
 

 
 

Steel Material Microstructure Characterization using 

Knowledge Distillation Based Transformer Neural 

Networks for Data-Efficient Ultrasonic NDE System      
 

Xin Zhang and Jafar Saniie  
Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu)  

Department of Electrical and Computer Engineering  
Illinois Institute of Technology, Chicago, Illinois, U.S.A. 

 

 
Abstract— Material microstructure characterization for 

texture recognition using ultrasonic testing has been widely used 

to examine the physical and structural integrity of materials. For 

system automation, Neural Network (NN) can be used to 

characterize the material texture accurately. However, training 

and deploying NNs requires substantial computational resources. 

In this study, we propose to use the knowledge distillation (KD) 

method and introduce a response-based teacher-student KD 

training framework to train NNs to find the optimal solution. In 

addition, a lightweight Ultrasonic Microstructure 

Characterization Transformer NN (TNN): UMCTNet, is proposed 

to recognize material textures using ultrasonic images. Training 

using the KD mechanism improves the data-efficiency of NNs by 

transferring knowledge from pre-trained NN models. In addition, 

TNN utilizes a simple network architecture with the attention 

mechanism resulting in reducing training and execution time. A 

data-efficient Ultrasonic Microstructure Characterization 

Convolutional NN: UMCCNet, is trained as the teacher model 

using ultrasonic images to distill the pre-trained knowledge into 

the UMCTNet with high accuracy and data-efficiency. To examine 

the results, an ultrasonic testbed platform was assembled, and C-

scanning was created to acquire volumetric ultrasonic data from 

three different heat-treated steel blocks to train NNs. By applying 

the KD framework to train UMCTNet, we obtained the training 

and testing accuracy of 99.91% and 99.27% respectively, and the 

highest image throughput of 192 images/seconds on testing to 

characterize steel material microstructures.  

Keywords— Data-Efficient Ultrasonic NDE System, Knowledge 

Distillation, Transformer Neural Network, Convolutional Neural 
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I. INTRODUCTION 

 
Ultrasonic nondestructive evaluation (NDE) of materials for 

microstructure characterization has been extensively used because 

of high inspection accuracy [1]. Approximating the grain size 

using ultrasonic backscattered signals is challenging but can be 

used to characterize the microstructure of steel materials [2]. The 

intensity of ultrasonic backscattered signals is the non-explicit 

function of the average grain size and random distribution of 

grains [2]. The Rayleigh scattering region [3] where the 

wavelength of ultrasonic signals is larger than the average grain 

size is applied to acquire ultrasonic signals. Rayleigh region 

reveals the most sensitivity to frequency and grain size distribution 

[3] to better characterize material microstructure.  

      For system automation, machine learning (ML), such as NNs, 

have been used to enhance system performance in NDE industries 

[4]-[9]. In ultrasonic NDE, NNs have been applied for grain size 

estimation to characterize material microstructure [10][11], flaws 

detection [12] and massive ultrasonic data compression [13][14]. 

Among these NNs, the deep Convolutional Neural Networks 

(deep-CNN) can characterize steel material microstructure with 

high accuracy but suffer substantial computational cost for training 

and deployment [9][15]. This limits the performance of ultrasonic 

applications, specifically in the computational constraint or real-

time evaluation environment. In our previous research, we have 

developed deep-CNNs and the Transformer Neural Network (TNN) 

to estimate grain size for material microstructure characterization 

with high accuracy and data-efficiency [9][11]. The TNN utilizes 

the multi-head attention mechanism [16] to replace the 

convolutions and recurrence entirely to learn backscattering 

features in ultrasonic images. And this attention mechanism largely 

reduces the demand for computational resources resulting in 

reduction in training and deployment time [16]. In this study, to 

further enhance the characterization performance, we introduce a 

response-based teacher-student KD training framework [17] to find 

the optimal solution. Training using the KD mechanism improves 

the training performance of NNs by transferring knowledge from a 

large heavy model to one smaller model which can be practically 

deployed under real-world constraints. In addition, a lightweight 

TNN: UMCTNet, is proposed as the student model to characterize 

material microstructure using ultrasonic images with high data-

efficiency. By using this KD framework, a deep-CNN: UMCCNet, 

is trained as the teacher model using ultrasonic images to distill the 

pre-trained knowledge into the UMCTNet with high accuracy and 

data-efficiency.      

To examine the results, an ultrasonic testbed platform was 

assembled, and C-scanning was created to acquire volumetric 

ultrasonic data from three heat-treated steel blocks with different 

grain size. The volumetric data consists of a sequence of ultrasonic 

backscattering images to train NNs. We aim to realize a data-

efficient ultrasonic system to automatically characterize steel 



material microstructure with high accuracy for ultrasonic NDE 

applications.   

      In this paper, Section II presents the data-efficient ultrasonic 

NDE system in the laboratory and testing arrangement for data 

acquisition. Section III presents the KD framework used to train 

TNN to characterize steel material microstructure. The 

characterization performance of UMCCNet (teacher model), 

UMCTNet (student model) and distillation-UMCTNet (distillation 

model) is analyzed and compared. Section IV concludes this paper. 

 

 

II.   EXPERIMENTAL SETUP 

 
      Figure 1 shows the ultrasonic testbed platform for data 

acquisition. This platform consists of a water tank mounted with 

two stepper motors to automatically move the ultrasonic 

transducer along two directions for ultrasonic testing. A 

Panametrics Model 5052PR ultrasonic pulser receiver is used as 

the signal generator and echo receiver. And a high frequency 

digitizer, the Keysight MSOX2024A oscilloscope, is used to 

synchronize the acquired signals and monitor the ultrasonic testing. 

Then the ultrasonic signals are processed by the intelligent 

material microstructure characterization unit to recognize steel 

material textures with different grain sizes. A 2D C-scan path is 

created with 200×200 measurements (each measurement includes 

7680 ultrasonic backscattered signals) to obtain ultrasonic images. 

In this study, three heat-treated steel blocks with different grain 

sizes of 14 (Grain14), 24 (Grain24), and 50 (Grain50) microns are 

used as specimens for ultrasonic testing. We collected 4800 

ultrasonic images for each steel block specimen to train NNs. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 

 

 

Figure 1. Data-Efficient Ultrasonic NDE System and Testing 

Arrangement for Data Acquisition 

III. STEEL MATERIAL MICROSTRUCTURE 

CHARACTERIZATION USING KNOWLEDGE DISTILLATION 

BASED TRANSFORMER NEURAL NETWORK 

 
      In the following subsections, we introduce the KD framework 

to train TNN to characterize material microstructure for Grain14, 

Grain24, and Grain50 steel blocks. The experimental ultrasonic 

images are labeled and used to train the NNs. The characterization 

performance is benchmarked using the training accuracy, testing 

accuracy, and data-efficiency. The data-efficiency measures the 

NN inference performance and is calculated by the image 

processed throughput on testing. The image processed throughput 

is the number of ultrasonic images assessed per second. To 

enhance the characterization performance, we use transfer learning 

(TL) [18] to pre-train the teacher model on large datasets 

(ImageNet) followed by further training with experimental 

ultrasonic images. The NNs were trained with 50 epochs using 80% 

and 20% of ultrasonic images for training and testing 

correspondingly. The training and testing were conducted on the 

Intel (R) Core (TM) i7-8750H, CPU@2.20GHz computer with 

NVIDIA GTX 1070 GPU 16GB RAM. 
 

 
A. Teacher Student Knowledge Distillation Training Framework 
 

      Training using the KD mechanism improves the data-efficiency 

of NNs by transferring knowledge from pre-trained NN models 

[17]. In this KD training framework as shown in Figure 2, the 

teacher NN has powerful learning ability but suffers large amounts 

of parameters which requires extensive computational resources for 

training and deployment. The student NN aims to be compressed 

with high data-efficiency by using this KD framework to further 

enhance the characterization accuracy. In training, the teacher NN 

was pre-trained with experimental ultrasonic images with high 

accuracy. Then by using the KD framework, the pre-trained teacher 

model distills the learned features from ultrasonic images as 

knowledge along with ultrasonic images to train the student model. 

Therefore, the KD training framework improves the 

characterization accuracy of the student model with high data-

efficiency.  

 

Figure 2. Teacher Student Knowledge Distillation Training  

Framework 



B. Ultrasonic Microstructure Characterization Transformer 

Neural Network: UMCTNet 
 

       For the student NN, we introduce a lightweight transformer 

NN: UMCTNet, to characterize steel material microstructure using 

ultrasonic images. In our previous research, we trained the Data-

Efficient Ultrasonic Texture Recognition transformer NN: 

DEUTR transformer [19] to learn material textures using 

ultrasonic images with high accuracy and data-efficiency. In this 

study, we further improve the data-efficiency of NN with the KD 

based UMCTNet (distillation-UMCTNet). In training, each 

ultrasonic image is divided into a sequence of image patches 

which are linearly embedded into lower dimensions with principal 

features. Then these embedded features are fed as inputs to train 

transformer encoders [11] to characterize material microstructure. 

Each transformer encoder is optimized with the multi-head 

attention to parallelize the training process. This attention 

mechanism reduces the computational cost and enhances the data-

efficiency of NN. Next, the residual connection [11] and layer 

normalization [11] are applied in each transformer encoder to 

further optimize the learning performance. For performance 

comparison, we trained the UMCTNet without using the KD 

training framework and obtained 99.40% training accuracy and 

95.92% testing accuracy to characterize the Grain14, Grain24 and 

Grain50 steel blocks, and the highest image processed throughput 

of 192 images/second on testing this neural network.   

 

 
 

C. Ultrasonic Microstructure Characterization Convolutional 

Neural Network: UMCCNet 
 

       In this study, we propose a data-efficient deep convolutional 

NN: UMCCNet, as the teacher model. This UMCCNet can be fast 

trained with further improvement for material characterization 

from our previous research [19]. We use transfer learning (TL) [18] 

to pre-train the teacher NN on large datasets (ImageNet) followed 

by further training with experimental ultrasonic images. The TL 

reduces the computational cost while improving the 

characterization accuracy. The UMCCNet is optimized with the 

depthwise separable convolution architecture as the MobileNet 

[20]. The depthwise separable convolution block reduces the 

model complexity and computational cost greatly by dividing one 

full (spatial) convolution into the depthwise convolution and 

pointwise convolution [20]. And this reduces a large amount of 

multiplication operations. By training the UMCCNet, we obtained 

99.97% training accuracy and 99.39% testing accuracy to 

characterize the Grain14, Grain24 and Grain50 steel blocks, and 

the image processed throughput of 56 images/second on testing 

this neural network. 

       Table 1 below shows the results by training the student NN 

using the KD training framework: distillation-UMCTNet, to 

characterize material textures of Grain14, Grain24, and Grain50 

steel blocks. We benchmarked results based on training accuracy, 

testing accuracy and image processed throughput on testing to 

measure the data-efficiency of NNs. In Table 1, as we can see that 

the distillation-UMCTNet achieves 99.91% training accuracy and 

99.27% testing accuracy to characterize the Grain14, Grain24 and 

Grain50 steel blocks with the highest image processed throughput 

of 192 images/second on testing this NN. Therefore, the KD 

training framework enhances the characterization accuracy of the 

student NN (UMCTNet) while enabling the fast deployment of NN, 

which is almost 4 times more data-efficient than the teacher NN in 

this study.  
 
 

 
 

IV. CONCLUSION 
 

 In this study, we introduce a response-based teacher-student 
KD training framework to train NNs to characterize material 
microstructure from three different heat-treated steel blocks. 
Training using the KD mechanism improves the data-efficiency of 
NNs by transferring knowledge from pre-trained NN models. By 
using this framework, we can train and deploy data-efficient NNs 
with high accuracy for high-performance computational ultrasonic 
NDE system, specifically in the computational constraint or real-
time evaluation environment. In addition, a lightweight transformer 
NN: UMCTNet, is proposed as the student model to learn material 
textures using ultrasonic images with high accuracy.  For the 
teacher model, we trained a data-efficient deep-CNN: UMCCNet 
to distill the pre-trained knowledge into the UMCTNet with high 
accuracy. To examine the results, an ultrasonic testbed platform 
was assembled, and C-scanning was created to acquire volumetric 
ultrasonic data from steel blocks with different grain sizes to train 
NNs. By using the KD framework to train the distillation-
UMCTNet, we obtain 99.91% training accuracy and 99.27% 
testing accuracy to characterize the Grain14, Grain24 and Grain50 
steel blocks with the highest image processed throughput of 192 
images/second on testing. This distillation-UMCTNet achieves the 
same characterization accuracy as the teacher NN while is almost 4 
times more data-efficient than the teacher model in this study. 
Future work will include improving the KD training framework, 
exploring innovative NNs to enhance the characterization 
performance of the teacher and student models. 
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