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INTRODUCTION 

 

Advanced nuclear reactors, such as small modular 

reactors (SMRs) and micro reactors are currently under 

development as cost-effective alternatives to the existing 

fleet of light water reactors. Adoption and increased reliance 

on remote access and digital infrastructure can achieve cost-

efficient operation of future SMRs. However, reliance on 

these technologies results in an expanding network footprint, 

and can lead to a softened resilience to cyberattacks. Further, 

hacking communities have shifted their attention towards 

Industrial Control Systems (ICS) and critical infrastructure, 

such as nuclear energy. Ranging from common criminals to 

nation-state actors, these hackers target these networks due to 

their importance to national infrastructure.  

Initial cyber-defense doctrine relied heavily on the use of 

physical network segmentation and industry-specific 

software to protect operations from potential harm. This was 

proven insufficient during the Stuxnet attack, in which 

malicious USB drives were used to infiltrate the isolated 

network [1-3]. Despite sector-wide improvements in the 

years since, hacking groups continue to be successful. In 

2015, a cyberattack interrupted operations for several 

regional electric operators in the Ukrainian capital of Kiev [4-

5]. During the attack, the hackers were able to gain access to 

the network through social engineering attacks. After gaining 

access to the network, valid commands were sent to 

shutdown local substations and remote control functionality 

was then destroyed. Finally, malware was detected in the 

administrative network of an Indian nuclear power plant in 

2019 after an employee connected an infected device to the 

network [6]. These attacks highlight the importance of 

working towards stronger security solutions.  

To address these shortcomings, we have conducted 

research towards a Cyber-Secure Network Architecture for 

Nuclear Power Plants. A diagram of the proposed network 

architecture can be seen in Figure 1 and includes the 

development of two cybersecurity solutions. The first 

solution is the establishment of ultrasonic pathways for the 

distribution of Advanced Encryption Standard (AES) 

symmetric keys to devices within the facility. Utilization of 

ultrasonic pathways creates a side-channel key distribution 

mechanism to securely transfer AES keys without using the 

primary wired network. Recent studies sponsored by DOE 

Fig. 1.  The network architecture of a future nuclear reactor network. Network traffic is transmitted throughout the facility 

using wired infrastructure and is encrypted using AES. The secret keys are transmitted between devices using Secure 

Ultrasonic Pathways. An AI-Powered Data Historian will rely on a fusion of network traffic and sensor data to detect 

cyberattacks.   
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have proven ultrasonic communication is a secure and 

reliable alternative to conventional wired channels [7-11].  

Additionally, the use of existing piping infrastructure 

provides a low-cost solution while also being difficult to 

eavesdrop using commonly available electronic devices. The 

second cybersecurity solution is the integration of 

cyberattack detection capabilities through artificial 

intelligence and machine-learning based models. Due to the 

widespread use of cyber-physical devices traditional 

Intrusion Detection Systems (IDS) often miss key data that 

can be used to strengthen cyberattack detection capabilities. 

Application of Artificial Intelligence (AI) and Machine 

Learning (ML) models can fill this gap by fusing both 

network traffic and sensor data to provide a stronger 

prediction.  

The remainder of this summary will present the work 

that has been completed with the support of the Nuclear 

Energy University Program’s (NEUP) University Nuclear 

Leadership Program (UNLP) graduate fellowship. First, a 

platform for securely transmitting a video through a solid 

channel will be discussed. This project serves as a proof-of-

concept use-case for future ultrasonic pathways, such as for 

key distribution. Second, a set of potential machine learning 

models for cyberattack detection will be presented. A gas 

pipeline dataset was used due to its availability, but lessons 

learned will be applied to a nuclear power plant dataset in the 

future.  

 

RESULTS  

 

Secure Ultrasonic Pathways  

 

Proper application of cryptographic techniques hampers 

a hacker’s ability to expand their foothold within the network. 

Symmetric key distribution over insecure or open channels 

continues to be a challenge for secure transmission of data. 

Development of side-channel key distribution architectures, 

such as through ultrasonic pathways, can alleviate risks of 

key distribution by exchanging keys via networks that are 

harder to eavesdrop.  

For successful implementation of the proposed 

ultrasonic pathways for key distribution, we first undertook a 

proof-of-concept project to determine the capabilities of the 

ultrasonic pathways. This was accomplished through a 

collaboration with my fellow researchers at the Embedded 

Computing and Signal Processing (ECASP) Research 

Laboratory at the Illinois Institute of Technology [12-14]. 

The objective of the project was to reliably transmit a video 

stream over an Aluminum Rectangular Bar (ARB). The video 

stream is uploaded to a server and should be available for 

real-time observation. To achieve these objectives, a 

reconfigurable Software-Defined Ultrasonic Communication 

(SDUC) was developed to account for the many challenges 

of communicating using a solid channel. For the study, 

multiple lengths of ARB were used (25, 40, and 50 cm) along 

with differing video streaming resolutions (240p, 480p, and 

720p) at 20 frames per second. A diagram of the ultrasonic 

communication system can be viewed in Figure 2. The SDUC 

platform was capable of achieving the desired resolutions 

across each ARB channel length and achieved a maximum 

reliable video feed at 1074 kbps. Additionally, this stream 

had a bit-error rate of 3.3x10-4 while combatting intersymbol 

interference. These characteristics are sufficient for 

achieving the necessary latency, bandwidth, and bit-error rate 

for secure and safe distribution of symmetric keys.  

 

In addition to streaming the video over the solid channel, 

we examined different cryptographic solutions for protecting 

the sensitive video stream. Encryption was examined for both 

communication across the solid channel as well as to the 

server and remote client. For the data-in-transit between the 

Receiver Controller and the Remote Client, the Advanced 

Encryption Standard (AES) with Cipher Block Chaining 

(CBC) was used. The AES CBC algorithm applies the 

standard AES encryption algorithm while accounting 

challenges that are common when encrypting images, such as 

image artifacts that can be used to identify shapes in the 

image.  

Due to computation limitations of the transmitter 

controller, it was determined that an alternative encryption 

algorithm was needed. To resolve this issue, a novel chaotic-

based encryption scheme was generated that would have a 

lower key-length and computation time. This cryptosystem 

was based on the Arnold Cat Map and Logistic Map to 

provide good confusion and diffusion characteristics. During 

operation, the Arnold Cat Map transforms the dataset into a 

pseudo-random state over several iterations while the 

Logistic Map applies an external key. Analysis of the 

encryption method was completed by examining histogram 

and correlation data for the pixels of the encrypted image. 

Both tests are strong indicators of encryption strength as an 

attacker may attempt to identify common patterns or poor 

confusion and diffusion of the dataset by using frequency 

attacks. Figure 3 presents an example video frame and the 

encrypted version of the frame [14]. As shown, the encrypted 

frame is unrecognizable from the original frame. 

Additionally, histogram analysis showed a relatively equal 

frequency of each pixel value while the correlation analysis 

shows that the pixels have very low correlation. Specifically, 

Fig. 2. Network architecture for secure video streaming 

over an ultrasonic channel.  

 



an unencrypted image has a correlation coefficient of 0.9901 

while the image encrypted using the chaotic map had a 

correlation coefficient of 7.7e-4.  

 

Lessons learned through this endeavor will directly 

affect the implementation of secure ultrasonic pathways for 

key distribution. As our proof-of-concept project showed, an 

ultrasonic channel is capable of achieving the necessary 

latency, bandwidth, and bit-error rate for fast and efficient 

transmission of AES keys between devices within the 

network. Further, we explored additional mechanisms to 

encrypt the data while it is being transmitted through the 

ultrasonic pathways. 

 

 

Cyberattack Detection  

 

Through their interactions with physical processes, 

cyber-physical devices generate both network data and 

sensor data. By applying machine learning models to this 

data, patterns can be detected that can indicate equipment 

failure or cyberattacks. This is advantageous over traditional 

intrusion detection systems, which typically only deal with 

network traffic. To explore the potential effectiveness of this 

method, an updated version of the Data Historian (DH) was 

proposed [15]. The data historian was selected due to its 

importance to the overall ICS network for their data auditing 

purposes [16-17].  

 Presented in Figure 4, the proposed data historian 

architecture is responsible for the same data aggregation and 

storage responsibilities of the conventional DH while also 

deploying machine learning models on the dataset for 

cyberattack detection. The deployment of the machine 

learning models is handled by a new Data Analytics 

component, which is powered by the Apache Spark platform 

[18]. Detected cyberattacks are reported to the security 

administrator, along with other useful information that can be 

used for external auditing and other expanded use of data. For 

the project, four machine learning models were selected, and 

included the Naïve Bayes, Logistic Regression, Decision 

Tree Classifier, and the Random Forest Classifier. These 

were selected due to their common application to other 

classification problems. Each machine learning model was 

implemented using the Apache Spark MLlib machine 

learning models. The Naïve Bayes classifier was created 

using the default constructor and no hyperparameters were 

adjusted. Similarly, the Decision Tree Classifier was also 

created using the default constructor, while the Random 

Forest Classifier was set to select from 10 generated decision 

tress. For the Logistic Regression Classifier, the MLlib 

library allows the user to select between lasso regression, 

ridge regression, and elastic net regularization (combination 

between lasso and ridge regression). We selected elastic net 

regularization and the default parameter of 0.80, which 

favored lasso regression.  
 

After implementation, the four machine learning models 

were applied to a simulated gas pipeline dataset [19]. While 

the simulated environment was small, it still provides good 

insight into the operation and characteristics of an overall ICS 

network. During testing, the dataset was split 70%-30% 

(training-testing). Additionally, each model was run 10 times 

with different data splits to provide an average that would 

give a reasonable representation of accuracy. Table I presents 

the accuracy of each machine learning model along with 

evaluation metrics. These metrics include the true positive, 

false positive, true negative, and false negative values.  

 

TABLE I. Accuracy and Evaluation Metrics  

for Cyberattack Detection  
 

Algorithm True 

Positive  
False 

Positive  
True 

Negative 
False 

Negative  
Accuracy 

Naïve 

Bayes 
34.2% 5.7% 15.8% 44.3% 50% 

Logistic 

Regression 
76.7% 0% 19.1% 4.2% 95.8% 

Decision 

Tree 

Classifier 

80.2% 0% 19.3% 0.5% 99.5% 

Random 

Forest 

Classifier 

80% 0% 19.2% 0.8% 99.2% 

 

According to the results, the decision tree (99.5%) and 

random forest (99.2%) classifiers performed the best out of 

Fig. 3. Analysis of encryption of video frame: a) original 

video frame with resolution 640x480, b) chaotic map 

encryption of the frame  

 

Fig. 4. Data historian architecture for cyberattack 

detection. An Apache Spark Master Node is responsible 

for assigning the incoming data to the Apache Spark 

Workers that will run the machine learning models on the 

incoming data.  



the machine learning models. This was expected as 

cyberattacks will cause deviations in the sensor data that will 

fall outside of normal operations. As a result, it’s likely that 

these two tree classifiers picked up on normal operating 

ranges and generated their trees accordingly. Further 

examination of the results reveals that most of the classifiers 

favored false negative results over false positive results. 

During operation, false positives are preferred as a false 

negative means that a cyberattack has slipped through the 

detection routine.  

Future work will begin with feature analysis of the 

dataset to identify key indicators for increased efficiency of 

the models. This may also result in the identification of 

metrics that can be used to assist in transitioning from the gas 

pipeline dataset to a nuclear power plant dataset. 

Additionally, artificial intelligence models will also be 

explored and compared to the machine learning models.   

 

CONCLUSION  

 

Through the support of the NEUP UNLP graduate 

fellowship program, I have made steady progress towards the 

realization of a cyber-secure network architecture for nuclear 

power plants. The proposed architecture enhances national 

security by developing two key cybersecurity solutions to 

address cybersecurity threats. To achieve these goals, we 

have conducted research into the capabilities of ultrasonic 

channels to support a real-time video feed. The success of this 

project will be directly applied to the development of 

ultrasonic pathways for symmetric key distribution, securing 

the vital AES symmetric keys used for data encryption. 

Further, exploration of machine learning and artificial 

intelligence techniques for cyberattack detection will allow 

operators to detect attacks before they can cause permanent 

damage.  
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