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Abstract— Cryptography is an essential topic for modern 

digital systems. In the past two decades, FPGA-based encryptions 

has proved to be effective. Through this project, we explore a 

cryptographic application of FPGAs by implementing the 

Blowfish symmetric-key block cipher on a Xilinx ZedBoard. The 

motivation behind this is to explore how FPGAs can be used to 

accelerate the performance of a symmetric-key block cipher. Our 

goal is to compare the performance of a hardware implementation 

of Blowfish to a software implementation. Our Blowfish block 

cipher is implemented in VHDL and is functionally verified 

against a Python reference model. The design as a whole supports 

user input of various keys for key initialization along with full 

encryption and decryption functionality. Furthermore, the design 

was successfully synthesized and implemented on the ZedBoard 

FPGA. A performance evaluation was conducted between the 

hardware implementation and a Blowfish library running in 

Python by comparing the time it takes to perform the key 

initialization and encrypt/decrypt operation.  
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I. INTRODUCTION  

Cryptography is defined as the practice and study of 
techniques for securing communication. This is typically 
achieved through various encryption algorithms which define 
protocols for parties to communicate in the presence of an 
adversary. Encryption algorithms include classical examples 
such as Caesar and substitution ciphers and modern examples 
such as Data Encryption Standard (DES) and Advanced 
Encryption Standard (AES). The main functionality of these 
algorithms is to take a plaintext, encrypt it in a way that cannot 
be understood by adversaries, and have a method of decryption 
for the receiver to retrieve the original plaintext. With this being 
said, modern-day cryptography extends beyond just encryption 
and decryption and addresses aspects such as authentication, 
confidentiality, data integrity, and non-repudiation. Modern-day 
cryptography includes hash functions, message digests, 
certificates and signatures, public-key exchange, and a plethora 
of other techniques which make up various cryptosystems. 
Applications of modern-day cryptography include and are not 
limited to: e-commerce, credit card transactions, 
cryptocurrency, data storage, and secure communication.  

Field Programmable Gate Arrays (FPGAs) on the other hand 
are defined as an integrated circuits that can be reconfigured for 
various applications by the user. FPGAs are characterized by 
their high parallel processing capabilities, low power 
consumption, and flexibility due to their ability to be 
reconfigured. With this being said, FPGAs are typically utilized 

as hardware accelerators. They can be paired with a computing 
resource such as a server and configured to execute a specific 
function. The advantage of this is that greater efficiency and 
performance are achieved when running a specific function on 
hardware compared to software. Software implementations 
execute on a traditional server where the CPU needs to be shared 
with other applications. In hardware implementations, the 
resources on the FPGA are dedicated to that specific application. 
In addition to this, there is less overhead on the entire system in 
a hardware implementation compared to a software 
implementation.  

Due to the advantages mentioned above, there is increasing 
interest in the topic of FPGA-based cryptography systems. Paper 
[1] implements a pipelined version of AES on an FPGA. Paper 
[2-7] all concentrated on the implementation of the Blowfish 
Cipher, although they focused on different aspects that impact 
the performance: paper [2] explored the feasibility of the design 
in an IoT application; paper [3] provided a pipelined 
implementation of the algorithm which improved the 
performance of Blowfish on FPGAs; paper [4][5] discussed the 
power consumption and throughput of the proposed designs, 
while paper [5] also claimed that the low complexity of 
Blowfish, compared to the standardized AES, means it’s better 
suited for FPGA implementations; paper [6] proposed an 
enhanced Blowfish algorithm, which provided the potentials of 
improving the block cipher system on the theoretical side; paper 
[7] designed a hybrid cryptosystem consisting of both Blowfish 
and RSA on an FPGA. Through this project, we explore 
cryptographic applications of FPGAs by implementing the 
Blowfish symmetric-key block cipher on a Xilinx ZedBoard 
FPGA. Our goal for this project is to explore the differences in 
performance of a hardware implementation of the Blowfish 
cipher compared to a software implementation. Our choice of 
the Blowfish cipher over something more traditional such as 
AES revolves around its uniqueness and flexibility. Blowfish is 
a valid block cipher that is easy to make sense of and is highly 
effective. It was invented by Bruce Schneier to replace DES in 
1993 and is not subject to any patents meaning anyone is free to 
use it. Blowfish is also flexible in the sense that it supports 
varying key lengths from 32-bits up to 448-bits. An FPGA 
implementation for this makes perfect sense as the design can be 
adapted to support varying key lengths. In addition to this, 
Blowfish also has a small memory footprint (~4KB) meaning it 
can be a viable encryption solution for smaller embedded 
applications.  



In the next chapter, we will first introduce the Blowfish 
Block Cipher algorithm, which includes the algorithm’s key 
initialization, encryption, and decryption; Chapter III talks about 
the implementation of Blowfish on FPGA in a modularized 
nature; Chapter IV discusses the performance of the proposed 
implementation and compares it with running the algorithm with 
CPUs; finally, Chapter V concludes the paper. 

II. BLOWFISH BLOCK CIPHER 

Blowfish is a symmetric-key block cipher that operates on 
blocks of 64-bits at a time. It was invented in 1993 by Bruce 
Schneier to replace DES. Blowfish operates with variable key 
lengths which are chosen by the user and can be anywhere from 
32-bits to 448-bits. This allows the user to experiment with a 
tradeoff between speed (shorter keys) and security (longer keys). 
Blowfish is based on a 16-round Feistel network that utilizes 
four different s-boxes within the F-function for each round of 
encryption and decryption.  

A. Key Initialization 

Prior to encrypting or decrypting, Blowfish goes through a 
key initialization process which encrypts the initial values in 
each P-array and S-box with the keys supplied by the user. This 
key initialization process is summarized as the following: 

1) A P-array holding 18, 32-bit entries and four S-boxes 
each holding 256, 32-bit entries are initialized with the 
hexadecimal values of PI. 

2) The keys supplied by the user can range from 32-bits 
to 448-bits in length. The user can supply anywhere 
from 1 to 14 of these keys in a chosen length. 

3) A bitwise XOR operation is performed on each P-array 
entry with the keys supplied by the user. Keys are 
reused once the last element in the P-array is reached: 

��⨁��, ��⨁��, … , ���⨁���, ��	⨁��, …   

4) A process of encrypting each P-array entry and each S-
box entry is started. This is done by encrypting a 64-bit 
block of all zeros. The result is assigned to P-array 
entries 1 and 2. Encryption continues for each P-array 
and S-box entry by encrypting the output of the 
previous encryption: 

��, �� � �0�;  ��, �� � ��� ∥ ���;  �	, �� � ��� ∥ ��� … 

��,�, ��,� � ���� ∥ ����;  ��,�, ��,� � ���,� ∥ ��,�� … 

B. Encryption and Decryption 

In total around 4KB of memory is required to store all the 
entries within the P-array and all the entries from the four S-
boxes. The Feistel structure along with the functionality of the 
F-function is summarized in Figures 1 and 2. Encryption occurs 
through a 16-round Feistel structure with the addition of a final 
output whitening round which reverses the last swap and 
performs an XOR operation to get the output. Decryption is 
easily done through Blowfish by reversing the order in which 
the P-array entries are used. For encryption, entries are used in 
the order from 1 to 18 and for decryption, entries are used in the 
order 18 down to 1. Each round of the Feistel network utilizes 
an F-function. The F-function takes a 32-bit input and splits that 
up into 8-bit portions which are used as inputs for each S-box. 

Outputs from the S-boxes and either added together with modulo 
2�� addition or bitwise XORed. 

 

Figure 1. Sixteen Round Feistel Structure of Blowfish (encryption) 

 

Figure 2. F-function within a single round of Blowfish [8] 

 
Figure 3. Blowfish FPGA implementation flow chart 



III. BLOWFISH FPGA IMPLEMENTATION 

This section gives an overview of the system design of the 
Blowfish FPGA implementation, which is visualized in figure 3. 
The implementation is composed of four main VHDL modules 
which are all described in the subsections which follow. 

A. Definitions Package  

The definitions package defines various constants and 
functions used within the Blowfish implementation. These 
constants include the number of rounds within the Feistel 
network, the number of entries within the P-array and S-boxes, 
key length, etc. The purpose of this package is to have a 
centralized file where the constants can be changed to modify 
the implementation of Blowfish. In addition to this, the 
definitions package also defines types for the P-array and S-
boxes and defines various functions used within the 
implementation. These functions include initializing the P-array 
and S-box entries with the hexadecimal values of PI and 
converting the output of Blowfish into an ASCII format which 
could be displayed on the OLED of the ZedBoard.    

B. Feistel Network  

The Feistel Network VHDL module implements the 
functionality of the 16-round Feistel network of Blowfish 
described in the “background” section above. This module 
supports both encryption and decryption by utilizing an input 
signal which is specified by the user. This module also 
implements the F-function which is utilized in each round of 
encryption or decryption.  

C. Blowfish Functionality 

The Blowfish Functionality module facilitates the key 
initialization process and the main encryption/decryption 
operations based on control signals passed to the module. Key 
initialization is started with the user asserting the “key_init” 
signal. The user specifies how many keys (1 - 14) they are 
supplying the module one by one. Key initialization begins by 
reading in these keys and populating an array of them. Once all 
keys have been taken in, the key-encryption process begins as 
described in the “background” section above. With the key 
initialization process completed, all P-array and S-box entries 
are properly encrypted and Blowfish is ready to encrypt or 
decrypt user input. The encryption/decryption operation starts 
with the user setting the 64-bit input, setting the “enc_dec” 
signal to specify encryption or decryption operation, and then 
asserting the “exec” signal to start the process. The “ready” 
signal will be asserted once the process of encrypting is finished. 
The output can then be read from the output line of the module. 

D. FPGA Top Module 

The FPGA Top Module ties together all the previously 
discussed modules into a single module which gets synthesized 
and implemented on the FPGA. It utilizes an OLED controller 
module to be able to display the output to the OLED display on 
the ZedBoard and a clock divider IP core to be able to set a 
frequency for the design utilizing the onboard clock. The entire 
design is implemented on the programmable logic of the 
ZedBoard. The input switches are utilized for user input, where 
each switch corresponds to a set of preprogrammed inputs which 
are entered as soon as the switch is toggled. The output is then 
displayed on the OLED display on the ZedBoard. 

E. Python Reference Implementation 

Lastly, to verify the functionality of the VHDL 
implementation another Blowfish cipher was implemented 
entirely within Python. The functionality of this Python 
implementation was verified against a Python Blowfish library. 
The reason for this custom implementation was to be able to 
display every internal operation and compare it against the 
VHDL implementation. The P-array and S-box entries were 
initialized to the hexadecimal values of PI and encrypted with 
the same keys used in our VHDL implementation. Through this, 
the proper functionality of the VHDL implementation was 
verified as every internal signal matched the internal operations 
of the Python model.        

IV. EXPERIMENT RESULTS AND EVALUATION 

Verifying the Blowfish implementation began in software 
via a behavioral simulation in Vivado. The waveforms and 
internal signals from this simulation were compared to the 
reference Python implementation. The hardware 
implementation was verified to be correct as the output along 
with all the internal signals matched those of the Python 
reference implementation. A test bench was created to start the 
key initialization process, encrypt user input, and decrypt user 
input. The keys used for this simulation were: FEDCBA98 and 
76543210, both being 32-bits in length. Once the key 
initialization process was completed, a sequence of encryption 
and decryption operations were performed. The 64-bit input: 
0123456789ABCDEF was first encrypted. The expected output 
of this operation is 0ACEAB0FC6A0A28D. Following this, the 
output was then decrypted to retrieve the original input. Both 
encryption and decryption operations take 18 clock cycles. This 
makes sense in our implementation as one clock cycle is needed 
to load the input, 16 rounds are needed within the Feistel 
structure, and one final round is needed for the output whitening 
stage. After 18 clock cycles, the output of encryption or 
decryption is visible on the output line. This output then gets 
picked up a clock cycle later. In addition to this, we also found 
that the entire key initialization process (from asserting the key-
init signal to the time the ready signal rises) takes a total of 9398 
clock cycles. These results are in line with the 521 total 
encryption operations which are required during the key 
initialization process [8]. It takes 9 encryptions to initialize the 
entire P-array of 18 entries and 128 encryptions for each of the 
four S-boxes. Each encryption operation takes 18 clock cycles 
so this equates to a total of 9378 clock cycles. Before the 
encryption step, there are 18 total XOR operations which when 
added to the total number of clock cycles results in 9396. The 
last two clock cycles are accounted for as overhead with setting 
the key init signal at the beginning and then asserting the ready 
signal at the end. 

Following this, the design was synthesized and implemented 
on the actual FPGA. The FPGA Top Module was utilized to 
interact with our design through the hardware. Interaction with 
the design begins by pressing the “start” button. This begins the 
key initialization process and completes when the “key-init-
done” LED turns on. At this point, the “ready” LED should also 
be on, signifying the board is ready to encrypt or decrypt user 
input. Input is passed to the board via switches. Each switch is 
preprogrammed to write data to the “data-in” line, specify 



encryption or decryption operation, and start the specified 
operation. The output can be viewed on the OLED display by 
refreshing the screen. On the OLED display itself, the first line 
corresponds to the user input, the second corresponds to the 
operation (encryption or decryption), and the last line 
corresponds to the output. The hardware implementation 
produces the same results as the behavioral simulations which 
were verified to be correct. 

 We found that our implementation operates successfully at 
a maximum frequency of 75MHz. Anything higher than this 
results in our design not meeting timing constraints. Based on 
our behavioral simulation our encrypt/decrypt operation takes 
18 clock cycles and the key initialization process takes 9398. We 
use this information to conduct a performance evaluation 
comparing our hardware implementation against a Blowfish 
module running in Python on an AMD Ryzen 5 3600 at 3.6 GHz, 
an Intel i7 6700k at 4.5 GHz, and an Intel i5 1035G7 at 1.2 GHz. 
The Python Blowfish implementation takes an average of 
10,000 runs for each operation. Random inputs (keys and user 
inputs) are generated between runs to avoid any caching. Table 
I below summarizes our findings. 

Table I. Performance evaluation comparing key initialization 

 

From the results in Table I, it can be seen that the hardware 
implementation experiences better performance compared to the 
software implementation. Comparing our hardware 
implementation to each of the software runs, we observe a 
significant improvement in time compared to all three 
processors running the software implementation. There is a 
significant increase in the key init times and the encrypt/decrypt 
times in the Python implementation which is most likely caused 
by the extra overhead which is present in the software. It’s 
interesting to view the encryption/decryption operation latencies 
as bytes encrypted/decrypted per second. The result of this is 
seen below. 

Table II. Performance comparison by encrypt / decrypt bandwidths 

 

As seen in Table II, all the results are not particularly 
exceptional in terms of encryption/decryption bandwidth. The 
hardware implementation manages 31.6 MB/s, which would be 
sufficient to fully encrypt a modern residential household 
internet connection twice over 1 (and that’s ignoring mode-of-

operation overhead). This bandwidth figure is more than enough 
for most embedded applications, but likely not sufficient for 
data-intensive server tasks. Part of the reason for this lackluster 
performance is the 64-bit block size - if a bigger block size could 
be used without dramatically affecting the maximum frequency, 
the bandwidth could be improved. 

Looking back at operation latencies, comparing the 
hardware implementation to the software implementation in 
terms of percentage decrease results in the following table. 

Table III. Percent decrease in execution time 

 
 

From these results, we can conclude that the hardware 
implementation of Blowfish experiences an overall 96% 
decrease in execution time when compared to a software 
implementation running in Python. 

V. CONCLUSION 

Through this project, we successfully implemented the 
Blowfish symmetric-key block cipher on a Xilinx ZedBoard 
FPGA. Our implementation was verified to be functionally 
correct against a reference Python implementation that we 
designed. Our implementation takes 18 clock cycles for each 
encryption or decryption operation and 9398 clock cycles for the 
key initialization process. These results are in line with reference 
implementations we found online.  

We were successful to synthesize and implement the design 
on the actual hardware. Through our top module, the user 
interacts with the design through the onboard switches, LEDs, 
and OLED display. We found that our design performs at a 
maximum frequency of 75MHz. We conducted a performance 
evaluation comparing our hardware implementation to a Python 
Blowfish module. We ran this Python module on three different 
systems and calculated the average time per key init and 
encrypt/decrypt operation.  

We conclude that the hardware implementation experiences 
a significant improvement in performance over the software 
implementation. We observe that the increased times on the 1 
Standard connections from providers like Spectrum start at 12.5 
MB/s software implementation are due to the extra overhead 
which is associated with running on software. Overall, we 
observed a 96% increase in performance in our hardware 
implementation when comparing it to software. 
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