
Edge Computing for Real Time  
Botnet Propagation Detection 

Mikhail Gromov, David Arnold, and Jafar Saniie  

Embedded Computing and Signal Processing (ECAP) Research Laboratory (http://ecasp.ece.iit.edu/) 
Department of Electrical and Computer Engineering 
Illinois Institute of Technology, Chicago IL, U.S.A. 

 
 

Abstract- Continued growth and adoption of the Internet of 
Things (IoT) has greatly increased the number of dispersed 
resources within both corporate and private networks. IoT 
devices benefit the user by providing more local access to 
computation and observation compared to dedicated servers 
within a centralized data center. However, years of lax or 
nonexistent cybersecurity standards leave IoT devices as easy 
prey for hackers looking for easy targets. Further, IoT devices 
normally operate at the edge of the network, far from 
sophisticated cyberattack detection and network monitoring 
tools. When hacked, IoT can be used as a launching point to 
attack more sensitive targets or can be collected into a larger 
botnet. These botnets are frequently utilized for targeted 
Distributed Denial of Service (DDoS) attacks against service 
providers and servers, decreasing response time or 
overwhelming the system. In order to protect these vulnerable 
resources, we propose an edge computing system for detecting 
active threats against local IoT devices. Our system will utilize 
deep learning, specifically a Convolutional Neural Network 
(CNN) for detecting attacks. Incoming network traffic will be 
converted into an image before beings supplied to the CNN for 
classification. The network will be trained using the N-BaIoT 
dataset. Since the system is designed to operate at the edge of the 
network, it will run on the Jetson Nano for real-time attack 
detection.  
 

I. INTRODUCTION 

Due to their emphasis on low cost-per-unit while 
providing capabilities at the edge of the network, the Internet 
of Things (IoT) has seen immense growth in recent years. 
However, these devices are frequently more exposed to 
threats and the large number in circulation means that single 
vulnerabilities can reward a hacker with hundreds, if not 
thousands, of zombie devices [1-2]. Zombie devices can be 
used to gain a foothold into the overall network or as a 
launching point at more sensitive servers. Frequently, zombie 
devices are accumulated into a larger botnet network. 
Common functions of botnets are to increase their ranks by 
propagating the attack, organizing into a distributed crypto-
mining operation, and launching Distributed Denial of 
Service (DDoS) attacks [3-5]. In the case of crypto-mining, 
there can be noticeable impacts on the performance of the 
host, potentially degrading operations underneath acceptable 

limits. On the other hand, executing a DDoS attack disrupts 
operations of external devices by overwhelming them with 
network traffic until they appear as inoperable by the intended 
user. This tactic is more commonly used by the well-known 
botnets, such as the Mirai, Hajime, Reaper, and Gafgyt 
botnets. For instance, the Mirai botnet was capable of 
achieving an attack bit rate of around 1 terabit per second 
when performing a DDoS attack. In order to address this 
challenge, our project is focused on applying computer vision 
and deep learning towards detecting when a botnet is 
attempting to add a device to its ranks.  

When applied together, computer vision and deep 
learning are powerful tools for classification problems. 
However, the extent of their application within cybersecurity 
is limited to detecting hidden malware within files [6, 7]. 
Nevertheless, they can be useful for tasks where a more 
robust and tested algorithm cannot be developed in a limited 
time frame.  One such case would be botnet detection, where 
botnet detection and mitigation needs to occur in real time, 
and it is difficult to algorithmically detect where a botnet is 
present, since it typically exploits a security flaw to 
propagate.  

For our implementation, we will convert the features of 
a network traffic packet (a .pcap file) into an image for 
consumption by a Convolutional Neural Network (CNN). 
Each image will be composed of multiple packets related by 
their time-of-arrival. In order to afford stronger protection to 
the IoT devices, detection will also be completed at the edge 
of the network. As presented in Figure 1, network traffic will 
be collected and forwarded to a local Jetson Nano for 
analysis. The Jetson Nano is a powerful embedded device that 
is equipped with a 128-core GPU and a Quad-core ARM A57 
processor to bring Artificial Intelligence (AI) to the edge of 
the network [8]. This architecture will allow us to detect 
whether a botnet is attempting to propagate to nearby devices 
in real-time.  

Through the remainder of this paper will discuss our 
deep learning architecture for detecting botnet attacks. First, 
we will discuss previous works and how our current work 



differs from them. Next, we will discuss our procedure for 
converting network traffic into an image for our CNN. Then 
we will briefly discuss our results when applying the 
architecture in real-time. The model will be run on both the 
Jetson Nano an a Raspberry Pi in order to show the difference 
in capabilities between the devices.   

Fig. 1. Simple network architecture with our proposed edge botnet attack 
detector. Multiple IoT devices with various uses are present within the 
network and are potentially vulnerable to being incorporated into a botnet. 
Network traffic is captured by a local Jetson Nano for analysis.  
 

II. PREVIOUS WORKS  

Utilizing machine learning for cyberattack detection 
is not a novel idea. Computer vision algorithms have been 
used to detect malware hidden inside files [6], however this 
is not applicable in real-time. Another similar work used 
autoencoder neural networks to detect the Mirai botnet in 
real-time [9]. However, each autoencoder had to be trained 
on only one device and would detect any other device as 
being malicious. Both of these approaches were interesting 
an proved that machine learning could be applied to 
cybersecurity issues in real-time while computer vision could 
be used for issues where time was not a significant factor. 
However, they did not consider whether a computer vision 
approach could be used for malware detection in real-time. In 
this work, a computer vision approach using images and 
CNNs is utilized to detect botnet propagation in real-time ton 
a variety of different IoT applications. Using images allows a 
significant amount of data to be stored, including data about 
multiple parameters, as well as historical data. Using a CNN 
allows for complex processing to be implemented efficiently, 
however it still requires a significant amount of computing 
power. Therefore, any way we can pre-process that dataset to 
reduce the amount of data that needs to be processed will 
significantly increase the performance of our model.  

II. METHODOLOGY 

For this project, the N-BaIoT dataset was used [9].  This 
dataset includes data from nine IoT devices.  Each of these 
devices include benign data, and data collected after a Gafgyt 
and Mirai botnet infection, if the devices can be infected with 
those malwares.  It also contains data involving each of the 

attack vectors for the Mirai botnet.  While it does not include 
data about the packet captures, it does include data from each 
packet.  For each packet within the network, a record is made 
of a few statistics, including the average length and standard 
deviation of the average length, using a dampened window 
function.  In the dataset there are 5 different windows, and 
115 parameters total, however we will only be using the 
shortest window, since our neural network would store 
temporal data about packets in an image format.  This would 
leave us with 23 parameters to work with. Related work in 
detecting malicious activity in the N-BaIoT dataset relied on 
the application of autoencoders [1, 9]. Generally, these 
implementations saw a decrease in accuracy and an increase 
in processing time when compared to other deep learning 
applications. We will compete with these implementations by 
first converting the network traffic into an image to decrease 
the size of our network while maintaining performance and 
increasing performance time.  

The first step of our program involved gathering packet 
data.  Initially, we used the pyshark library, which terrible to 
work with since each type of packet had different variable 
names.  However since it was based on wireshark, a popular 
packet capture tool, it was assumed to be reliable.  However, 
we encountered problems of the library only being able to 
capture packets when we were not processing data, so it could 
miss a large amount of packet data.  Ultimately, we ended up 
using the scapy library, which is more efficient, and also able 
to continuously detect packets.  It is also simpler to work 
with, with each of the important details, including source and 
destination ports were more standardized, so they could be 
extracted with less processing.   

The second step involved extracting the same features as 
were available in the N-BaIoT database.  For us to be able to 
do this, we needed to first group the packets into groups by 
the parameters extracted from the packet.  We did that by 
simply storing a list of object, which was more convenient 
than storing raw data with independent processing functions 
operating on the data.  Each of the objects would be able to 
detect if it matched the connection it was asked, or the reverse 
connection, which was stored with the forwards connection 
to reduce the lookup time for the radius and magnitude 
parameters.  This entire program was developed to extract 
most of the features explained in [9], however a few features 
like the covariance were excluded, since they were 
insignificant for our detection. After we extracted our 
features, we used the OpenCV application to create our 
images. For each packet we allocated a 2x2 pixel region and 
included 6 packets per image for an image size of 12x12. The 
range for each pixel was between 0 and 255.  



To start off with, we generated greyscale image for each of 
the parameters in the smallest window of the dataset for both 
malicious and benign traffic.  While some of the images were 
similar in nature, in some of them there were some 
differences for malicious and benign data.  For example, one 
of the parameters was the weight for the connection with 
matching source IP and MAC addresses, which measured 
how many packets fell into the window, with damping 
making earlier packets less important. In Figure 2 below, we 
can see the difference between a benign image(left), and two 
malicious images (center and right).  It can be seen that 
malicious images contain significantly more lines, which we 
can detect.  It should be noted that the color is also slightly 
different for most of the image, which should allow use to 
also detect this color change on smaller images.   

Fig. 2. Comparison of benign (a) and malicious (b and c) images when 
considering the source IP and MAC address.  

 
Another parameter that was determined to be significant 

was the mean of the length for each socket, which was 
determined by source and destination IP and port numbers.  
In this case, we observed more random noise for the benign 
traffic, however the malicious traffic often had the same lines 
present, and less noticeable noise. A comparison between a 
benign image and two malicious images is presented in 
Figure 3.  

Fig. 3. Comparison of benign (a) and malicious (b and c) images when 
considering the mean of the length for each socket.  

We also considered the socket magnitude, which was 
defined to be the square root of the sum of the squares of the 
means for each socket pair (reversing source and destination).  
This had a similar pattern as the previous parameter, however 
another interesting thing to note was that the magnitude and 
mean would match for the sockets with malicious data 
present, which makes sense since most of the malicious 
connections only send data, instead of receiving it.  Again, 
three sample images are presented below in Figure 4.  

Fig. 4. Comparison of benign (a) and malicious (b and c) images when 
considering the socket magnitude.  

 
To train our neural network, we used the tensorflow 

framework, which allowed us to design our neural network as 
a series of layers, and to train it using backpropogation.  It 
also allowed us to evaluate the neural network on the Jetson 
Nano after we trained it, and to achieve a high enough 
throughput by using the GPU provided on the Jetson Nano. 
For our Convolutional Neural Network, we experimented 
with different combinations and found the following network 
to be most effective for our application. The input to our 
network was 12x12 images and the network starts with a 
convolutional layer with a kernel of 7x7 and 9 filters and the 
ReLU activation function, which resulted in an output of size 
6x6x9. Next, we included a maxpooling layer with a 2x2 
kernel, which resulted in an output of size 3x3x9. After 
another convolutional layer with a kernel size of 2x2x9 and 6 
filters we ended with a 2x2x6 image. We then used a dense 
layer with 8 outputs and using the ReLU activation function 
and ended with a dense layer that had 2 outputs. Figure 5 
presents the overall model of our CNN. While this structure 
does utilize a classification function at the last layer, for each 
of the classes, the detection of malicious/benign was 
determined by which value was larger.  

(a) (b) (c) 

(a) (b) (c) 

(a) (b) (c) 

Fig. 5. Convolutional Neural Network for our Botnet Attack Detection Application. The network accepts images with size 12x12 and returns two 
outputs, one indicated whether malicious activity was present while other indicated none was present.   



III. RESULTS AND ANALYSIS 

After finalizing the design of our CNN model, we then 
proceeded to train the model using the N-BaIoT dataset. The 
dataset captured data on seven IoT devices, ranging from a 
baby monitor to a security camera. We decided to split the 
dataset into testing, validation, and training devices in order 
to observe the effects of transferring the model between 
devices. For our training dataset we included the doorbell, 
thermostat, the baby monitor. The two Provision security 
cameras were used as a validation dataset. For the testing 
dataset we included the two Simple Home security cameras. 

To tune the hyperparameters, the smaller training dataset 
was used to reduce the evaluation time. Since the testing 
dataset contained three devices, one device was used for the 
training dataset, one in the validation dataset, and the third in 
the testing dataset. The training dataset was used to train our 
network, while the validation dataset was used to terminate 
training when accuracy started to decline. The testing 
accuracy after optimizing hyperparameters was found to be 
99.87%, which showed that training on one device and testing 
on another yielded good results. When using the full dataset, 
we used the same hyperparameters that were found to work 
well on the training dataset. When the trained model was 
applied to the testing data, we achieve an accuracy of 99.82% 
over the two Simple Home Security cameras.  

Another part of this project involved simulating the 
performance of our neural network on a physical device, so 
we can both verify that the neural network works, while at the 
same time being able to measure the performance.  This 
simulation had both a malicious and benign traffic source, 
with a VNC server being used as the benign traffic source.  A 
VNC server would be one of the most extreme malicious 
cases, where the high packet rate could be detected as 
malicious, as well as the command and control potential of it.  
Additionally, even if the VNC server was not detected as a 
malicious system, it would have a high packet rate, which 
may make the malicious data less detectable.  For the 
malicious part of the traffic, we implemented a SYN scan, 
which would scan random IPs on port 23 for a TCP server.  
We set a low timeout to ensure that the scan could be 
performed on a single thread, with a high scan rate.  While 
we would not be able to actually identify whether there was a 
TCP server present, that was not one of the goals for us, so 
we would be okay with ignoring this data.   

In addition to assessing the accuracy of our model, we 
also wanted to compare its performance on both the Jetson 
Nano and the Raspberry Pi. During the simulation, we 
observed a performance of 50 milliseconds per evaluation for 
both devices. Since each image contains 36 packets, we 
achieve a performance of 720 packets per second. We believe 

that this is sufficient for maintaining real-time detection of 
botnet threats against the IoT devices.  

IV. CONCLUSION     

Overall, we were successful at implementing a new 
solution to detecting attempts by the Mirai botnet at 
incorporating new devices into its collective. Our 
implementation converted incoming packets into an image 
and then inserted them into our Convolutional Neural 
Network model. This model was able to achieve 99.82% 
accuracy, when applied to the two security cameras from the 
dataset. Further, we were able to achieve a performance of 
720 packets per second, which we believe is sufficient for real 
time applications.  

Future work would attempt to increase the performance of 
the network while implemented on the Jetson Nano. We had 
trouble taking full advantage of the 128-core GPU, which 
could allow us to process multiple batches simultaneously. 
Potentially, this could allow us to increase the number of 
devices we are monitoring simultaneously. Further, we could 
decrease the time it took to pre-process the data into an image. 
Finally, our project currently only detects whether a botnet is 
attempting to take control over present IoT devices. This can 
be expanded to detect the specific type of attack or 
vulnerability that the botnet may be attempting to use.    

REFERENCES 

[1] E. Bertino and N. Islam, "Botnets and Internet of Things 
Security," in Computer, vol. 50, no. 2, pp. 76-79, 2017 

[2] M. Gromov, D. Arnold and J. Saniie, “Tackling Multiple 
Security Threats in an IoT Environment,” in 2022 IEEE 
International Conference on Electro Information Technology, 
2022. 

[3] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, 
D. Breitenbacher and Y. Elovici, “N-BaIoT - Network-Based 
Detectino of IoT Botnet Attacks Using Deep Autoencoder,” 
IEEE Pervasive Computing, vol. 17, no. 3, pp. 12-22, 2018. 

[4] C. Kolias, G. Kambourakis, A. Stavrou and J. Voas, "DDoS in 
the IoT: Mirai and Other Botnets," in Computer, vol. 50, no. 7, 
pp. 80-84, 2017 

[5] J. Margolis, T. T. Oh, S. Jadhav, Y. H. Kim and J. N. Kim, "An 
In-Depth Analysis of the Mirai Botnet," 2017 International 
Conference on Software Security and Assurance (ICSSA), 
2017 

[6] I. Baptista, S. Shiaeles and N. Kolokotronis, “A Novel Malware 
Detection System Based on Machine Learning and Binary 
Visualization,” in 2019 IEEE International Conference on 
Communications Workshops , 2019. 

[7] L. Barlow, G. Bendiab, S. Shiaeles and N. Savage, "A Novel 
Approach to Detect Phishing Attacks using Binary 
Visualisation and Machine Learning," 2020 IEEE World 
Congress on Services (SERVICES), 2020, pp. 177-182  

[8] NVIDIA , “Jetson Nano Developer Kit,” [Online]. Available: 
https://developer.nvidia.com/embedded/jetson-nano-
developer-kit. 

[9] Mirsky, Y., Doitshman, T., Elovici, Y., & Shabtai, A. (2018). 
Kitsune: An Ensemble of Auto-encoders for Online Network 
Intrusion Detection. Proceedings 2018 Network and 
Distributed System Security Symposium. 

 


