
Design Flow and Implementation of a Vision-Based
Gesture-Controlled Drone

Arthur Findelair, Xinrui Yu and Jafar Saniie
Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu/)

Department of Electrical and Computer Engineering
Illinois Institute of Technology, Chicago IL, U.S.A

Abstract—The increasing efficiency of complex Neural Network
architecture and the continuous improvement of embedded edge
computing has reached a point that allows the deployment of
advanced computer vision tasks on some of the most critical
embedded applications, such as aerial drones. While similar
applications were already possible by moving heavy processing on
a ground station, an autonomous and centralized system
significantly improves usability and security. The machine is thus
self-sufficient and less prone to network attacks. Three main
challenges stand-out during the deployment of our complex gesture
recognition pipeline: (1) allowing user-defined controls, (2)
ensuring robustness, and (3) on-board deployment. These
challenges are tackled through handcrafted features to avoid the
curse of dimensionality, neural network optimization on GPU-
based companion computers, and data augmentation to cover real-
life edges cases such as partial inputs.

Fig. 1: Overview of the aerial drone augmented with a GPU- based Single
Board Computer (SBC). Note that the ground station and the radio controller
are used solely for experimentation safety. The whole processing pipeline is
deployed on-board.

Index Terms—Machine learning, Gesture control, Embedded
software

I. INTRODUCTION

There are two crucial characteristics to deploy autonomous
drones in more applications. First, drones must perfectly
perceive their environment to avoid obstacles and adapt
trajectories to reach specific positions. Secondly, the human-
machine interaction must be flawless. An assistant drone is
hardly useful if it cannot efficiently receive orders from users
who could simultaneously perform other tasks. Simplified
remote controllers limit the interaction with users equipped
with a device, thus known beforehand. Otherwise, drones must
perceive orders. Besides speech, the most natural way for
humans to communicate is through visual cues. Audio-based
solutions are hardly possible due to the loud nature of drones’
propulsion systems. This leads us to the latter communication
medium: visual cues.

The main objective of this project is to create a fully
autonomous gesture-controlled drone. Robustness and

are the core characteristics of
the implementation. Enforcing these two qualities lead
to overcoming three main challenges that encapsulate the
main contribution of this paper.

– Customization & exp ndability: Human Machine
Interfaces HMIs should evolve following the variety of
use- case, and preferences of users. However, the
proposed architecture relies on machine learning models
that require labor-intensive models.

– Robustness: The correctness of the prediction is critical
to the operability of the machine. Misinterpreted gestures

can lead to unwanted and potentially dangerous behaviors
from the drone.

– On-board deployment: The computational capability of
a small-footprint embedded edge-computing platform is
still minimal.

II. SYSTEM DESIGN

A. Hardware
Our goal is to develop a flexible HMI that is easily

integrable in embedded applications. It is thus essential to have
a computational platform with low power consumption and a
small footprint to fit in a large array of scenarios. Still, pose
estimation systems, and more generally, deep learning
techniques, are particularly computationally heavy. The
hardware platform must support parallel computing to operate
neural network inference. One of the most common solutions
is the Jetson platform from NVidia, which comprises multiple
GPU- based single-board computers. We will use the entry
offer of this product range as a companion computer, the
Jetson Nano B01 4Gb. Even this entry solution will prove
powerful enough to handle the gesture-control processing
pipeline after some optimization.

As its name suggests, the companion computer is not suited
to support autonomous flight operations. We choose the
Pixhawk platform, part of the ArduPilot eco-system, to handle
this task. The Pixhawk 4 from Holybro implements the
FMUv5 design, compatible with the advanced flight controller
firmware ArduCopter and the ground-station software Mission

Part Affinity Fields
generation

Confidence map
generation

Fmap

Input
image

PAF
2D-CNN with

attention

Matching

Cmap 2D-CNN with
attention

Backbone CNN

∼

Customizable head

Pre-trained models

Pose estimation
(TRT-Pose)

Features extraction

Fig. 2: Flowchart of the processing pipeline. The main contribution of this project lies in the customizable head to ease user-defined HMI. (Fmap – Features
map; Cmap – Confidence map; PAF – Part Affinity Fields)

Planner. In addition, a telemetry kit, a radio receiver, and a
GNSS & compass module are connected to the flight
controller to improve flyability and ease of use. The industry
standard MavLink is used for intercommunication between
flight controller, ground station, and companion computer.
The power distribution is handled by a dedicated power
management board connected to the main battery of the drone.
The 5V voltage converter of the board is limited to 15W,
which is perfectly sound for the flight controller. However, the
companion controller requires an additional voltage converter
to ensure a stable powering of the flight controller; the Jetson
Nano can exceed the consumption of 10W to reach a top
performance of 472 GFLOPS (FP16) on its Maxwell GPU.

Finally, an IMX477 camera module from Arducam is
mounted on the drone. The combination of a 3.9mm lens with
a 1/2.3”, 12.3MP sensor allows a large horizontal FOV (80◦),
which matches the camera used on the workstation for dataset
creation. This CSI camera is compatible with the Nvidia
Encoder (NVENC) included in the Tegra X1 chip used on
Nvidia Jetson devices. Images will be captured with the
GStreamer plugin included in the Jetpack software suite. It
leverages the NVENC to lighten precious computation load on
the CPU.

The set of components described above sums up to a mass
of 500g (17.6oz). We have mounted the system on a quadrotor
in X configuration with an amplitude of 500mm. This ample
wheelbase offers plenty of room and a large enough payload to
fit in the hardware thanks to a maximum thrust of 1300g per
motor with a 6000 mAh, four cells (14.8 V) lithium-
polymer battery. The take-off weight sums up to 1.6 kg.

B. Video processing pipeline

Human pose estimation is the task of inferring the precise
pose of a person by identifying and locating key-points on the
body, such as major joints (elbow, knee, shoulders, etc.). There
are two approaches to this problem, known as bottom-up and
top-down. The bottom-up approach is more complex than the
other to train due to the more generalized approach to
keypoints detection and skeleton reconstruction. However, it is
way more efficient thanks to the single-shot key-points
extraction, especially for crowd analysis. This method is a
great fit in our case. It allows scalability of the processing
pipeline to multiple cameras and users while keeping a
constant inference time. The current most popular bottom-up
architecture is based on the fusion of Part Affinity Fields
(PAFs), and part Confidence Maps (CMaps) [1]. This
architecture is behind some of the most used pose estimation
models such as OpenPose [2] and TensorRT-Pose. As shown in
figure 2, it is composed of the following blocks:

- The image goes through a backbone CNN which
generates a feature map from the input image. Most
models submitted to ILSVRC [3] can be used as
backbone extractors. These models are all trained to
classify images on a general-vision dataset with a couple
of thousands of labels and more than 14 million images.
Thus, their first layers are extremely efficient at
extracting relevant information toward a pseudo-global
understanding of images.

Classification

Orders 1D-CNN

Key points dataset

Pose estimation
(OpenPose)

Dataset creation
tool

Flight controller

Key
points

Orders execution
ArduPilot with MavLink

Co
nt

in
uo

us
 c

on
tro

l
(e

.g
., a

lti
tu

de
, p

os
iti

on
)

Di
sc

re
te

 c
on

tro
l

(e
.g

., l
au

nc
h,

 go
-to

)

 Torso
 Shoulder (right)
 Shoulder (left)
 Arm (right)

Forearm (right)
 Arm (left)
 Forearm (left)
 Hip (right)

Thigh (right)
 Leg (right)
 Hip (left)
 Thigh (left)

Leg (left)
 Neck
 Eye (right)
 Ear (right)
 Eye (left)

Ear (left)
 Foot (left)
 Toe (left)
 Heel (left)
 Foot (right)
 Toe (right)
 Heel (right)

- The feature map is fed to a couple of multi-stage CNN
that produce Part Confidence Maps (CMap) and Part
Affinity Fields (PAF). The CMap represents the
probability that a particular human joint can be located

Seated Stand Stand RightArmRaised Stand LeftArmRaised T

in any given pixel. It contains as many channels as the
number of types of body joints detected in the image.
The PAF is a vector field that encodes the orientation and
location of limbs. Again, it contains as many channels as

MilitarySalute

PushUp Low

Squat

Plank

Yoga Tree left

the number of types of limbs (i.e., joint pairs).
- The CMap and the PAF are processed by a greedy

bipartite matching algorithm to output the skeleton
estimation for each person in the image. Such algorithms
have no trainable parameters.

Yoga Tree right Yoga UpwardSalute

Yoga Warrior2 left Yoga Warrior2 right

Traffic AllStop

- A final neural network block classifies
- Key-points. The discrete outputs are interpreted as orders

transmitted to the drone. The human-machine interface is
thus mainly defined by the categories and samples
composing the key-point classification model.

Data collection is one of the most time-consuming and
critical tasks of a Machine Learning project. A good dataset
eases the models’ training process and is also vital to the
generalization power of the model. The objective is to create a
dataset as unbiased as possible. Suppose we were to train the
pipeline end-to-end, using images as input. The dataset should
consist of various people with different visual features (e.g.,
body type, skin tone, clothes) in different contexts. Given the
complexity of images, it is difficult, even maybe impossible
[4], [5], to eliminate all biases. Such limitation is a massive
challenge to the customization of our HMI. Instead of training
the pipeline as a whole, we deploy state-of-the-art pre-trained
models and train the classifier independently on a key-points-
based dataset. These handcrafted features reduce the
dimension of the dataset space by a thousand-fold and thus
avoid the curse of dimensionality [6], [7]. The input space
being way smaller, it is easier to eliminate biases: only the
positions of the articulations of a person relative to the camera
are captured in the dataset. A few hundred samples per class
are enough to eliminate most biases from the dataset.

III. IMPLEMENTATION

A. Dataset creation

We have developed an open-source tool 1 to collect body
key-points samples based on the OpenPose pre-trained
model. It allows the user to efficiently and easily create
datasets suited to our classification problem. Using this tool,
we have created a base dataset with a total of 20 body
dataset classes which contains between 500 and 600
samples each for a total of 10680 entries. Each entry in the
dataset is an array of 25 2D coordinates. The mapping of
these key-points follows the BODY25 body model, one of
the most comprehensive discretized standard body models.
However, some pose estimation models, such as the one we
will use on the Jetson Nano, use an 18 keypoints
representation (BODY18). The seven missing key-points do

1Code-source: https://github.com/ArthurFDLR/pose-classification-kit

Traffic BackStop Traffic FrontStop Traffic BackFrontStop Traffic LeftTurn Traffic right turn

Fig. 3: Random samples from each class of our body gesture dataset
(BODY25)

not strongly influence classification as 6 of them are used for
feet representation, and the last one is a central hip key-point.

Figure 3 presents samples from all clauses currently
included in the dataset. The goal of this initial dataset is to
allow several simple classification applications. We can
distinguish three main categories: work-out exercise, Yoga
pose, and traffic signs. Given our application, we will focus on
the traffic hand signals. These are the movement used by
police officers or aircraft marshallers to direct traffic. They are
thus perfectly suited to control our drone.

B. Model creation

While a classical neural network composed of densely
connected layers could map any classification problem,
architecture that intrinsically accounts for the particularity of
the input generally performs better [8]. Preserving the 2D
nature of our key-points and their relative positions can be
achieved by 1D convolution layers [9]. It aims at finding
patterns in the input. The order of the key-points is thus
critical to detect local patterns. Indeed, given a kernel length
of 3, the convolutional layer detects templates embedded in
the coordinates of 3 consecutive key-points. The most efficient
way to order the key-points is thus to form anatomical parts of
the body; shoulder–elbow–wrist, and hip–knee–foot are
consecutive in our body models. Our best-performing model
comprises two 1D-convolution layers with 16 kernels of length
3, two dense layers of 128 neurons each, and a final dense
layers matching the number of classes (20); for a total of
57172 learnable parameters. All layers but the last use a ReLu
activation function. The output is selected following the
softmax function over the 20 logits values. In addition, a
couple of regularization methods are used to deal with heavy
data augmentation. A dropout rate of 30% and batch
normalization are applied to all layers.

The model is trained using the Adam optimizer with a
categorical cross-entropy loss function, and a 20-20-60 split

(a) Model trained without data augmentation (b) Model trained using data augmentation

Fig. 4: Confusion matrices of our best performing models on a synthetic dataset accentuating partial inputs based on our original test fold.

for validation, testing, and training. The loss function reaches
a minimum around the 15 epochs, where the validation
accuracy is 98.00%. The testing accuracy reaches 98.25%.

While these results are great theoretically speaking, the
model’s limitation lies in the dataset itself. We have observed
inconsistent predictions on partial input during real-life tests.
The most common partial inputs (i.e., missing key-points) are
caused by body parts not being captured in the original input
frame (e.g., obstruction, out of frame), specifically the lower
part of the body. Several augmentation techniques are applied
to the dataset to improve robustness: scaling, rotation, noise
addition, key-point dropping. The dropping is applied
randomly and/or on all key-points from the lower part of the
body (legs, hip) as a whole. The newly trained model with
data augmentation reaches a testing accuracy of 98.05% but is
drastically more robust to partial input. Figure 4 presents the
confusion matrices of the model trained with or without data
augmentation on a synthetic test dataset following similar data
augmentation techniques as presented above.

C. On-board deployment
The neural networks composing our pipeline are optimized

on the target device (Jetson Nano) to accelerate the inference
process. We mainly leverage quantization [10] while compiling
the models for our platform using TensorRT, the inference
optimization tool for NVIDIA GPUs. The allocation of 33MB
GPU memory is enough for each model. In addition, while the
pose estimation model reaches far better inference times using
FP16 data representation, this is not the case for the pose
classification model. This is undoubtedly due to the very

low complexity of the model. Still, the FP16–33MB compiled
models are selected for deployment. The model compilation
process is highly effective as it improved the cumulative
inference time of both models from 637ms to 73ms.

The order manager is the most critical part of the embedded
processing pipeline as it directly controls the drone’s actions.
Every movement must be carefully controlled to avoid crashes.
The flight controller includes some protections over received
orders over MAVLink connections. Such critical application
requires careful analysis of the deep learning pipeline output.
Temporary misclassification is relatively common and can lead
to unwanted actions from the drone. Still, it is improbable that
several consecutive frames are similarly misclassified. Thus,
orders are selected only when the processing pipeline detects
the same pose four times over the seven latest predictions.
The order is then transmitted to the flight controller only if it
is different from the last selected order to avoid repetition. In
addition, the order manager includes a state machine to avoid
sending irrational orders, such as taking off when the drone is
flying. Also, for safe experimentation, orders are only
transmitted if the flight controller is in guided mode, which is
selected through the radio controller.

IV. RESULTS

Our gesture-controlled drone currently supports the follow-
ing commands:

– T: Arm the drone if it is disarmed and landed; Disarm the
drone if it is armed and landed;

– Traffic AllStop: Take-off at an altitude of 1.8m if the
drone is armed and landed – Land if the drone is in flight;

– Traffic RightTurn: Move 4m to the right;
– Traffic LeftTurn: Move 4m to the left;
– Traffic BackFrontStop: Move 2m backward;
– Traffic FrontStop: Move 2m forward;
– Yoga UpwardSalute: Return to Launch (RTL);

Fig. 5: Processing pipeline output frame

No delay is perceivable thanks to the processing pipeline’s
relatively high frame rate, which varies from 9.5 to 12.0 frames
per second. The embedded camera’s large vertical field of view
allows a functional system in flight and on the ground. The
user can thus fully control the drone from take-off to landing
using gesture control only. However, the system does not
include user tracking. The user has to stay in front of the drone
to perform gesture control. This is particularly restrictive when
the drone operates at a high altitude. The maximum height at
which the drone can operate naturally varies according to the
camera’s orientation and field of view. The limit is
approximately 4 meters in our configuration – camera leveled
– for the system to also detect gestures while landing.

V. CONCLUSION

The main objective of this project was to streamline the
training and deployment of gesture recognition systems while
offering a proof-of-concept of a controlled drone. Following
this process, this paper presents the creation and training of
two neural networks. The first model is highly efficient and yet
reaches a testing accuracy of 98.25%. However, it performs
poorly on partial inputs, which are common use-cases in
practice. Thus, a second model has been created leveraging
heavy data augmentation and regularization techniques. While
the testing accuracy remains similar to the first model, it
performs very well under challenging conditions.

In addition, we covered the deployment process of the video
processing pipeline on resource-limited hardware. An open-
source drone platform has been augmented with an embedded
Jetson Nano companion computer to allow gesture control.
The pipeline optimization allows a processing frame rate
exceeding 9.5 FPS – such performance results in a very
responsive proof-of-concept.

REFERENCES
[1] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime

multi-person 2d pose estimation using part affinity fields, 2017.
[2] Zhe Cao, Gines Hidalgo, Tomas Simon, Shih-En Wei, and Yaser Sheikh.

Openpose: Realtime multi-person 2d pose estimation using part affinity
fields. CoRR, abs/1812.08008, 2018.

[3] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla,
Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet Large
Scale Visual Recognition Challenge. International Journal of Computer
Vision (IJCV), 115(3):211–252, 2015.

[4] Kaiyu Yang, Klint Qinami, Li Fei-Fei, Jia Deng, and Olga Russakovsky.
Towards fairer datasets: Filtering and balancing the distribution of the
people subtree in the imagenet hierarchy. In Conference on Fairness,
Accountability, and Transparency, 2020.

[5] Aditya Khosla, Tinghui Zhou, Tomasz Malisiewicz, Alexei A. Efros,
and Antonio Torralba. Undoing the damage of dataset bias. In Andrew
Fitzgibbon, Svetlana Lazebnik, Pietro Perona, Yoichi Sato, and Cordelia
Schmid, editors, Computer Vision – ECCV 2012, pages 158–171, Berlin,
Heidelberg, 2012. Springer Berlin Heidelberg.

[6] Loris Nanni, Stefano Ghidoni, and Sheryl Brahnam. Handcrafted vs.
non-handcrafted features for computer vision classification. Pattern
Recognition, 71:158–172, 2017.

[7] Aleš Leonardis and Horst Bischof. Kernel and subspace methods for
computer vision. Pattern Recognition, 36(9):1925–1927, 2003. Kernel
and Subspace Methods for Computer Vision.

[8] Yann LeCun, Koray Kavukcuoglu, and Clement Farabet. Convolutional
networks and applications in vision. In Proceedings of 2010 IEEE
International Symposium on Circuits and Systems, pages 253–256, 2010.

[9] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef
Gabbouj, and Daniel J. Inman. 1d convolutional neural networks and
applications: A survey. Mechanical Systems and Signal Processing,
151:107398, 2021.

[10] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W.
Mahoney, and Kurt Keutzer. A survey of quantization methods for
efficient neural network inference. CoRR, abs/2103.13630, 2021.

