
Image Processing for Detecting Botnet Attacks: A
Novel Approach for Flexibility and Scalability

Aurélien Agniel, David Arnold, and Jafar Saniie

Embedded Computing and Signal Processing (ECAP) Research Laboratory (http://ecasp.ece.iit.edu/)
Department of Electrical and Computer Engineering
Illinois Institute of Technology, Chicago IL, U.S.A.

Abstract- Continued adoption of the Internet of Things (IoT)
redefines the paradigm of network architectures. Historically,
network architectures relied on centralized resources and data
centers. The introduction of the IoT challenges this notion by
placing computing resources and observation at the edge of the
network. As a result, decentralized approaches for information
processing and gathering can be adopted and explored.
However, this shift greatly expands the network footprint and
shifts traffic away from the center of the network, where
observation and cybersecurity monitoring tools are frequently
located. Further, IoT devices are often computationally
constrained, limiting their readiness to deal with cyber-threats.
These security vulnerabilities make the IoT an easy target for
hacking groups and lead to the proliferation of zombie networks
of compromised devices. Frequently, zombie networks,
otherwise known as botnets, are coordinated to attack targets
and overload network resources through a Distributed Denial of
Service (DDoS) attack. In order to crack down on these botnets,
it is essential to develop new methods for quickly and efficiently
detecting botnet activity. This study proposes a novel botnet
detection technique that first pre-processes network data
through computer vision and image processing. The processed
dataset is then sent to a neural network for final classification.
Two neural networks will be explored, a sequential model and
an auto-encoder model. The application of image processing has
two advantages over current methods. First, the image
processing is simple enough to be completed at the edge of the
network by the IoT devices. Second, preprocessing the data
allows us to use a shallower network, decreasing detection time
further. We will utilize the N-BaIoT dataset and compare our
findings to their results.

Keywords: IoT, Edge Computing, Computer Vision, Machine
Learning, Auto-encoders, Cybersecurity, Botnets

I. INTRODUCTION

The number of Internet of Things (IoT) devices will
continue to grow worldwide in the coming years. This growth
in connected devices will result in an increase in attack
surfaces, and more importantly a rise in the number of

existing botnets. IoT devices range from sensors to cameras,
leading to a diverse range of computational resources and
embedded designs. Further, they are often not powerful
enough to host commonplace malware detection toolkits.
When compromised, attackers can use these IoT devices as
launching and entry points into larger corporate or personal
networks. Additionally, they can be reorganized into botnets
to launch Distributed Denial of Service (DDoS) attacks on
public and private networks [1-3]. For example, the Mirai
botnet successfully infected 2.5 million devices within the
last quarter of 2016 and further used them to launch targeted
DDoS attacks [4]. In addition to DDoS, compromised
medical or safety devices can be used to critically injure the
user, such as using a pacemaker to deliver a deadly jolt of
electricity to the patient. These threats require a shift in
defense and protection methods as IoT devices are often more
exposed compared to other resources [5, 6]. Real-time
detection of attacks is needed to disconnect and secure
infected devices before they can spread the botnet or cause
lasting damage to the network.

Detection of botnets, such as the Mirai, Hajime, Reaper,
and Gafgyt botnets, can be accomplished by using Artificial
Intelligence to classify network traffic datasets. For example,
the popular N-BaIoT dataset was analyzed using an auto-
encoder to detect when a botnet attack was occurring [1]. As
an alternative, we propose the introduction of a computer
vision pre-processing phase prior to using AI tools. Currently,
the use of computer vision in cybersecurity is used to detect
hidden malware using binary visualization and can also be
used to identify phishing websites [7, 8]. For instance, the
graphical representation using a binary visualization
technique can highlight clusters of information differentiating
benign files and hidden malware. This was used to achieve
99% accuracy for detecting malware in PDFs [7]. Extending
these ideas, we will convert the network traffic into an image,
process the image, and then feed it into our AI tools. This
procedure can be seen in Figure 1. Existing solutions need to

Fig. 1. Proposed botnet attack detection procedure. Network traffic is converted into an image and pre-processed using computer vision. Then it is fed
into the desired neural network for predicting whether a botnet attack is occurring.

be trained for each IoT device and need to be trained
again when new botnets are discovered. Our solution is
advantageous as it produces a shallower network and is
transferrable between IoT devices. This grants our model
greater flexibility. Further, since the image creation is
completed at O(1) and the image processing techniques allow
us to use shallower networks, we can run our models at the
edge of the network on embedded devices such as the Jetson
Nano. This affords our model scalability when compared to
a centralized server structure. As explained above, the profile
of IoTs and their uses are numerous. The same sensor will not
act in the same way when placed in a home or in a company.
This is a “predictability issue”. The main purpose of this
paper is to propose a novel detection method which does not
suffer from those issues and that aims to be at least as accurate
as the existing ones. We will see that using image processing
for botnet detection translates a traffic flow monitoring
problem into a pattern recognition issue.

The transformation of the data flow and extracted
features into an image allow us to use down sampling filters.
We can compress an image without both losing its main
characteristics and flooding the network. This can be crucial
in bandwidth limited networks. Moreover, to handle multiple
IoTs in the same subnet, we can install decision nodes, each
containing a trained neural network model per IoT devices or
IoT groups. Such a decision node can be seen in Figure 2.
This node will act as a kill switch and disconnect the device
from the network if it considers it compromised. Indeed, a
typical router would not be able alone to both handle that
many devices as well as run the neural network checks for
each communication. In that case the image compression
becomes interesting as it can be dynamically changed
according to the context of the traffic flow.

Fig. 2. Scalability: Image processing decentralized from the decision node

The traffic packets would depart from the IoT device and

arrive to the router. We extract the features and transform
those into an image. We check the load of the network. If the
network is overloaded, we wait for more packets to populate
our image. The neural network in our case asks for a fixed
image input, we thus dynamically implement the
compression of our image according to the traffic load. We
then compress the image which still contains the overall
context of the communication. We then send that image
through the network to the decision node. The node will
receive the image, run the neural network and decides

whether to disconnect the IoT device from the network or not.
This model can be adapted to the needs of most networks and
be dynamically changed which makes it very flexible.
Moreover, because or neural network are shallower, we need
less space to store them. Because we do not have access to
the neural network deployed in the N-BaIoT research paper it
is difficult to qualitatively compare our detection time. We
will reimplement the architecture used and compare it to the
one we coded in python.

Through the remainder of this paper, we will provide an
overview of the auto-encoder solution proposed by the N-
BaIoT research in Section II. We will then present our image
processing and computer vision methodology that will serve
as the basis for our pre-processing in Section III. Finally, we
will examine the impact of the pre-processing by using two
different Artificial Intelligence approaches in Section IV, first
a sequential neural network followed by the auto-encoder
model.

II. RELATED WORK

For our purposes, we will be using the N-BaIoT dataset.
This dataset focuses on the attack-phase of the botnet and is
meant to test security tools that serve as a last-line of defense
against attacks. The dataset collected data for nine IoT
devices and was stored as .pcap files. There are 115
independent features present for each data point. Artificial
Intelligence and Machine Learning are common approaches
for tackling this dataset [9-12].

Existing solutions have presented an auto-encoder
architecture for detecting botnet attacks using the dataset.
Auto-encoders are designed using two sequential neural
networks, the encoder network and decoder network, along
with a bottleneck to link the two networks. An example auto-
encoder architecture is shown in Figure 3. During operation,
the model learns the features of benign traffic and will
attempt to reconstruct it based on the input data. If it fails to
reconstruct the traffic, it is identified as malicious. While the
existing research indicates that it produces a low False
Negative Rate (FNR) and a high True Positive Rate (TPR)
when compared to other Artificial Intelligence (AI) models,
the models cannot be applied across multiple devices.
Additionally, the size of the model is fairly large, with over
40,000 trainable parameters.

III. IMAGE PROCESSING METHODOLOGY

Our overall methodology involves 6 keys steps,
including 1) data collection, 2) feature extraction, 3) image
creation and processing, 4) compression, 5) training, and 6)
real-time traffic monitoring. In order for our pre-processing
to occur, we must first convert the traffic information into
image form. Through our methodology, each image is
composed of a height that represents each packet we are

Fig. 3. Classic Auto-Encoder Architecture

examining and a width that represents the features of each
packet. For our application, we decided to use a height of 16
packets and took a subsample of the N-BaIoT dataset. The
subsample was composed of 23 features and was padded up
to 24. Figure 4 provides the feature indexes that were selected
for our application. The features then needed to be grouped
into three and converted into their pixel format.

L = [0, 1, 2, 15, 16, 17, 30, 31, 32, 33, 34, 35, 36, 86,

85, 84, 83, 80, 81, 82, 65, 66, 67]

Fig. 4. Extraction vector L.

After collecting sufficient data for the desired time

frame, we then convert the features into their pixels. The idea
is to group data three by three to create each colored pixel.
Since we selected 23 features from the overall 115, we still
need to pad an additional value to reach a number divisible
by 3. This will create three channels, each representing an
RGB channel. Additionally, we normalize each channel
according to Equation 1. In this case, x is the feature from the
database, contrast is the contrast of the pixel, and A is a
constant set to either 255 or 1. The result of the normalization
ranges from [0:A]. An example of this process can be seen in
Figure 5, comparing benign traffic and malicious traffic from
a Mirai botnet attack.

Fig. 5. Image representation of a benign file from the N-BaIoT dataset (a)
and a malicious attack from the Mirai botnet (b)

 𝑓ሺ𝑥ሻ ൌ ቀ2 ൈ 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 ቀ| ௫

௖௢௡௧௥௔௦௧
|ቁ െ 1ቁ ൈ 𝐴 (1)

After converting the data into an image, we then apply a

down sampling filter to better highlight different clusters of
colorized filters. For our purposes, we explored four filters
and examined which led to the best results. The first was the
Lanczos filter, which is also known as a sharpening filter.
When applied to the image, we increase the differences and
jumps between clusters of images. For this case, it means hat
we will not lose much packet context when we reduce the
image’s size. However, the resulting data is no longer
normalized. Next, the Bilinear and Bicubic filters smooth the
image when down sampling and add pixels by averaging the
values of the surrounding pixels. The Bilinear filter is faster,
but the Bicubic filer provides better tonal variations. Finally,
the Nearest Neighbor algorithm is commonly used in media,
such as pixel art and keeps hard edges, but is less precise and
produces jagged effects. An example application of the
Bicubic filter can be seen in Figure 6.

Fig. 6. Image generation sample. The up-sampling method is bicubic, the
height of the image 16. The image generated on the left is issued from the
1.benign.csv file, on the right 1.mirai.scan.csv

IV. ARTIFICIAL INTELLIGENCE MODELS

To examine the effectiveness of our pre-processing
technique, we developed two Artificial Intelligence models.
The first was a sequential neural network while the second
was a shallow auto-encoder model. Our neural network
model was composed of a single fully connected layer that
applied the sigmoid activation function. A visual
representation is presented in Figure 7.

Fig. 7. One-layer sequential model

The auto-encoder was created using an encoder with 3

layers, an input layer, 16 2D Convolutional Layers with a
(2,2) kernel and a Max Pooling 2D layer with a (2,2) kernel.
The decoder for our auto-encoder had 16 Convolutional 2D

Encod Decode

Bottleneck
encoded

(a) Benign Data (b) Malicious Data

(a) Benign Data (b) Malicious Data

Transpose layers with a (3,3) kernel and 3 Convolutional 2D
layers using a (2,2) kernel. This resulted having around 2,500
parameters compared to the N-BaIoT dataset that included
40,000 parameters. However, this does not mean the auto-
encoder we created is faster. We will see this is because 2D
Convolution layers are extremely slower than Dense Layers.

V. RESULTS AND ANALYSIS

A. Sequential Neural Network
We use fully connected layers for this sequential model,

therefor we have an input per pixel per color channel. For a
colored image of (16x8) we thus have 384 weights since we
have 3 color channels: Red, Green, Blue. Those inputs are all
connected to a single output between 0 and 1 since we use a
sigmoid activation function. It is the most simplistic
architecture system we can create. This architecture uses the
same Dense layers used in the N-BaIoT research paper,
however we have approximatively 100 times les parameters
in our network. Thus, we can consider this architecture to
perform much faster.

When applying our shallow neural network, we first
begin by training the dataset on the smart doorbell. The
training dataset is composed of both the benign and Mirai
attack sub databases. The concatenated data is shuffled and
then split according to 80% training and 20% testing data.
For our results, we consider both the TPR and TNR. The TPR
represents the probability that an attack will be predicted as
an attack, while the TNR represents when a benign datapoint
is predicted as a benign datapoint. After training the model
and applying it to the testing sample, we achieved a TPR and
TNR of 99.99%.

After our success with detecting attacks within the Mirai
botnet data, we then examined whether the trained model can
be transferred to Gafgyt botnet attacks. For this dataset we
introduce the TPRFlex and TNRFlex values, with TPRFlex
representing the True Positive Rate when applying the model
to the Gafgyt dataset and the TNRFlex representing the True
Negative Rate when applying the model to the Gafgyt
dataset. Further, we expand the testing dataset to include all
nine IoT devices that were found within the dataset. As a
result, our TPRFlex and TNRFlex values reflect the
flexibility of the model when applied to new botnets and
devices. Overall, we end up with TPRFlex of 99.4% and
TNRFlex of 98.96%. When we examine only the benign
data, we notice that the security camera benign data is
consistently detected as malicious. This is presented in
Figure 8. Additionally, when examining the malicious data,
we note that the model also has difficulty detecting the
Gafgyt scans compared to other attempts at attacking the
network. This is presented in Figure 9.

Fig. 8. Class prediction results on the benign data. A benign data is flagged
as 0 and a malicious one as 1.

Fig. 9. Class prediction results on the Gafgyt data. A benign data is flagged
as 0 and a malicious one as 1.

In addition to providing flexibility across botnets, we can
also increase the flexibility of the model when applied across
IoT devices. By increasing the height of our image and the
compression of each filter, we can achieve a high TPR value.
To test this, we trained our model using the Mirai botnet and
benign data as before, but this time we adjust the height and
compression. Also, we will only apply our trained model on
the IoT Baby Monitor (4th device) and the IoT Security
Camera (9th device). Our results are presented in Table I. We
achieve the best TPR values when using a compression of
6.25 and height of 128.

TABLE I
TPR AND TNR FOR DIFFERENT HEIGHT AND COMPRESSION

 Baby Monitor Security Camera

Height = 32
Compress = 50

TNR = 99.96%
TPR = 98.08%

TNR = 100%
TPR = 97.69%

Height = 32
Compress = 25

TNR = 100%
TPR = 97.70%

TNR = 100%
TPR = 97.51%

Height = 64
Compress = 12.5

TNR = 100%
TPR = 98.29%

TNR = 100%
TPR = 98.32%

Height = 128
Compress = 6.25

TNR = 98.75%
TPR = 99.73%

TNR = 100%
TPR = 98.38%

B. Auto-Encoder
Next, we examined our auto-encoder model using

different down sampling filter. We considered the same
training and testing methodology as was completed with the
sequential neural network. Namely, we concatenated the
benign and Mirai attack sub databases, shuffled them and
split them 80% training and 20% testing. Further, we
examined our Lanczos, Bicubic, Bilinear, and Nearest
Neighbor filters prior to providing the dataset to the auto-
encoder. Again, we examine the (TPR and TNR. Based on
our results, the Bicubic filter performed the best with a TPR

of 98.98% and a TNR of 99.98%. The full results for all filters
can be found in Table II.

TABLE II
TPR AND TNR FOR DIFFERENT DOWNSAMPLING METHODS

 Lanczos Bicubic Nearest Bilinear

TPR (%) 98.81 98.98 99.40 98.97

TNR (%) 99.96 99.98 78.78 99.98

Overall, this architecture performs as quickly as the

architecture we implemented from the N-BaIoT research
paper despite having much less parameters. This is because
we are using 2D convolutional layer instead of Dense.
Because we wanted to try and create colored images, we
could not use the latter. In the future we could try generating
larger black and white images. This would enable us to use
those Dense layers and possibly speed up the run time.

VIII. CONCLUSION AND FUTURE WORK

Through this project, we examined the potential
application of image processing as a pre-processing stage in
detecting botnet attacks. Four down sampling filters were
tested, including the Lanczos, Bicubic, Bilinear, and Nearest
Neighbor filters. Additionally, a sequential neural network
and auto-encoder model were applied to the processed data to
classify cyberattacks. Overall, the proposed architecture was
successful at detecting botnet attacks within the N-BaIoT
dataset. Further, our auto-encoder achieved similar TPR and
TNR as the N-BaIoT architecture. This is significant as we
were able to use a much shallower model, saving
computational resources and decreasing the time consumed
for running the model. In addition, we showed that when our
model was only trained on the Mirai botnet that it was capable
of detecting attacks from the Gafgyt botnet as well,
showcasing the flexibility of the model.
 In our future work we would like to further experiment
feature extraction methods that would better fit the image
processing method. It should also be noted that a single image
creation method with a fixed number of packets has been
tested here. An image with a dynamic height might provide
better results. Ultimately those methods should further define
the concept of predictability of an IoT.
 At last, the image processing method is very experimental.
We would like to optimize the hyper parameter we used
throughout our experiment and create a shallow but
performant neural network. That would also mean testing
different image generation algorithms.

ACKNOWLEDGEMENTS

 First and foremost, we would like to thank our friend Emile
Barbier-Renard, currently a PhD student in image

processing, for his help on the image processing to be applied.
We would also like to thank IIT Chicago and the framework
established by Professor Jafar Saniie without which we
would never have done this study. At last, we want to thank
the research team that conducted the paper on the N-BaIoT
dataset on which this experiment is based.

REFERENCES

[1] Y. Meidan et al., "N-BaIoT—Network-Based Detection of
IoT Botnet Attacks Using Deep Auto-encoders," in IEEE
Pervasive Computing, vol. 17, no. 3, pp. 12-22, Jul.-Sep.
2018, doi: 10.1109/MPRV.2018.03367731.

[2] C. Kolias, G. Kambourakis, A. Stavrou and J. Voas, "DDoS
in the IoT: Mirai and Other Botnets," in Computer, vol. 50,
no. 7, pp. 80-84, 2017, doi: 10.1109/MC.2017.201.

[3] J. Margolis, T. T. Oh, S. Jadhav, Y. H. Kim and J. N. Kim,
"An In-Depth Analysis of the Mirai Botnet," 2017
International Conference on Software Security and
Assurance (ICSSA), 2017, pp. 6-12, doi:
10.1109/ICSSA.2017.12.

[4] V. Hassija, V. Chamola, V. Saxena, D. Jain, P. Goyal and
B. Sikdar, "A Survey on IoT Security: Application Areas,
Security Threats, and Solution Architectures," in IEEE
Access, vol. 7, pp. 82721-82743, 2019, doi:
10.1109/ACCESS.2019.2924045.

[5] E. Bertino and N. Islam, "Botnets and Internet of Things
Security," in Computer, vol. 50, no. 2, pp. 7679, Feb. 2017,
doi: 10.1109/MC.2017.62.

[6] M. Gromov, D. Arnold and J. Saniie, “Tackling Multiple
Security Threats in an IoT Environment,” in 2022 IEEE
International Conference on Electro Information
Technology, 2022.

[7] Baptista, S. Shiaeles and N. Kolokotronis, "A Novel
Malware Detection System Based on Machine Learning
and Binary Visualization," 2019 IEEE International
Conference on Communications Workshops (ICC
Workshops), 2019, pp. 1-6, doi:
10.1109/ICCW.2019.8757060.

[8] L. Barlow, G. Bendiab, S. Shiaeles and N. Savage, "A
Novel Approach to Detect Phishing Attacks using Binary
Visualisation and Machine Learning," 2020 IEEE World
Congress on Services (SERVICES), 2020, pp. 177-182,
doi: 10.1109/SERVICES48979.2020.00046.

[9] S. Hojjatinia, S. Hamzenejadi and H. Mohseni, "Android
Botnet Detection using Convolutional Neural Networks,"
2020 28th Iranian Conference on Electrical Engineering
(ICEE), 2020,pp.1-
6,doi:10.1109/ICEE50131.2020.926067 4

[10] D. McDermott, F. Majdani and A. V. Petrovski, "Botnet
Detection in the Internet of Things using Deep Learning
Approaches," 2018 International Joint Conference on
Neural Networks (IJCNN), 2018, pp. 1-8, doi:
10.1109/IJCNN.2018.8489489.

[11] Supranamaya Ranjan. Machine learning based botnet
detection using real-time extracted traffic features, March
25 2014. US Patent 8,682,812.

[12] Mirsky, Y., Doitshman, T., Elovici, Y., & Shabtai, A.
(2018). Kitsune: An Ensemble of Auto-encoders for Online
Network Intrusion Detection. Proceedings 2018 Network
and Distributed System Security Symposium.
https://doi.org/10.14722/ndss.2018.23204

