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Abstract— Ultrasonic systems are widely used in imaging 

applications for non-destructive evaluation, quality assurance, and 

medical diagnosis. These applications require large volumes of 

data to be processed, stored, and/or transmitted in real time. It is 

essential to compress the ultrasonic RF signal without 

inadvertently degrading desirable signal features. This study 

explores the development of learning models for massive data 

compression based on wavelet packet transformation, using 

machine learning techniques. Furthermore, this study utilizes the 

fast chirplet transform algorithm to successively estimate 

broadband, narrowband, symmetric, skewed, nondispersive, or 

dispersive echoes. These parameters not only have significant 

physical interpretations for radar, sonar, seismic, and ultrasonic 

applications but also, yield a method for efficient and high-

precision data compression. Signal modeling and parameter 

estimation of the nonstationary ultrasonic echoes are critical for 

image analysis, target detection, and object recognition. The 

objective of this study is to design computationally efficient 

algorithms and the implementation of 3D ultrasonic data 

compression. 

I. INTRODUCTION 

One of the major challenges in ultrasonic imaging 

applications is the large volumes of radio frequency (RF) data. 

The RF data compression helps to rapidly transmit the 

information to remote locations for archiving and further 

analysis. Raw RF signal preserves the important information 

within the signal [1] with direct and precise interpretation for 

applications such as medical diagnosis. In ultrasonic non-

destructive evaluation applications, the backscattered RF signal 

possesses information about the geometric shape, size, and 

orientation of the scatterers within the propagation path [2, 3].  

Finer details within the ultrasonic signal are extremely critical 

for tissue characterization, detection, and estimation of defects 

within materials. Therefore, compressed ultrasonic RF signal 

has to be strictly recoverable with very high signal accuracy. It 

is a common practice to oversample the signals for high-

definition data to detect small and transient features within the 

signal. This helps to obtain a high time resolution so that the 

arrival time and the amplitude of the echoes can be precisely 

detected. However, this oversampling produces a large amount 

of data with redundant information, which needs to be 

eliminated during the compression. 

In this paper, we introduce a chirplet signal decomposition 

(CSD) algorithm to represent chirp-type signals in terms of 

Gaussian chirplets, which are sparse and energy-preserving. The 

chirp signal is often encountered in ultrasound, sonar, radar, 

EEG, seismic signals, and speech [4]–[16]. The chirp signal 

parameters represent valuable information pertaining to the 

shape, size, and orientation of the reflectors in ultrasonic 

nondestructive evaluation, the location and velocity of the 

moving targets in radar-target detection, or the propagation path 

in seismic signal analysis. The decomposition allows a complex 

signal to be represented by a limited number of chirp 

components. Furthermore, due to the energy preservation 

property, a high-resolution TF representation is achieved by 

decomposing the signal into a limited number of chirp functions 

with known TF distributions [17]–[19]. Additionally, the 

nonstationary behavior of the signal can be described by the 

chirplet echoes. Based on the chirplet transform (CT) of the 

signal, the CSD method uses a successive parameter estimation 

algorithm to identify the location and duration of the most 

dominant chirp component in the TF domain and estimates the 

parameters of this dominant chirp component. 

This paper also analyzes wavelet packet transform (WPT) 

[20,21] based on ultrasonic RF signal compression using sub-

band elimination with maintaining a high compression ratio and 

high signal reconstruction quality. Carefully designed multistage 

sub-band decomposition structure along with the most suitable 

wavelet kernel helps to efficiently compress different kinds of 

signals based on the frequency localization. In this study, the 

compression performance of both the broadband and 

narrowband echoes are analyzed for multiple wavelet kernels. 

Volumetric information demands three-dimensional (3D) 

scanning and subsequently significant RF signal data collection. 

Thus, the compression of volumetric RF data becomes an 

essential part of the data analysis and diagnostic process. In this 

study, the compression is performed on a 3D block of data 

through successive 1D compression in each of the three 

directions (x, y and z). In particular, we analyze how the peak 

signal-to-noise ratio (PSNR) varies depending on the 

compression ratio (CR) and the correlation properties among 3D 

ultrasonic experimental measurements. 

Furthermore, in this study, a wavelet packet transformation 

convolutional autoencoder (WPTCAE) is designed to improve 

the quality of ultrasonic signal compression. The autoencoder 

(AE) is an unsupervised learning model that can be used for 

signal compression, dimension reduction, feature extraction, and 

denoising [22]-[24]. The convolutional AE (CAE) comprises 



 

convolution layers, which can achieve better performance with 

fewer trainable weights, especially when high-resolution images 

are processed [25]. This approach offers a considerable 

performance enhancement compared with WPT-based signal 

compression. 

Section II describes ultrasonic signal modeling for signal 

analysis, noise reduction, and data compression. Section III 

explains the WPT compression. Section IV details the design of 

WPTCAE compression models. 

II. ECHO MODEL AND DATA COMPRESSION 

In most detection applications, a single echo can be 

modeled as a chirplet [26], [27] as follows: 
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denotes the parameter vector. The term τ is the time-of-arrival, 

fc is the center frequency, β is the amplitude, α2 is the chirp rate, 

ϕ is the phase, and α1 is the bandwidth factor of the echo. The 

chirplet transform of the echo is defined [26], [28] as follows: 
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denotes the parameter vector of the chirplet used for 

transformation, and the normalization factor. The parameter can 

be successively estimated [29] as shown in the following: 
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The objective of the chirplet transform algorithm is to 

decompose the signal, into a linear expansion of chirplets and 

efficiently estimate the parameter vectors which define these 

chirplets (this is also known as adaptive chirplet transform ACT 

[30]) 
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The parameter vector can be estimated based on the 

chirplet transform of the signal. The time-of-arrival, center 

frequency, and amplitude of the dominant echo can be 

estimated by localizing the dominant echo in a time-frequency 

representation of the signal (i.e., chirplet transform), and then 

the remaining parameters can be successively estimated [27]. In 

an iterative manner, the residual signal is obtained by 

subtracting the estimated single dominant echo from the signal. 

The decomposition process is repeated until the energy of the 

residual signal reaches below a predefined reconstruction 

condition. The TF representation used for decomposition is 

computationally heavy due to the chirplet transform. In each 

iteration stage, the entire chirplet transform matrix is generated 

for the echo isolation process, which hinders the algorithm from 

real-time signal processing applications. This issue can be 

resolved by utilizing a fast implementation scheme of the 

algorithm [5], in which, instead of two-dimensional transform, 

a one-dimensional transform is used to iteratively estimate the 

time-of-arrival, center frequency, and amplitude of the 

dominant echo. Fig. 1 shows the flowchart of this fast chirplet 

transform (FCT) algorithm.  
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Fig. 1.  Flowchart of the FCT algorithm [5] 

 

A. Chirplet Decomposition of Experimental Data 

 

The performance of the CSD algorithm is evaluated using 

both experimental data and simulation signals consisting of 

many interfering echoes. Fig. 2 shows the acquired signal 

testing of a steel block for flaw detection using a 5 MHz 

broadband transducer. The measured signal has poor SNR, and 

the flaw echo (marked target) is masked by the microstructure 

scattering and noise. The comparison between the measured 

signal and the reconstructed signal is shown in Fig. 2. This 

figure clearly demonstrates that the chirplet signal 

decomposition has been successful in estimating echoes while 

filtering out the noise. Moreover, the CSD algorithm is applied 

to a bat chirp signal emitted by the large brown bat [31], (see 

Fig. 3), which is digitized within a 2.2 ms duration with a 7 μs 

sampling period. It can be seen that from Fig. 3 the bat signal is 

a complex chirp with poor SNR and contains heavily 

overlapping, chirp components not only in the time domain but 

also in the frequency domain. Fig. 3(c) and 3(d) show the 

reconstructed signal and its CT using 15 individual chirplet 

echoes. 

 

    
Fig. 2.  Measured ultrasonic backscattered signal superimposed with a 
reconstructed signal [4] 

 

 
Fig. 3.  (a) Experimental bat chirp signals. (b) CT of bat chirp signal in (a). (c) 

Reconstructed bat chirp signal. (d) CT of the reconstructed signal in (c).  
 

 
B. CSD of Simulated Data with Poor SNR  

 

The CSD-based successive parameter estimation can recover 

the exact value of the parameters of a noise-free Gaussian chirp 

echo, without requiring any initial guess for the parameters. 

Furthermore, the parameter estimation of a noise corrupted 

echo can be performed with high accuracy. To evaluate the 

performance of estimation, a Monte-Carlo simulation is 

performed to observe the means and variances of the estimated 

parameters of a single noisy echo. The chirp echo is simulated 

according to (1) with the parameter vector listed in the first row 

of Table 1. The noise level is adjusted to simulate echoes with 

SNR levels of 20, 15, 10, 5, and 2.5 dB. For each SNR level, 

the parameter estimation is performed 250 times on the 

simulated chirp echo with different realizations of noise. The 

average value and the variance of parameter estimators are 

listed in Table 1 along with the analytically computed CRLBs 

(Cramer Rao Lower Bounds) [26]. 

 

C. CSD Impact on Data Compression  

 

Ultrasonic CSD modeling and echo estimation are powerful 

methods for both noise suppression (improving the SNR by an 

average of 40 dB) and data compression.  In practice, a signal 

may contain several diagnostic echoes (for example, 20 echoes) 

while the captured signal may be represented by several 

thousand samples (e.g., 5000 acquired samples).  Considering 

each echo contains 6 parameters: time-of-arrival, center 



 

frequency, echo amplitude, chirp rate, phase, and bandwidth 

factor.  Assuming each echo parameter and each data sample 

are represented by the same number of bits, the CSD 

representation of captured signal not only improves the SNR 

but also compresses the signal by 97%.   

 

TABLE I. COMPARISON OF THE CRLBS WITH THE VARIANCES OF 

ESTIMATORS FOR DIFFERENT SNR 
 

 

III. MULTILEVEL WPT-BASED COMPRESSION 

For ultrasonic applications, a large portion of the signal 

energy is localized in the low-frequency region [32]. 

Consequently, the sub-bands with very low energy can be 

eliminated [33]. Multilevel WPT performs sub-band 

decomposition using lowpass and high pass filters [34]. The 

number of decomposition levels strictly depends on the nature 

of the signal, which governs the distribution of energy across the 

frequency bands. The objective is to determine the most suitable 

wavelet kernel for a given signal in terms of maximum energy 

compaction within a sub-band. This depends on the extent of 

similarity of the wavelet kernels with the ultrasonic RF signals. 

The different families of wavelets examined in this study are 

Daubechies (D4, D6, D8, and D10), Symlet (5,6,7, and 8); 

Coiflet (2,3,4, and 5), and Haar. Daubechies-10, Symlet-6/8, and 

Coiflet-5 consistently performed better than the other kernels 

within their family. 

Fig. 4 demonstrates the efficiency of wavelet packet 

decomposition of an ultrasonic A-scan with 2048 samples 

consisting of many reflected and interfering echoes. This figure 

indicates that the relevant information within the signal is 

localized in the low-frequency sub-bands. Furthermore, {H, LH, 

and LLHL} sub-bands which constitute 79% of the signal 

samples have almost zero energy and can be discarded, 

indicating 79% compression.   

A. Ultrasonic Data Acquisition and 3D Data Compression 

 

Industrial NDE and medical imaging applications require 

volumetric data processing. This information is collected by the 

process of 3D scanning and massive RF signal data acquisition, 

which needs to be carefully compressed. In volumetric 

ultrasonic data compression, data sets (slices) are organized into 

a 3D block (128*128*2048 samples) as shown in Fig. 5 and 

subsequently, this block of data is compressed to remove the 

inter-slice data redundancy in x, y, and z directions as shown in 

Fig 5b. 

               

 

 
Fig. 4.  Ultrasonic A-scan with 2048 samples consisting of many reflected and 

interfering echoes and the decomposed sub-bands 

 

 

                                               (a)                                   (b) 
Fig. 5.  Data sets (slices) are organized into a 3D block; (a) 3D ultrasonic data 

block, (b) 3D compressed data block 

 

Fig. 6a shows the block diagram of the ultrasonic scanning and 

testing setup. In this study, a 5 MHz, 0.375-inch diameter 

ultrasonic broadband transducer (A3062) along with a 

pulser/receiver model 5052 PR is used to acquire a 3D block of 

data from a steel block specimen with microstructural defects. 

A 2 x 2 inch surface of the steel block specimen is used to 

generate this experimental data, which consists of a volumetric 

image of 128×128×2048 samples (33 MB when each sample is 

represented using 1 byte). The acquired volumetric data 

consists of interfering echoes [35] which represent the 

microstructural scattering of materials. 

 

Measurement points are very close to each other (0.44 mm) 

to ensure no information is missed out within the specimen 

under test. Since the neighboring measurement points will have 

plenty of similarities, this can be utilized for better compression 

of the data. In this study, the original 3D block of data as shown 

in Fig. 5a is compressed using successive 1D compressions in 

the x, y, and z directions [34].  



 

 
Fig. 6.  Ultrasonic volumetric scanning setup; (a) Block diagram of an 

ultrasound scanning system, (b) Scanning pattern of the transducer 
 

In order to accomplish maximum compression in the x-

direction, a 4-level wavelet packet decomposition [36], [37] 

structure as shown in Fig. 7 is designed to isolate the high 

energy frequency sub-bands. Since the 3D compression ratio is 

not heavily influenced by the compression in y and z directions, 

a simple Haar wavelet is used for decomposition in y and z 

directions. Our experimentations indicate 80% compression in 

x-direction. An additional 75% compression is achieved in the 

y-direction and a further 75% compression in the z-direction. 

As a result, the overall 3D compression becomes 98.7% [34]. 

This indicates that only 1.3% of the total 3D volumetric data 

needs to be retained and transferred to remote locations, from 

which the whole 3D block of data can be reconstructed back 

with a very high degree of similarity. Ultrasonic 3D RF data 

compression algorithms are analyzed based on the degree of 

compression of RF data as a function of data integrity. Fig. 8 

shows the original and reconstructed A-scans for 80%, 95%, 

and 98.7% compression respectively, wherein, for 80% 

compression, the reconstruction quality is extremely high, and 

for 95% and 98.7%, the reconstructed signal follows the 

original signal with only minor variations, indicating the 

efficiency of the compression without losing the relevant 

information. 
 

 
 

Fig. 7.  Wavelet packet decomposition in the x-direction (since only LLL and 

LLHH are retained, the filters in the dashed line are not required in the 

implementation) 

IV. WPT CONVOLUTIONAL AUTO ENCODER (WPTCAE) 

Even though WPT compression provides a very high level 

of compression, the efficiency of compression highly depends 

on the similarity of the wavelet kernel used and the application 

signal. To further enhance the compression performance for a 

broad range of applications, a WPTCAE compression system is 

proposed which uses training models to choose the most 

optimal wavelet kernel and the decomposition tree structure. 

Fig. 9 illustrates the design flow of the WPTCAE compression 

system [38].  From the acquired ultrasonic data (Fig. 9A), a few 

random samples are chosen to find an optimal WPT 

compression and reconstruction tree structure for a given 

ultrasonic dataset (Fig 9B). By using the initial coefficients 

from the above step, the WPT encoder and decoder are trained  

 

 
 

Fig. 8.  WPT Performance for 3D RF Ultrasonic Data Compression; (a) 

Original & Reconstructed A-scan for 80% compression, (b) Original & 
Reconstructed A-scan for 95% compression, (c) Original & Reconstructed A-

scan for 98.7% compression 

 



 

using the backpropagation algorithm (Fig. 9C). This trained 

WPTCAE model is used for efficient data compression and 

reconstruction (Fig. 9D). In this study, the WPTCAE 

compression model is benchmarked by using two types of 

ultrasonic image datasets: (i) Ultrasonic NDT data [39], and (ii) 

Open Access Series of Breast Ultrasonic Data (OASBUD) [40].  

 

Fig. 10 shows the plot and the power spectral density (PSD) 

of a randomly selected ultrasonic A-Scan from the NDT dataset, 

with 2048 data points. The measured A-Scan, which represents 

the microstructure (grains) scattering within the steel block 

[41], [42], consists of multiple interfering echoes with random 

amplitudes and arrival times.  

 

Fig. 11 shows a randomly selected A-Scan and its PSD from 

the OASBUD dataset, which represents ultrasonic 

backscattered echoes from breast lesions of patients [40], 

acquired with a sampling frequency of 40-MHz.  

 

 

 
Fig. 9. Design flow of WPT optimized by a CAE for ultrasonic data 
compression. (A) Ultrasonic data acquisition. (B) WPT compression 

optimization. (C) WPTCAE model. (D) WPTCAE compression and 
reconstruction. 

 

 
 
Fig. 10.  Ultrasonic NDT backscattered A-scan from a steel block and the PSD. 

The dataset is acquired using an immersive ultrasonic transducer centered at 5 
MHz with a sampling frequency of 100 MHz. 

 

 

 
Fig. 11. Ultrasonic medical backscattered A-scan and the PSD. The dataset is 
acquired using an ultrasonic linear array transducer centered at 5 MHz with a 

sampling frequency of 40 MHz. 

 

A. Training Data Compression Models using Ultrasonic 

Experimental Data 

 

This study proposes unsupervised learning models for the 

following data compression algorithms: AE, CAE, WPTCAE, 

and a WPTCAE/AE hybrid model [38]. For improved 

compression accuracy, a hybrid model referred to as 

WPTCAE/AE is also designed that combines the AE and 

WPTCAE models. The AE model, after learning a linear 

transformation, projects the data onto another space (i.e., 

bottleneck) with fewer dimensions. This is equivalent to a 

principal component analysis (PCA) model. Training an AE 

model for compression minimizes the mean square error 

between the input and the output using the backpropagation 

algorithm [43]. 

The CAE model (shown in Fig. 12) generally includes one or 

more convolution layers before the AE encoder, (where the 

signal is downsampled by 2) and after the AE decoder (where 

the signal is upsampled by 2). 

 



 

 
Fig. 12.  General block diagram of the CAE 

 

In this study, a Python script is developed [38] to iterate 

through 106 discrete wavelet filters available in PyWavelets 

library [44], to find the optimal kernel for the ultrasonic 

datasets. This algorithm is applied to both ultrasonic NDT [39] 

and OASBUD datasets [40]. Fig. 13 shows the decomposition 

and reconstruction filter kernels of “coif17” from the Coiflet 

wavelet family (optimal for NDT) and “db36” from the 

Daubechies wavelet family (optimal for OASBUD). Fig. 14 and 

Fig. 15 illustrate the trained encoder and decoder for the 

ultrasonic NDT dataset and OASBUD dataset respectively [38]. 

To minimize the amount of lost information during the WPT 

compression, a WPTCAE/AE hybrid model is proposed, 

wherein the same input is applied to both WPTCAE and CE 

models, and the sum of the predictions from both is used as the 

output. This helps to further improve the reconstruction quality.  

 

B. Compression Results and Performance Analysis of WPT, 

WPTCAE, and WPTCAE/AE 

 

For the compression performance analysis, the input data, 

compressed data, reconstructed data, and model weights are 

considered to be 32-bit floating-point numbers. The search for 

the optimal data compression models is achieved through 150 

epochs of training [38]. Fig. 16 shows the time-domain 

comparison of randomly selected A-Scans and B-scans from the 

ultrasonic NDT and OASBUD datasets and their 

reconstructions. Compared with the conventional WPT 

algorithm, the WPTCAE compression model displays 

exceptional compression accuracy and reconstructed signal 

accuracy, along with SNR improvement for both of the datasets. 

Another important characteristic of compression algorithms 

is the data bit precision. The ultrasonic NDT and OASBUD 32-

bit floating-point datasets are scaled and quantized into 8-bit 

precision numbers. The sub-bands of the compressed output are 

quantized into 8 bits or fewer in order to increase the 

compression ratio. Fig. 17 indicates that the quantization helps 

to increase the compression ratio substantially, while the 

reduction in compression accuracy is insignificant. 

 

 
Fig. 13. WPT filter decomposition and reconstruction analysis and synthesis 

filter kernels. (a) “coif17” from the Coiflet wavelet family. (b) “db36” from the 

Daubechies wavelet family. 
 

 

 
Fig. 14. Trained encoder (a) and decoder (b) for the ultrasonic NDT dataset. 

 

V. CONCLUSION 

The WPTCAE data compression algorithm, the unsupervised 

learning data compression methods such as AE, and chirplet 

modeling of ultrasonic signals for high-fidelity data analysis 

and compression are applied to ultrasonic RF datasets acquired 

in NDT and medical imaging applications. A successive 

parameter estimation algorithm based on CT, and an automatic 

echo windowing method have been developed to estimate the 

time of arrival, the center frequency, the phase, the bandwidth, 

the chirp rate, and the amplitude of chirp echoes. Monte-Carlo 

simulation results demonstrate that the successive parameter 

estimation is unbiased and exhibit minimum variance, i.e., the  

 



 

 
Fig. 15.  Trained encoder (a) and decoder (b) for the ultrasonic  

OASBUD dataset. 

 

 
 

Fig. 16. Comparison of the original A-scans and the reconstructed signals using 

the WPT, WPTCAE, and WPTCAE/AE compression models; (a) NDT dataset. 
(b) OASBUD dataset. 

 

 

  
 
Fig. 17. Comparison between the original A-scans and the reconstructed signals 

of the WPTCAE compression models when quantization is introduced into the 

algorithm; (a) NDT dataset, with the sub-bands quantized into 5, 4, 6, and 7 
bits, (b) OASBUD dataset, with sub-bands quantized into 4, 4, 7, 4, 4, and 7 

bits. 

 
 

variances in the parameter estimators attain the CRLB. The 

experimental results for WPT compression methods clearly 

show that the WPTCAE data compression model provides 

improved compression ratios while maintaining high signal 

fidelity with a compression accuracy of 98% by using only 6% 

of the original data. Furthermore, by using unsupervised 

learning for high compression performance, an average 

compression ratio of 95.75% is achieved. This study also 

demonstrates that 33 MB of experimental ultrasonic 3D data 

can be compressed into 0.42 MB, providing a very high level of 

compression, almost close to 99%. 
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