
Image Processing for Detecting Botnet Attacks: A 
Novel Approach for Flexibility and Scalability  

Aurélien Agniel, David Arnold, and Jafar Saniie  

Embedded Computing and Signal Processing (ECAP) Research Laboratory (http://ecasp.ece.iit.edu/) 
Department of Electrical and Computer Engineering 
Illinois Institute of Technology, Chicago IL, U.S.A. 

 
 

Abstract- Continued adoption of the Internet of Things (IoT) 
redefines the paradigm of network architectures. Historically, 
network architectures relied on centralized resources and data 
centers. The introduction of the IoT challenges this notion by 
placing computing resources and observation at the edge of the 
network. As a result, decentralized approaches for information 
processing and gathering can be adopted and explored. 
However, this shift greatly expands the network footprint and 
shifts traffic away from the center of the network, where 
observation and cybersecurity monitoring tools are frequently 
located. Further, IoT devices are often computationally 
constrained, limiting their readiness to deal with cyber-threats. 
These security vulnerabilities make the IoT an easy target for 
hacking groups and lead to the proliferation of zombie networks 
of compromised devices. Frequently, zombie networks, 
otherwise known as botnets, are coordinated to attack targets 
and overload network resources through a Distributed Denial of 
Service (DDoS) attack. In order to crack down on these botnets, 
it is essential to develop new methods for quickly and efficiently 
detecting botnet activity. This study proposes a novel botnet 
detection technique that first pre-processes network data 
through computer vision and image processing. The processed 
dataset is then sent to a neural network for final classification. 
Two neural networks will be explored, a sequential model and 
an auto-encoder model. The application of image processing has 
two advantages over current methods. First, the image 
processing is simple enough to be completed at the edge of the 
network by the IoT devices. Second, preprocessing the data 
allows us to use a shallower network, decreasing detection time 
further. We will utilize the N-BaIoT dataset and compare our 
findings to their results.  
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I. INTRODUCTION 

The number of Internet of Things (IoT) devices will 
continue to grow worldwide in the coming years. This growth 
in connected devices will result in an increase in attack 
surfaces, and more importantly a rise in the number of 

existing botnets. IoT devices range from sensors to cameras, 
leading to a diverse range of computational resources and 
embedded designs. Further, they are often not powerful 
enough to host commonplace malware detection toolkits. 
When compromised, attackers can use these IoT devices as 
launching and entry points into larger corporate or personal 
networks. Additionally, they can be reorganized into botnets 
to launch Distributed Denial of Service (DDoS) attacks on 
public and private networks [1-3]. For example, the Mirai 
botnet successfully infected 2.5 million devices within the 
last quarter of 2016 and further used them to launch targeted 
DDoS attacks [4]. In addition to DDoS, compromised 
medical or safety devices can be used to critically injure the 
user, such as using a pacemaker to deliver a deadly jolt of 
electricity to the patient. These threats require a shift in 
defense and protection methods as IoT devices are often more 
exposed compared to other resources [5, 6]. Real-time 
detection of attacks is needed to disconnect and secure 
infected devices before they can spread the botnet or cause 
lasting damage to the network.  

Detection of botnets, such as the Mirai, Hajime, Reaper, 
and Gafgyt botnets, can be accomplished by using Artificial 
Intelligence to classify network traffic datasets. For example, 
the popular N-BaIoT dataset was analyzed using an auto-
encoder to detect when a botnet attack was occurring [1]. As 
an alternative, we propose the introduction of a computer 
vision pre-processing phase prior to using AI tools. Currently, 
the use of computer vision in cybersecurity is used to detect 
hidden malware using binary visualization and can also be 
used to identify phishing websites [7, 8]. For instance, the 
graphical representation using a binary visualization 
technique can highlight clusters of information differentiating 
benign files and hidden malware. This was used to achieve 
99% accuracy for detecting malware in PDFs [7].  Extending 
these ideas, we will convert the network traffic into an image, 
process the image, and then feed it into our AI tools. This 
procedure can be seen in Figure 1. Existing solutions need to 

Fig. 1. Proposed botnet attack detection procedure. Network traffic is converted into an image and pre-processed using computer vision. Then it is fed 
into the desired neural network for predicting whether a botnet attack is occurring.   



be trained for each IoT device and need to be trained 
again when new botnets are discovered. Our solution is 
advantageous as it produces a shallower network and is 
transferrable between IoT devices. This grants our model 
greater flexibility. Further, since the image creation is 
completed at O(1) and the image processing techniques allow 
us to use shallower networks, we can run our models at the 
edge of the network on embedded devices such as the Jetson 
Nano. This affords our model scalability when compared to 
a centralized server structure. As explained above, the profile 
of IoTs and their uses are numerous. The same sensor will not 
act in the same way when placed in a home or in a company. 
This is a “predictability issue”.  The main purpose of this 
paper is to propose a novel detection method which does not 
suffer from those issues and that aims to be at least as accurate 
as the existing ones. We will see that using image processing 
for botnet detection translates a traffic flow monitoring 
problem into a pattern recognition issue. 

The transformation of the data flow and extracted 
features into an image allow us to use down sampling filters. 
We can compress an image without both losing its main 
characteristics and flooding the network. This can be crucial 
in bandwidth limited networks. Moreover, to handle multiple 
IoTs in the same subnet, we can install decision nodes, each 
containing a trained neural network model per IoT devices or 
IoT groups. Such a decision node can be seen in Figure 2. 
This node will act as a kill switch and disconnect the device 
from the network if it considers it compromised. Indeed, a 
typical router would not be able alone to both handle that 
many devices as well as run the neural network checks for 
each communication. In that case the image compression 
becomes interesting as it can be dynamically changed 
according to the context of the traffic flow.  

Fig. 2. Scalability: Image processing decentralized from the decision node 
 
The traffic packets would depart from the IoT device and 

arrive to the router. We extract the features and transform 
those into an image. We check the load of the network. If the 
network is overloaded, we wait for more packets to populate 
our image. The neural network in our case asks for a fixed 
image input, we thus dynamically implement the 
compression of our image according to the traffic load. We 
then compress the image which still contains the overall 
context of the communication. We then send that image 
through the network to the decision node. The node will 
receive the image, run the neural network and decides 

whether to disconnect the IoT device from the network or not. 
This model can be adapted to the needs of most networks and 
be dynamically changed which makes it very flexible. 
Moreover, because or neural network are shallower, we need 
less space to store them. Because we do not have access to 
the neural network deployed in the N-BaIoT research paper it 
is difficult to qualitatively compare our detection time. We 
will reimplement the architecture used and compare it to the 
one we coded in python. 

Through the remainder of this paper, we will provide an 
overview of the auto-encoder solution proposed by the N-
BaIoT research in Section II. We will then present our image 
processing and computer vision methodology that will serve 
as the basis for our pre-processing in Section III. Finally, we 
will examine the impact of the pre-processing by using two 
different Artificial Intelligence approaches in Section IV, first 
a sequential neural network followed by the auto-encoder 
model.  

II. RELATED WORK 

For our purposes, we will be using the N-BaIoT dataset. 
This dataset focuses on the attack-phase of the botnet and is 
meant to test security tools that serve as a last-line of defense 
against attacks. The dataset collected data for nine IoT 
devices and was stored as .pcap files. There are 115 
independent features present for each data point. Artificial 
Intelligence and Machine Learning are common approaches 
for tackling this dataset [9-12].  

Existing solutions have presented an auto-encoder 
architecture for detecting botnet attacks using the dataset. 
Auto-encoders are designed using two sequential neural 
networks, the encoder network and decoder network, along 
with a bottleneck to link the two networks. An example auto-
encoder architecture is shown in Figure 3. During operation, 
the model learns the features of benign traffic and will 
attempt to reconstruct it based on the input data. If it fails to 
reconstruct the traffic, it is identified as malicious. While the 
existing research indicates that it produces a low False 
Negative Rate (FNR) and a high True Positive Rate (TPR) 
when compared to other Artificial Intelligence (AI) models, 
the models cannot be applied across multiple devices. 
Additionally, the size of the model is fairly large, with over 
40,000 trainable parameters.  

III. IMAGE PROCESSING METHODOLOGY 

Our overall methodology involves 6 keys steps, 
including 1) data collection, 2) feature extraction, 3) image 
creation and processing, 4) compression, 5) training, and 6) 
real-time traffic monitoring. In order for our pre-processing 
to occur, we must first convert the traffic information into 
image form. Through our methodology, each image is 
composed of a height that represents each packet we are  
 



 
 

Fig. 3.  Classic Auto-Encoder Architecture 

 
examining and a width that represents the features of each 
packet. For our application, we decided to use a height of 16 
packets and took a subsample of the N-BaIoT dataset. The 
subsample was composed of 23 features and was padded up 
to 24. Figure 4 provides the feature indexes that were selected 
for our application. The features then needed to be grouped 
into three and converted into their pixel format.  

 
L = [0, 1, 2, 15, 16, 17, 30, 31, 32, 33, 34, 35, 36, 86, 

85, 84, 83, 80, 81, 82, 65, 66, 67]  
 

Fig. 4. Extraction vector L.  

 
After collecting sufficient data for the desired time 

frame, we then convert the features into their pixels. The idea 
is to group data three by three to create each colored pixel. 
Since we selected 23 features from the overall 115, we still 
need to pad an additional value to reach a number divisible 
by 3. This will create three channels, each representing an 
RGB channel. Additionally, we normalize each channel 
according to Equation 1. In this case, x is the feature from the 
database, contrast is the contrast of the pixel, and A is a 
constant set to either 255 or 1. The result of the normalization 
ranges from [0:A]. An example of this process can be seen in 
Figure 5, comparing benign traffic and malicious traffic from 
a Mirai botnet attack.  

Fig. 5. Image representation of a benign file from the N-BaIoT dataset (a) 
and a malicious attack from the Mirai botnet (b)  
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After converting the data into an image, we then apply a 

down sampling filter to better highlight different clusters of 
colorized filters. For our purposes, we explored four filters 
and examined which led to the best results. The first was the 
Lanczos filter, which is also known as a sharpening filter. 
When applied to the image, we increase the differences and 
jumps between clusters of images. For this case, it means hat 
we will not lose much packet context when we reduce the 
image’s size. However, the resulting data is no longer 
normalized. Next, the Bilinear and Bicubic filters smooth the 
image when down sampling and add pixels by averaging the 
values of the surrounding pixels. The Bilinear filter is faster, 
but the Bicubic filer provides better tonal variations. Finally, 
the Nearest Neighbor algorithm is commonly used in media, 
such as pixel art and keeps hard edges, but is less precise and 
produces jagged effects. An example application of the 
Bicubic filter can be seen in Figure 6.  

Fig. 6.  Image generation sample. The up-sampling method is bicubic, the 
height of the image 16. The image generated on the left is issued from the 
1.benign.csv file, on the right 1.mirai.scan.csv 

IV. ARTIFICIAL INTELLIGENCE MODELS 

To examine the effectiveness of our pre-processing 
technique, we developed two Artificial Intelligence models. 
The first was a sequential neural network while the second 
was a shallow auto-encoder model. Our neural network 
model was composed of a single fully connected layer that 
applied the sigmoid activation function. A visual 
representation is presented in Figure 7.  

Fig. 7. One-layer sequential model 

 
The auto-encoder was created using an encoder with 3 

layers, an input layer, 16 2D Convolutional Layers with a 
(2,2) kernel and a Max Pooling 2D layer with a (2,2) kernel. 
The decoder for our auto-encoder had 16 Convolutional 2D 
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Transpose layers with a (3,3) kernel and 3 Convolutional 2D 
layers using a (2,2) kernel. This resulted having around 2,500 
parameters compared to the N-BaIoT dataset that included 
40,000 parameters. However, this does not mean the auto-
encoder we created is faster. We will see this is because 2D 
Convolution layers are extremely slower than Dense Layers.  

 

V. RESULTS AND ANALYSIS 

A. Sequential Neural Network  
We use fully connected layers for this sequential model, 

therefor we have an input per pixel per color channel.  For a 
colored image of (16x8) we thus have 384 weights since we 
have 3 color channels: Red, Green, Blue. Those inputs are all 
connected to a single output between 0 and 1 since we use a 
sigmoid activation function. It is the most simplistic 
architecture system we can create. This architecture uses the 
same Dense layers used in the N-BaIoT research paper, 
however we have approximatively 100 times les parameters 
in our network. Thus, we can consider this architecture to 
perform much faster.  

When applying our shallow neural network, we first 
begin by training the dataset on the smart doorbell. The 
training dataset is composed of both the benign and Mirai 
attack sub databases. The concatenated data is shuffled and 
then split according to 80% training and 20% testing data. 
For our results, we consider both the TPR and TNR. The TPR 
represents the probability that an attack will be predicted as 
an attack, while the TNR represents when a benign datapoint 
is predicted as a benign datapoint. After training the model 
and applying it to the testing sample, we achieved a TPR and 
TNR of 99.99%.  

After our success with detecting attacks within the Mirai 
botnet data, we then examined whether the trained model can 
be transferred to Gafgyt botnet attacks. For this dataset we 
introduce the TPRFlex and TNRFlex values, with TPRFlex 
representing the True Positive Rate when applying the model 
to the Gafgyt dataset and the TNRFlex representing the True 
Negative Rate when applying the model to the Gafgyt 
dataset. Further, we expand the testing dataset to include all 
nine IoT devices that were found within the dataset. As a 
result, our TPRFlex and TNRFlex values reflect the 
flexibility of the model when applied to new botnets and 
devices. Overall, we end up with TPRFlex of 99.4% and 
TNRFlex of 98.96%. When we examine only the benign 
data, we notice that the security camera benign data is 
consistently detected as malicious. This is presented in 
Figure 8. Additionally, when examining the malicious data, 
we note that the model also has difficulty detecting the 
Gafgyt scans compared to other attempts at attacking the 
network. This is presented in Figure 9.  

 

 
Fig. 8. Class prediction results on the benign data. A benign data is flagged 
as 0 and a malicious one as 1.   

 

 
Fig. 9. Class prediction results on the Gafgyt data. A benign data is flagged 
as 0 and a malicious one as 1.   
 

In addition to providing flexibility across botnets, we can 
also increase the flexibility of the model when applied across 
IoT devices. By increasing the height of our image and the 
compression of each filter, we can achieve a high TPR value. 
To test this, we trained our model using the Mirai botnet and 
benign data as before, but this time we adjust the height and 
compression. Also, we will only apply our trained model on 
the IoT Baby Monitor (4th device) and the IoT Security 
Camera (9th device). Our results are presented in Table I. We 
achieve the best TPR values when using a compression of 
6.25 and height of 128.  

TABLE I 
TPR AND TNR FOR DIFFERENT HEIGHT AND COMPRESSION 

 Baby Monitor Security Camera 

Height = 32 
Compress = 50 

TNR = 99.96% 
TPR = 98.08% 

TNR = 100% 
TPR = 97.69%  

Height = 32 
Compress = 25 

TNR = 100% 
TPR = 97.70% 

TNR = 100% 
TPR = 97.51% 

Height = 64 
Compress = 12.5 

TNR = 100% 
TPR = 98.29%  

TNR = 100% 
TPR = 98.32% 

Height = 128  
Compress = 6.25 

TNR = 98.75% 
TPR = 99.73% 

TNR = 100% 
TPR = 98.38% 

 

B. Auto-Encoder 
Next, we examined our auto-encoder model using 

different down sampling filter. We considered the same 
training and testing methodology as was completed with the 
sequential neural network. Namely, we concatenated the 
benign and Mirai attack sub databases, shuffled them and 
split them 80% training and 20% testing. Further, we 
examined our Lanczos, Bicubic, Bilinear, and Nearest 
Neighbor filters prior to providing the dataset to the auto-
encoder.  Again, we examine the (TPR and TNR. Based on 
our results, the Bicubic filter performed the best with a TPR 



of 98.98% and a TNR of 99.98%. The full results for all filters 
can be found in Table II.  

 

TABLE II 
TPR AND TNR FOR DIFFERENT DOWNSAMPLING METHODS 

 Lanczos Bicubic Nearest Bilinear 

TPR (%)  98.81  98.98  99.40  98.97  

TNR (%)  99.96  99.98  78.78  99.98  

  
Overall, this architecture performs as quickly as the 

architecture we implemented from the N-BaIoT research 
paper despite having much less parameters. This is because 
we are using 2D convolutional layer instead of Dense. 
Because we wanted to try and create colored images, we 
could not use the latter. In the future we could try generating 
larger black and white images. This would enable us to use 
those Dense layers and possibly speed up the run time. 

VIII. CONCLUSION AND FUTURE WORK    

Through this project, we examined the potential 
application of image processing as a pre-processing stage in 
detecting botnet attacks. Four down sampling filters were 
tested, including the Lanczos, Bicubic, Bilinear, and Nearest 
Neighbor filters. Additionally, a sequential neural network 
and auto-encoder model were applied to the processed data to 
classify cyberattacks. Overall, the proposed architecture was 
successful at detecting botnet attacks within the N-BaIoT 
dataset. Further, our auto-encoder achieved similar TPR and 
TNR as the N-BaIoT architecture. This is significant as we 
were able to use a much shallower model, saving 
computational resources and decreasing the time consumed 
for running the model. In addition, we showed that when our 
model was only trained on the Mirai botnet that it was capable 
of detecting attacks from the Gafgyt botnet as well, 
showcasing the flexibility of the model.  
    In our future work we would like to further experiment 
feature extraction methods that would better fit the image 
processing method. It should also be noted that a single image 
creation method with a fixed number of packets has been 
tested here. An image with a dynamic height might provide 
better results. Ultimately those methods should further define 
the concept of predictability of an IoT.  
    At last, the image processing method is very experimental. 
We would like to optimize the hyper parameter we used 
throughout our experiment and create a shallow but 
performant neural network. That would also mean testing 
different image generation algorithms.   
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