by pressing the “start” button. This begins the
key initialization process and completes when the “key-init-
done” LED turns on. At this point, the “ready” LED should also
be on, signifying the board is ready to encrypt or decrypt user
input. Input is passed to the board via switches. Each switch is
preprogrammed to write data to the “data-in” line, specify

encryption or decryption operation, and start the specified
operation. The output can be viewed on the OLED display by
refreshing the screen. On the OLED display itself, the first line
corresponds to the user input, the second corresponds to the
operation (encryption or decryption), and the last line
corresponds to the output. The hardware implementation
produces the same results as the behavioral simulations which
were verified to be correct.

 We found that our implementation operates successfully at
a maximum frequency of 75MHz. Anything higher than this
results in our design not meeting timing constraints. Based on
our behavioral simulation our encrypt/decrypt operation takes
18 clock cycles and the key initialization process takes 9398. We
use this information to conduct a performance evaluation
comparing our hardware implementation against a Blowfish
module running in Python on an AMD Ryzen 5 3600 at 3.6 GHz,
an Intel i7 6700k at 4.5 GHz, and an Intel i5 1035G7 at 1.2 GHz.
The Python Blowfish implementation takes an average of
10,000 runs for each operation. Random inputs (keys and user
inputs) are generated between runs to avoid any caching. Table
I below summarizes our findings.

Table I. Performance evaluation comparing key initialization

From the results in Table I, it can be seen that the hardware
implementation experiences better performance compared to the
software implementation. Comparing our hardware
implementation to each of the software runs, we observe a
significant improvement in time compared to all three
processors running the software implementation. There is a
significant increase in the key init times and the encrypt/decrypt
times in the Python implementation which is most likely caused
by the extra overhead which is present in the software. It’s
interesting to view the encryption/decryption operation latencies
as bytes encrypted/decrypted per second. The result of this is
seen below.

Table II. Performance comparison by encrypt / decrypt bandwidths

As seen in Table II, all the results are not particularly
exceptional in terms of encryption/decryption bandwidth. The
hardware implementation manages 31.6 MB/s, which would be
sufficient to fully encrypt a modern residential household
internet connection twice over 1 (and that’s ignoring mode-of-

operation overhead). This bandwidth figure is more than enough
for most embedded applications, but likely not sufficient for
data-intensive server tasks. Part of the reason for this lackluster
performance is the 64-bit block size - if a bigger block size could
be used without dramatically affecting the maximum frequency,
the bandwidth could be improved.

Looking back at operation latencies, comparing the
hardware implementation to the software implementation in
terms of percentage decrease results in the following table.

Table III. Percent decrease in execution time

From these results, we can conclude that the hardware
implementation of Blowfish experiences an overall 96%
decrease in execution time when compared to a software
implementation running in Python.

V. CONCLUSION

Through this project, we successfully implemented the
Blowfish symmetric-key block cipher on a Xilinx ZedBoard
FPGA. Our implementation was verified to be functionally
correct against a reference Python implementation that we
designed. Our implementation takes 18 clock cycles for each
encryption or decryption operation and 9398 clock cycles for the
key initialization process. These results are in line with reference
implementations we found online.

We were successful to synthesize and implement the design
on the actual hardware. Through our top module, the user
interacts with the design through the onboard switches, LEDs,
and OLED display. We found that our design performs at a
maximum frequency of 75MHz. We conducted a performance
evaluation comparing our hardware implementation to a Python
Blowfish module. We ran this Python module on three different
systems and calculated the average time per key init and
encrypt/decrypt operation.

We conclude that the hardware implementation experiences
a significant improvement in performance over the software
implementation. We observe that the increased times on the 1
Standard connections from providers like Spectrum start at 12.5
MB/s software implementation are due to the extra overhead
which is associated with running on software. Overall, we
observed a 96% increase in performance in our hardware
implementation when comparing it to software.

REFERENCES

[1] A. P. Anusha Naidu and P. K. Joshi, "FPGA implementation of fully
pipelined Advanced Encryption Standard," 2015 International
Conference on Communications and Signal Processing (ICCSP), 2015,
pp. 0649-0653, doi: 10.1109/ICCSP.2015.7322568.

[2] K. N. Prasetyo, Y. Purwanto and D. Darlis, "An implementation of data
encryption for Internet of Things using blowfish algorithm on FPGA,"
2014 2nd International Conference on Information and Communication
Technology (ICoICT), 2014, pp. 75-79, doi:
10.1109/ICoICT.2014.6914043.

[3] S. R. Chatterjee, S. Majumder, B. Pramanik and M. Chakraborty, "FPGA
Implementation of Pipelined Blowfish Algorithm," 2014 Fifth
International Symposium on Electronic System Design, 2014, pp. 208-
209, doi: 10.1109/ISED.2014.51.

[4] S. B. Nalawade and D. H. Gawali, "Design and implementation of
blowfish algorithm using reconfigurable platform," 2017 International
Conference on Recent Innovations in Signal processing and Embedded
Systems (RISE), 2017, pp. 479-484, doi: 10.1109/RISE.2017.8378204.

[5] R. Ahmad¹, A. A. Manaf and W. Ismail, "Development of an improved
power-throughput Blowfish algorithm on FPGA," 2016 IEEE 12th
International Colloquium on Signal Processing & Its Applications
(CSPA), 2016, pp. 237-241, doi: 10.1109/CSPA.2016.7515838.

[6] V. Poonia and N. S. Yadav, "Analysis of modified Blowfish algorithm in
different cases with various parameters," 2015 International Conference
on Advanced Computing and Communication Systems, 2015, pp. 1-5,
doi: 10.1109/ICACCS.2015.7324114.

[7] V. P. Bansal and S. Singh, "A hybrid data encryption technique using
RSA and Blowfish for cloud computing on FPGAs," 2015 2nd
International Conference on Recent Advances in Engineering &
Computational Sciences (RAECS), 2015, pp. 1-5, doi:
10.1109/RAECS.2015.7453367.

[8] R. Anusha, M. J. Dileep Kumar, V. S. Shetty and N. Prajwal Hegde,
"Symmetric Key Algorithm in Computer security: A Review," 2020 4th
International Conference on Electronics, Communication and Aerospace
Technology (ICECA), 2020, pp. 765-769, doi:
10.1109/ICECA49313.2020.9297547.

