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Abstract— Ultrasonic flaw detection has been extensively used for 

NDE applications because it has high inspection resolution and 

accuracy. Conventional ultrasonic flaw detection is more 

vulnerable to human errors and time-consuming as the workload 

increases. The artificial intelligence (AI), such as machine learning 

(ML) methods, automates the evaluation process and is more 

reliable and practical. However, modeling the ML algorithms, 

such as the neural networks (NN) requires substantial 

computational resources for training and significant effort in 

obtaining efficient NN architecture. In this study, we introduce a 

reinforcement learning (RL) based neural architecture search 

(NAS) framework to automatically model the optimal NN design. 

By using this framework, a NAS-based NN: Ultrasonic Flaws 

Detection NAS Neural Network: UFDNASNet, is proposed for 

flaws detection with high accuracy and data-efficiency. The 

ultrasonic datasets are processed by the NAS framework using the 

recurrent neural network (RNN) controller to search for the best 

convolutional operations. The flaw detection performance is 

analyzed and compared between the introduced UFDNASNet and 

several hand-designed deep Convolutional Neural Networks 

(deep-CNN) based on detection accuracy and inference data-

efficiency. To evaluate the performance for defects detection, the 

NNs are trained with the transfer learning (TL) using the 

USimgAIST dataset of B-scan images representing without-defect 

and with-defects cases. The B-scan images were collected by using 

the pulsed laser ultrasonic scanning system from 17 stainless steel 

specimen plates with various types of flaws and some plates 

without any damage. Our purpose is to realize an intelligent 

system to detect flaws with high accuracy for data-efficient 

ultrasonic NDE applications. 
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I. INTRODUCTION 

 
In ultrasonic nondestructive evaluation (NDE), high frequency 

acoustic waves are used for structural health monitoring (SHM) of 

materials [1]. Ultrasonic detection of flaws with high scattering 

noise from material microstructure is challenging but can be 

achieved by using advanced signal processing methods [2][3]. 

Recently, ML is emerging in various industries to improve system 

performance [4]-[7]. Among ML methods, NNs have been used in 

NDE applications, such as flaw detection, material microstructure 

characterization and massive data compression [8]-[14]. In NNs, 

the deep Convolutional Neural Networks (deep-CNN) [15] can 

learn features in images with high accuracy because of the use of 

multiple features extraction stages. However, modeling deep-

CNNs requires substantial computational resources for training and 

significant effort in obtaining efficient NN architecture. Therefore, 

in this study, we introduce a RL-based NAS framework to 

automatically model the optimal NN design. The NAS is a 

technique to automate the process to model NNs and outperforms 

classical NN architectures using conventional techniques. In 

addition, the RL is an area of ML and considers how intelligent 

agents react in an environment to maximize the cumulative reward. 

This RL-based NAS framework trains a RNN with RL to 

maximize the expected accuracy of the generated NN architectures 

on a validation set to obtain the optimal NNs [16]. By using this 

framework, a NAS-based NN: UFDNASNet, is proposed for flaws 

detection using ultrasonic images (USimgAIST dataset) [17] with 

high accuracy and data-efficiency. The flaw detection performance 

is analyzed and compared between the introduced UFDNASNet 

and several state-of-art hand-designed deep-CNNs based on 

detection accuracy and inference data-efficiency. The USimgAIST 

dataset of B-scan images representing without-defect and with-

defects cases from 17 stainless steel specimen plates with various 

types of flaws. We aim to build an intelligent NDE system to detect 

flaws with high accuracy for data-efficient ultrasonic applications. 

      In this paper, Section II presents the ultrasonic USimgAIST 

dataset for flaw detection. Section III presents the RL-based NAS 

framework and NNs to detect flaws using ultrasonic images. The 

flaw detection performance of NNs is analyzed and compared. 

Section IV concludes this paper. 

 

 

II.   ULTRASONIC USIMGAIST DATASET FOR FLAW DETECTION 

 

      The USimgAIST dataset as shown in Figure 1 includes 

approximate 7000 real B-scan images representing without-defect 

and with-defects cases [17]. The B-scan images were collected by 

using the pulsed laser ultrasonic scanning system from 17 stainless 



steel specimen plates with various types of flaws and some plates 

without any damage [18]. The specimens are stainless steel plates 

with the thickness of 3mm. Two types of flaws: drill hole defects 

with diameters φ = 1mm, 3mm, 5mm, and slit defects with lengths 

l = 3mm, 5mm, 10mm, were used in these defective specimens 

[18]. To acquire ultrasonic images, the ultrasonic NDE system 

uses a pulsed laser to scan the specimen to generate ultrasonic 

signals and a contact transducer attached to the specimen to 

capture backscattered signals for flaw detection [18]. The laser 

scan was performed in the central region of specimens with 

scanning region of 100mm-by-100mm size on both front/back 

sides of steel plates. Then we train and deploy the neural networks 

to analyze ultrasonic backscattered signals in B-scan images to 

detect flaws. Each B-scan was normalized with the image 

resolution of 224 by 224 for training NNs.  

 

 
 

 

 

 

 

 

 

 

 

 
 

Figure 1. USimgAIST B-scan Images (a) Non-defective Cases, 

(b) Defective Cases 

 
III. FLAW DETECTION USING NEURAL NETWORKS 

 
      In the following sections, we introduce using the NNs to detect 

flaws for USimgAIST B-scan images. These B-scan images are 

labeled as without-defect and with-defect cases, then used to train 

and test the NNs. The flaw detection performance is analyzed and 

compared between UFDNASNet and several hand-designed deep 

NNs based on detection accuracy and inference data-efficiency. To 

improve the training performance for flaw detection, the NNs are 

trained with the transfer learning (TL) [19] followed by further 

training with ultrasonic inspection images. The TL reduces the 

computational cost while enhancing the classification accuracy. 

The inference data-efficiency is measured as the number of B-scan 

images processed per second on testing. In addition, the NNs were 

trained with 50 epochs using 5484 B-scan images for training and 

1371 B-scan images for testing. The training was experimented on 

the Intel (R) Core (TM) i7-8750H, CPU@2.20GHz computer with 

NVIDIA GTX 1070 GPU 16GB RAM. 

 

 

A. Flaw Detection using UFDNASNet  
 

       In this study, we introduce a RL-based NAS NN: 

UFDNASNet, to detect flaws using ultrasonic images. Figure 2 

shows the architecture of the UFDNASNet. This NN consists of 

optimized combinations of normal cells and reduction cells [20] to 

extract features in ultrasonic images followed by a 2-layer fully 

connected NN to detect flaws. These cells were convolutional 

layers built using the RL-based NAS framework to optimize 

architecture configurations and represent the best combinations of 

a set of optimized convolutional operations evaluated on ImageNet 

[15]. The normal cell returns a feature map of the same dimension. 

The reduction cell returns a feature map where the width and depth 

are reduced by a factor of two. In this study, we use the same 

architecture configurations of convolutional cells as NASNet [20]. 

The advantages searching for the optimal architecture 

configurations of convolutional cells instead of the entire NN are: 1. 

it’s much faster to only search for best cell structure; 2. these 

convolutional cells generalize well to other computer vision 

problems and are scalable to build NNs with various architectures 

based on different computational demands [20].  

 

 

 

 

 

 

 

 

 
 

      
 

                  

Figure 2. UFDNASNet Architecture 
 

      In the RL-based NAS framework to train the UFDNASNet as 

shown in Figure 3, the RNN controller samples child NN with 

different architectures with probabilities p by generating the model 

descriptions of child NNs. This RNN is trained with reinforcement 

learning to maximize the expected accuracy of the generated 

architectures on a validation set. The child NN, which is the cell 

architecture predictor, is trained to obtain desired validation 

accuracy on datasets to update the controller to generate better 

convolutional cell architectures over time. This validation accuracy 

is used as the reward signal to compute the policy gradient which is 

scaled by accuracy R to update the controller. Therefore, the 

controller will give high probabilities to child NN architectures that 

receive high accuracy so that the controller learns to improve its 

search iteratively. In training, if the convergence is satisfied, which 

means that the controller finds the optimal architecture of child NN, 

this child NN is used as the convolutional cell to build the NN with 

different architectures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 3. Reinforcement Learning based Neural Architecture      

                               Search Framework 
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        In this study, the RL-based NAS framework was used to train 

the UFDNASNet to detect flaws using B-scan images and 

achieves 98.10% training accuracy, 96.79% testing accuracy and 

image processed throughput of 42 images/second to measure the 

inference data-efficiency to detect flaws.   

 
 

B. Flaw Detection using VGG19 
 

       VGG19 (VGGNet) is the hand-designed deep-CNN and 

achieves 92.5% top-5 test accuracy in the ImageNet Large Scale 

Visual Recognition Challenge (ILSVRC) 2012 dataset [15]. This 

dataset includes 14 million images belonging to1000 classes. The 

VGG19 contains 19 weight layers and applies the same 

architecture pattern of convolutional layers with 3x3 kernel and 

2x2 max pooling. In this study, we trained the VGG19 with the TL 

followed by a 2-layer fully connected NN to detect flaws using B-

scan images and obtained 96.97% training accuracy, 95.77% 

testing accuracy and image processed throughput of 9 

images/second to measure the inference data-efficiency to detect 

flaws.   

 
 

C. Flaw Detection using ResNet-50 
 

            The ResNet-50 is the state-of-art deep-CNN that is hand- 

designed and achieves 93.0% top-5 test accuracy on the ImageNet 

ILSVRC dataset [15]. The ResNet-50 was proposed in 2015 by 

researchers who introduced a new architecture called Residual 

Network at Microsoft Research [15]. ResNet-50 has 50 weight 

layers and achieves good performance while uses less computation 

resources than that of VGGNet by using residual blocks. In this 

study, we trained the ResNet-50 with the TL followed by a 2-layer 

fully connected NN to detect flaws using B-scan images and 

obtained 97.94% training accuracy, 96.16% testing accuracy and 

image processed throughput of 17 images/second to measure the 

inference data- efficiency to detect flaws.   

 

 

 

 

 

 

 

 

 
 
 

      In Table 1, by training these NNs, we obtained the average 

flaw detection accuracy of 97.67% and 96.24% for training and 

testing respectively, to detect flaws using experimental B-scan 

images. In addition, we achieve the highest image processed 

throughput of 42 images/second using the UFDNASNet to detect 

flaws. The RL-based NAS NN outperforms the other hand- 

designed deep-NNs in terms of flaw detection accuracy and 

inference data-efficiency performance in this study.  

 

 
 

IV. CONCLUSION 
 

 In this study, we introduce a reinforcement learning based 
neural architecture search framework to automatically model the 
optimal NN design. By using this framework, a NAS-based NN: 

UFDNASNet, is proposed for flaw detection with high accuracy 
and data-efficiency. The ultrasonic USimgAIST dataset of B-scan 
images represent without-defect and with-defect cases. The B-scan 
images were collected by using the pulsed laser ultrasonic scanning 
system from 17 stainless steel specimen plates with various types 
of flaws and some plates without any damage. Then the inspection 
ultrasonic images are processed by the NAS framework to train the 
recurrent neural network controller to search for the best 
convolutional operations. The flaw detection performance is 
analyzed and compared between the introduced RL-based NAS 
NN and several hand-designed deep-NNs based on detection 
accuracy and inference data-efficiency. To evaluate the 
performance for flaw detection, the NNs are trained with the 
transfer learning followed by further training with the ultrasonic 
images. The transfer learning reduces the computational cost while 
enhancing the classification accuracy. Therefore, by using these 
NNs, we obtained the average training accuracy of 97.67%, the 
average testing accuracy of 96.24%, and the highest image 
processed throughput of 42 images/second on testing with the 
UFDNASNet to detect flaws. Future work is to further enhance the 
flaws detection performance, such as applying innovative 
convolutional operations. 
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