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Abstract—The increasing efficiency of complex Neural Network 
architecture and the continuous improvement of embedded edge 
computing has reached a point that allows the deployment of 
advanced computer vision tasks on some of the most critical 
embedded applications, such as aerial drones. While similar 
applications were already possible by moving heavy processing on 
a ground station, an autonomous and centralized system 
significantly improves usability and security. The machine is thus 
self-sufficient and less prone to network attacks. Three main 
challenges stand-out during the deployment of our complex gesture 
recognition pipeline: (1) allowing user-defined controls, (2) 
ensuring robustness, and (3) on-board deployment. These 
challenges are tackled through handcrafted features to avoid the 
curse of dimensionality, neural network optimization on GPU-
based companion computers, and data augmentation to cover real-
life edges cases such as partial inputs.

Fig. 1: Overview of the aerial drone augmented with a GPU- based Single 
Board Computer (SBC). Note that the ground station and the radio controller 
are used solely for experimentation safety. The whole processing pipeline is 
deployed on-board.

Index Terms—Machine learning, Gesture control, Embedded 
software 

I. INTRODUCTION

There are two crucial characteristics to deploy autonomous 
drones in more applications. First, drones must perfectly 
perceive their environment to avoid obstacles and adapt 
trajectories to reach specific positions. Secondly, the human-
machine interaction must be flawless. An assistant drone is 
hardly useful if it cannot efficiently receive orders from users 
who could simultaneously perform other tasks. Simplified 
remote controllers limit the interaction with users equipped 
with a device, thus known beforehand. Otherwise, drones must 
perceive orders. Besides speech, the most natural way for 
humans to communicate is through visual cues. Audio-based 
solutions are hardly possible due to the loud nature of drones’ 
propulsion systems. This leads us to the latter communication 
medium: visual cues. 

The main objective of this project is to create a fully 
autonomous gesture-controlled drone. Robustness and 

are the core characteristics of 
the implementation. Enforcing these two qualities lead 
to overcoming three main challenges that encapsulate the 
main contribution of this paper. 

– Customization & exp ndability: Human Machine
Interfaces HMIs should evolve following the variety of
use- case, and preferences of users. However, the
proposed architecture relies on machine learning models
that require labor-intensive models.

– Robustness: The correctness of the prediction is critical
to the operability of the machine. Misinterpreted gestures

can lead to unwanted and potentially dangerous behaviors 
from the drone.

– On-board deployment: The computational capability of
a small-footprint embedded edge-computing platform is
still minimal.

II. SYSTEM DESIGN

A. Hardware
Our goal is to develop a flexible HMI that is easily

integrable in embedded applications. It is thus essential to have
a computational platform with low power consumption and a 
small footprint to fit in a large array of scenarios. Still, pose 
estimation systems, and more generally, deep learning 
techniques, are particularly computationally heavy. The 
hardware platform must support parallel computing to operate 
neural network inference. One of the most common solutions 
is the Jetson platform from NVidia, which comprises multiple 
GPU- based single-board computers. We will use the entry 
offer of this product range as a companion computer, the 
Jetson Nano B01 4Gb. Even this entry solution will prove 
powerful enough to handle the gesture-control processing 
pipeline after some optimization.

As its name suggests, the companion computer is not suited 
to support autonomous flight operations.  We choose the 
Pixhawk platform, part of the ArduPilot eco-system, to handle 
this task. The Pixhawk 4 from Holybro implements the 
FMUv5 design, compatible with the advanced flight controller 
firmware ArduCopter and the ground-station software Mission
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Fig. 2: Flowchart of the processing pipeline. The main contribution of this project lies in the customizable head to ease user-defined HMI. (Fmap – Features 
map; Cmap – Confidence map; PAF – Part Affinity Fields) 

 

Planner. In addition,  a  telemetry kit,  a  radio receiver,  and a 
GNSS & compass module are connected to the flight 
controller to improve flyability and ease of use. The industry 
standard MavLink is used for intercommunication between 
flight controller, ground station, and companion computer.  
The power distribution is handled by a dedicated power 
management board connected to the main battery of the drone. 
The 5V voltage converter of the board is limited to 15W, 
which is perfectly sound for the flight controller. However, the 
companion controller requires an additional voltage converter 
to ensure a stable powering of the flight controller; the Jetson 
Nano can exceed the consumption of 10W to reach a top 
performance of 472 GFLOPS (FP16) on its Maxwell GPU. 

Finally, an IMX477 camera module from Arducam is 
mounted on the drone. The combination of a  3.9mm lens with 
a 1/2.3”, 12.3MP sensor allows a large horizontal FOV (80◦), 
which matches the camera used on the workstation for dataset 
creation. This CSI camera is compatible with the Nvidia 
Encoder (NVENC) included in the Tegra X1 chip used on 
Nvidia Jetson devices. Images will be captured with the 
GStreamer plugin included in the Jetpack software suite. It 
leverages the NVENC to lighten precious computation load on 
the CPU. 

The set of components described above sums up to a mass 
of 500g (17.6oz). We have mounted the system on a quadrotor 
in X configuration with an amplitude of 500mm. This ample 
wheelbase offers plenty of room and a large enough payload to 
fit in the hardware thanks to a maximum thrust of  1300g  per 
motor with a  6000  mAh,  four cells (14.8 V) lithium-
polymer battery. The take-off weight sums up to 1.6 kg.

 
B. Video processing pipeline 

Human pose estimation is the task of inferring the precise 
pose of a person by identifying and locating key-points on the 
body, such as major joints (elbow, knee, shoulders, etc.). There 
are two approaches to this problem, known as bottom-up and 
top-down. The bottom-up approach is more complex than the 
other to train due to the more generalized approach to 
keypoints detection and skeleton reconstruction. However, it is 
way more efficient thanks to the single-shot key-points 
extraction, especially for crowd analysis. This method is a 
great fit in our case. It allows scalability of the processing 
pipeline to multiple cameras and users while keeping a 
constant inference time. The current most popular bottom-up 
architecture is based on the fusion of Part Affinity Fields 
(PAFs), and part Confidence Maps (CMaps) [1]. This 
architecture is behind some of the most used pose estimation 
models such as OpenPose [2] and TensorRT-Pose. As shown in 
figure 2, it is composed of the following blocks: 

- The image goes through a backbone CNN which 
generates a feature map from the input image. Most 
models submitted to ILSVRC [3] can be used as 
backbone extractors. These models are all trained to 
classify images on a general-vision dataset with a couple 
of thousands of labels and more than 14 million images. 
Thus, their first layers are extremely efficient at 
extracting relevant information toward a pseudo-global 
understanding of images. 
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- The feature map is fed to a couple of multi-stage CNN 
that produce Part Confidence Maps  (CMap)  and Part 
Affinity Fields (PAF). The CMap represents the 
probability that a particular human joint can be located 
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in any given pixel. It contains as many channels as the 
number of types of body joints detected in the image.  
The PAF is a vector field that encodes the orientation and 
location of limbs. Again, it contains as many channels as 
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the number of types of limbs (i.e., joint pairs). 
- The CMap and the PAF are processed by a greedy 

bipartite matching algorithm to output the skeleton 
estimation for each person in the image. Such algorithms 
have no trainable parameters. 
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- A final neural network block classifies 
- Key-points. The discrete outputs are interpreted as orders 

transmitted to the drone. The human-machine interface is 
thus mainly defined by the categories and samples 
composing the key-point classification model. 

Data collection is one of the most time-consuming and 
critical tasks of a Machine Learning project. A good dataset 
eases the models’ training process and is also vital to the 
generalization power of the model. The objective is to create a 
dataset as unbiased as possible. Suppose we were to train the 
pipeline end-to-end, using images as input. The dataset should 
consist of various people with different visual features (e.g., 
body type, skin tone, clothes) in different contexts. Given the 
complexity of images, it is difficult, even maybe impossible 
[4], [5], to eliminate all biases. Such limitation is a massive 
challenge to the customization of our HMI. Instead of training 
the pipeline as a whole, we deploy state-of-the-art pre-trained 
models and train the classifier independently on a key-points-
based dataset. These handcrafted features reduce the 
dimension of the dataset space by a thousand-fold and thus 
avoid the curse of dimensionality [6], [7]. The input space 
being way smaller, it is easier to eliminate biases: only the 
positions of the articulations of a person relative to the camera 
are captured in the dataset. A few hundred samples per class 
are enough to eliminate most biases from the dataset. 

III. IMPLEMENTATION 

A. Dataset creation 

We have developed an open-source tool 1 to collect body 
key-points samples based on the OpenPose pre-trained 
model. It allows the user to efficiently and easily create 
datasets suited to our classification problem. Using this tool, 
we have created a base dataset with a total of 20 body 
dataset classes which contains between 500 and 600 
samples each for a total of 10680 entries. Each entry in the 
dataset is an array of 25 2D coordinates. The mapping of 
these key-points follows the BODY25 body model, one of 
the most comprehensive discretized standard body models. 
However, some pose estimation models, such as the one we 
will use on the Jetson Nano, use an 18 keypoints 
representation (BODY18). The seven missing key-points do  

1Code-source: https://github.com/ArthurFDLR/pose-classification-kit 
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Fig. 3: Random samples from each class of our body gesture dataset 
(BODY25) 

 
not strongly influence classification as 6 of them are used for 
feet representation, and the last one is a central hip key-point. 

Figure 3 presents samples from all clauses currently 
included in the dataset. The goal of this initial dataset is to 
allow several simple classification applications. We can 
distinguish three main categories: work-out exercise, Yoga 
pose, and traffic signs. Given our application, we will focus on 
the traffic hand signals. These are the movement used by 
police officers or aircraft marshallers to direct traffic. They are 
thus perfectly suited to control our drone. 

B. Model creation 

While a classical neural network composed of densely 
connected layers could map any classification problem,  
architecture that intrinsically accounts for the particularity of 
the input generally performs better [8]. Preserving the 2D 
nature of our key-points and their relative positions can be 
achieved by 1D convolution layers [9]. It aims at finding 
patterns in the input. The order of the key-points is thus 
critical to detect local patterns. Indeed, given a kernel length 
of 3, the convolutional layer detects templates embedded in 
the coordinates of 3 consecutive key-points. The most efficient 
way to order the key-points is thus to form anatomical parts of 
the body; shoulder–elbow–wrist, and hip–knee–foot are 
consecutive in our body models. Our best-performing model 
comprises two 1D-convolution layers with 16 kernels of length 
3, two dense layers of 128 neurons each, and a final dense 
layers matching the number of classes (20); for a total of 
57172 learnable parameters. All layers but the last use a  ReLu 
activation function. The output is selected following the 
softmax function over the 20 logits values. In addition,      a 
couple of regularization methods are used to deal with heavy 
data augmentation. A dropout rate of 30% and batch 
normalization are applied to all layers. 

The model is trained using the Adam optimizer with a 
categorical cross-entropy loss function, and a 20-20-60 split 



 
(a) Model trained without data augmentation (b) Model trained using data augmentation 

Fig. 4: Confusion matrices of our best performing models on a synthetic dataset accentuating partial inputs based on our original test fold. 
 

for validation, testing, and training. The loss function reaches 
a minimum around the 15 epochs, where the validation 
accuracy is 98.00%. The testing accuracy reaches 98.25%. 

While these results are great theoretically speaking, the 
model’s limitation lies in the dataset itself. We have observed 
inconsistent predictions on partial input during real-life tests. 
The most common partial inputs (i.e., missing key-points) are 
caused by body parts not being captured in the original input 
frame (e.g., obstruction, out of frame), specifically the lower 
part of the body. Several augmentation techniques are applied 
to the dataset to improve robustness: scaling, rotation, noise 
addition, key-point dropping. The dropping is applied 
randomly and/or on all key-points from the lower part of the 
body (legs, hip) as a whole. The newly trained model with 
data augmentation reaches a testing accuracy of 98.05% but is 
drastically more robust to partial input. Figure 4 presents the 
confusion matrices of the model trained with or without data 
augmentation on a synthetic test dataset following similar data 
augmentation techniques as presented above. 

C. On-board deployment 
The neural networks composing our pipeline are optimized 

on the target device (Jetson Nano) to accelerate the inference 
process. We mainly leverage quantization [10] while compiling 
the models for our platform using TensorRT, the inference 
optimization tool for NVIDIA GPUs. The allocation of 33MB 
GPU memory is enough for each model. In addition, while the 
pose estimation model reaches far better inference times using 
FP16 data representation, this is not the case for the pose 
classification model. This is undoubtedly due to the very 

low complexity of the model. Still, the FP16–33MB compiled 
models are selected for deployment. The model compilation 
process is highly effective as it improved the cumulative 
inference time of both models from 637ms to 73ms. 

The order manager is the most critical part of the embedded 
processing pipeline as it directly controls the drone’s actions. 
Every movement must be carefully controlled to avoid crashes. 
The flight controller includes some protections over received 
orders over MAVLink connections. Such critical application 
requires careful analysis of the deep learning pipeline output. 
Temporary misclassification is relatively common and can lead 
to unwanted actions from the drone. Still, it is improbable that 
several consecutive frames are similarly misclassified. Thus, 
orders are selected only when the processing pipeline detects 
the same pose four times over the seven latest predictions. 
The order is then transmitted to the flight controller only if it 
is different from the last selected order to avoid repetition. In 
addition, the order manager includes a state machine to avoid 
sending irrational orders, such as taking off when the drone is 
flying. Also, for safe experimentation, orders are only 
transmitted if the flight controller is in guided mode, which is 
selected through the radio controller. 

IV. RESULTS 

Our gesture-controlled drone currently supports the follow- 
ing commands: 

– T: Arm the drone if it is disarmed and landed; Disarm the 
drone if it is armed and landed; 

– Traffic AllStop: Take-off at an altitude of 1.8m if the 
drone is armed and landed – Land if the drone is in flight; 



 

 

– Traffic RightTurn: Move 4m to the right; 
– Traffic LeftTurn: Move 4m to the left; 
– Traffic BackFrontStop: Move 2m backward; 
– Traffic FrontStop: Move 2m forward; 
– Yoga UpwardSalute: Return to Launch (RTL); 

 

 
Fig. 5: Processing pipeline output frame 

No delay is perceivable thanks to the processing pipeline’s 
relatively high frame rate, which varies from 9.5 to 12.0 frames 
per second. The embedded camera’s large vertical field of view 
allows a functional system in flight and on the ground. The 
user can thus fully control the drone from take-off to landing 
using gesture control only. However, the system does not 
include user tracking. The user has to stay in front of the drone 
to perform gesture control. This is particularly restrictive when 
the drone operates at a high altitude. The maximum height at 
which the drone can operate naturally varies according to the 
camera’s orientation and field of view. The limit is 
approximately 4 meters in our configuration – camera leveled 
– for the system to also detect gestures while landing. 

V. CONCLUSION 

The main objective of this project was to streamline the 
training and deployment of gesture recognition systems while 
offering a proof-of-concept of a controlled drone. Following 
this process, this paper presents the creation and training of 
two neural networks. The first model is highly efficient and yet 
reaches a testing accuracy of 98.25%. However, it performs 
poorly on partial inputs, which are common use-cases in 
practice. Thus, a second model has been created leveraging 
heavy data augmentation and regularization techniques. While 
the testing accuracy remains similar to the first model, it 
performs very well under challenging conditions. 

In addition, we covered the deployment process of the video 
processing pipeline on resource-limited hardware. An open-
source drone platform has been augmented with an embedded 
Jetson Nano companion computer to allow gesture control. 
The pipeline optimization allows a processing frame rate 
exceeding 9.5 FPS – such performance results in a very 
responsive proof-of-concept. 
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[7] Aleš  Leonardis and Horst Bischof. Kernel and subspace methods for 
computer vision. Pattern Recognition, 36(9):1925–1927, 2003. Kernel 
and Subspace Methods for Computer Vision. 

[8] Yann LeCun, Koray Kavukcuoglu, and Clement Farabet. Convolutional 
networks and applications in vision. In Proceedings of 2010 IEEE 
International Symposium on Circuits and Systems, pages 253–256, 2010. 

[9] Serkan Kiranyaz, Onur Avci, Osama Abdeljaber, Turker Ince, Moncef 
Gabbouj, and Daniel J. Inman. 1d convolutional neural networks and 
applications: A survey. Mechanical Systems and Signal Processing, 
151:107398, 2021. 

[10] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W. 
Mahoney, and Kurt Keutzer. A survey of quantization methods for 
efficient neural network inference. CoRR, abs/2103.13630, 2021. 


