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Abstract—This paper presents a system design for a smart bike 

helmet with multiple safety features that are intended to empower 

bicycle riders to proactively avoid potential sources of danger or 

injury.  A Smart Sensor/Actuator Node (SSAN), driven by an 

Arduino Uno single-board microcontroller, contains input sensors 

and actuators to provide riders the ability to send and receive 

warnings promptly on their helmet. A Vision Node, driven by an 

NVIDIA Jetson Nano and a cable pin-connected camera, executes 

AI object detection algorithms for any dangerous objects that are 

out of sight of the rider and sends alerts to the SSAN as needed. 

By combining safety features of the SSAN and Vision Node while 

continuously sending data to an IoT-enabled backend web server, 

the safety operation of a typical bike ride can be substantially 

improved.  
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I. INTRODUCTION  

Many cities have made great progress over the past 5-10 
years in building out infrastructure for bike transportation. 
Municipalities have employed separate bike lanes on major 
streets, biker-friendly crossing signals, harsher penalties for 
drivers who injure bikers, and even biker-only side roads. Yet 
despite societal advances in the safety of bike transportation, 
accidents remain a common and occasionally fatal occurrence in 
the daily life of many riders: approximately 130,000 cyclist 
injuries and 1,000 cyclist fatalities occur every year in the 
United States [1]. Enhanced protections from cities are not 
moving fast enough to prevent this seemingly avoidable source 
of injury and death. The bike helmet is the main source of 
protection for cyclists, and enhancing the capabilities of the 
helmet would be a seamless way to improve the safety of the 
bicycle riding experience. 

Our smart bike helmet design incorporates multiple 
technical components that send and receive data through the 
Bluetooth protocol to help riders prevent accidents. Our helmet 
can detect collisions (using an accelerometer and an ultrasonic 
sensor) and send GPS-located messages to emergency contacts 
after a crash; an airbag-type system is then automatically 
deployed if a “false error” button is not pressed after the crash. 
This GPS sensor also enables the rider to warn other users of 
similar helmets within a user-defined distance if they see an 
unsafe driver, which results in network-empowered safety 
effects. The helmet uses a barometer to detect atmospheric shifts 
that are precursors to rain and warns the user when such a shift 
occurs. Finally, AI object detection algorithms are utilized on 
input images captured by a camera mounted on the back of the 

helmet. This system setup is used to detect whether an object 
outside of the rider’s line of sight is both dangerous and within 
collision distance and alerts the user in these situations. All input 
and output data is continuously sent to a backend server for easy 
access and visualization by the user. 

II.  RELATED WORKS 

Some previous research has explored basic technological 
improvements for bike helmets. Reference [2] developed a 
helmet with theft protection features and capabilities to detect 
whether the rider has consumed alcohol before the initiation of 
a ride. Reference [3] designed an RFID-based security system 
that ensures an electronic bike could only be started once the 
helmet is in the vicinity of the bike. Reference [4] created a 
system that ensures the helmet is being worn while riding a bike 
and provides a basic accident avoidance module that warns users 
when certain types of collisions may occur. Reference [5] 
incorporated similar alcohol detection features but additionally 
included a collision module with a GPS interface that allows the 
helmet to send a location signal of the biker to nearby hospitals 
when an accident occurs. However, even in the most 
sophisticated smart bike helmets that are commercially available 
(such as the Livall BH MT1, Lumos Ultra Helmet, and Hovding 
3 Helmet), we see a lack of helmets that incorporate a cohesive 
set of safety features that harness the latest technological 
capabilities in the fields of artificial intelligence and edge 
computing. 

Our AI image recognition research is inspired by previous 
work on plant image recognition [6] and license plate 
recognition [7]. However, we take our research farther by 
incorporating the output of an image recognition system with a 
supplementary system that uses positional and size data of the 
detected object to determine the proximity of the object to the 
camera. In our bike riding application, including this 
supplementary collision evaluation module is necessary in order 
to make AI image detection features actionable. Without such a 
module, the system would warn the rider of threatening objects 
that are too far from the rider to pose a realistic threat. 

III. SMART BIKE HELMET SYSTEM DESIGN 

Our system contains three main components: a Smart 
Sensor/Actuator Node (SSAN), a Vision Node, and a backend 
web server. A diagram of the system, including the components 
and the types of communication, is shown in Fig. 1. 



 

Fig. 1. System Flowchart of Smart Bike Helmet 

A. Hardware Components of the System 

The SSAN of the system is driven by an Arduino Uno single-
board microcontroller operating at 5V voltage. An HC-06 
Bluetooth module is connected to the Arduino Uno, which 
allows wireless communication with other parts of the system 
(both receiving and sending data). An ADXL345 accelerometer 
and HC-SR04 ultrasonic sensor work in tandem to detect when 
the rider has experienced a collision. To simulate the 
deployment of an airbag, an LED light is implemented to 
indicate when a signal is received for deploying an airbag in the 
case of a crash. Two push buttons are present on the helmet:  one 
that allows the rider to inform the system they are safe when a 
crash is detected (and hence prevent emails being sent to 
emergency contacts), and one that allows the rider to alert others 
within their vicinity of unsafe riding conditions (such as a 
dangerous driver on the road). A BMP180 barometer detects 
changes in atmospheric pressure that could indicate the 
possibility of future unanticipated rain, and a Neo-6M GPS 
receiver collects GPS data while the system is powered on. All 
sensor node components are connected via pin wiring. 

The core component of the Vision Node is an NVIDIA 
Jetson Nano with a built-in 128-core GPU with a 10W power 
consumption rate. The Jetson Nano in our design is equipped 
with an IMX 219 8MP camera and an Intel 8265 Wi-
Fi/Bluetooth adapter. Finally, the back-end web server for the 
system is a ThingSpeak web server, which is accessed via a 
Python script running on the Jetson Nano that sends data via an 
HTTP web socket connection. 

The entire system is powered by a portable and rechargeable 
power source with 24,000 mAh capacity. In practice, a power 
source with much less capacity could be employed, which would 
improve system cost and weight considerations.  

B. Design Architecture of Programmatic Components 

The SSAN, located on the helmet, is responsible for 
collecting the data from the different sensors and activating 
alerts and protection features if needed. The general flowchart 
of the SSAN is shown in Fig. 2. 

 

Fig. 2. Operation Flowchart for SSAN 

If the acceleration magnitude is sufficiently high and the 
ultrasonic sensor detects an object within a certain distance (both 
inputs configurable by the user), the crash alert is raised. Also, 
if the unsafe button is pressed, the unsafe alert flag is set to 1 and 
sends an email to an emergency contact for assistance 
(alternatively, the system can send a warning to other users of 
the helmet within a certain distance of the rider). For rain 
detection, if the air pressure drops below a set threshold, the 
buzzer emits an alarm. 

If there are no crashes or unsafe alerts, the system sends log 
data using the Bluetooth module every 15 seconds. If a crash is 
detected and the false positive button is not pressed within 5 
seconds, an emergency email is sent to an emergency contact 
along with the last known GPS coordinates of the rider. With the 
false positive button acting as a safeguard, if the biker 
experiences a fall event but does not require assistance, then the 
biker can simply press the false positive button to avoid 
unnecessary contact triggers. 

The design of data transmission across 15-second intervals 
allows us to reduce the power consumption of the Bluetooth 
module. Within 15 seconds, the air pressure and GPS data are 
unlikely to change significantly, so the chance of losing 
important data is low. This also ensures that the Bluetooth 
module is not overflowed and that the server has the time to 
process each received message. The message sent from the 
SSAN is a string containing all the information with a comma as 



a separator.  In addition, we include start and stop characters to 
ensure the message is not truncated.  

C. AI Features and Algorithms 

For designing the AI algorithms used to detect potential 
collisions, it is desired to split the task into two main 
components, since determining the potential danger posed by a 
captured image can be segmented into two questions:  whether 
an object that is detected in the image is potentially dangerous, 
and whether that object is approaching a collision zone near the 
rider. We call these, respectively, the object recognition module 
and distance/collision evaluation module.  

The object recognition module is tasked with detecting an 
object within an image captured by the rider, classifying that 
image, and then determining whether that image falls within a 
predefined set of potentially dangerous objects. For this module, 
we evaluated the performance of various Deep Neural Networks 
(DNNs) for recognizing live objects with the Jetson Nano 
camera in the street. We used this approach instead of testing on 
static image files to ensure that the DNN was appropriately 
vetted for the environment in which our helmet would be 
applied. 

Each DNN detects the “class” of an object in an image and 
outputs the confidence level of the algorithm in its prediction 
(from a level of 0-100%). These confidence levels are used in 
our system for allowing users to heighten or lower the frequency 
of warnings being sent to the rider; if the DNN is not sufficiently 
confident that the detected object is a threat, no warning will be 
sent. For each network, we tested 50 live video samples, with 
half representing a car passing by on the street and the other half 
representing a non-car object such as a mailbox, garbage can, or 
tree. We stored several measures during each trial, which are 
presented in Table I. The average frames per second (FPS) of 
the DNN tells us how many image frames are processed per 
second and is an important measure of the computational speed 
of each network. We stored whether the DNN made a successful 
or erroneous prediction in each trial and the confidence level of 
the DNN for each prediction. The false positive rate tells us the 
percentage of positive threat warnings that were incorrect, and 
the false negative rate tells us the percentage of non-threat 
predictions that were incorrect (i.e. the network indicated an 
object was not a threat when it was a threat). Average confidence 
levels were bifurcated for successful predictions and 
unsuccessful predictions. Only three of the networks provided 
positional coordinates of detected objects in the image (i.e. the 
region within the image that a detected object lies within), which 
is an important input for the distance/collision evaluation 
module. 

The detected objects are then analyzed by a 
distance/collision evaluation module. To derive a solution 
without additional hardware or complex software 
implementation, we designed an algorithm that directly analyzes 
the content of each frame. To avoid detecting cars parked on the 
side of the road or pedestrians on the sidewalk as threats, a 
“threat zone” is defined that excludes sidewalks and street 
parking spaces. An example is shown in Fig. 3; the threat zone 
is delimited by the white line in the bottom center of the frame. 

 

Fig. 3. Evaluated Threat Zone for Distance/Collision Evaluation 

If a threat object is detected within the threat zone, the 
system then checks the size of the detected object. The closer it 
is to the biker, the bigger it will be on the frame due to 
perspective. We used OpenCV to visualize the bounding boxes 
and threat status. A box is drawn if the object detected is a threat. 
If all the criteria are met, the system flags a high collision risk. 
A message is then sent to the SSAN on the helmet to turn on the 
buzzer and alert the user. We evaluated research when 
considering the incorporation of additional OpenCV features in 
our evaluation module [8], but as mentioned above, we found 
that too much computational complexity for this module led to 
poor performance that compromised the ability of warnings to 
be sent to the rider within a sufficient time to react to the threat. 
An operation flowchart is shown in Fig. 4.  

 

Fig. 4. Operation Flowchart for Vision Node  

 

 

 



IV. RESULTS AND ANALYSIS 

A picture of the implemented helmet is included in Fig. 5. 
The helmet was tested in street conditions, and multiple safety 
features were vetted. 

 

Fig. 5 Picture of Implemented Smart Bike Helmet 

A. Live Trial of Crash Event 

We performed a live demonstration of a rider getting into a 
crash while wearing the helmet. First, the user fell to the ground 
and did not press the “false alarm” button, which caused the 
accelerometer and ultrasonic sensor to trigger a warning. The 
warning was processed by the SSAN and sent via Bluetooth to 
the Vision Node, which immediately sent a notification to an 
emergency contact with the GPS coordinates of the fallen rider. 
Subsequently, the rider sent an unsafe conditions alert to an 
emergency contact, which was received promptly after the input 
button was pressed.  

B. Object Recognition DNN Comparison 

When choosing an object recognition algorithm to use for 
the system, we evaluated performance measures collected for 
each network as described above and presented in Table I. We 
eliminated networks from consideration with average frames per 
second (FPS) under 20, since FPS values under this level reflect 
compromised ability to detect fast-moving vehicles. Notably, 
not all of the DNNs provided positional coordinates of the 
detected object, which is an important input to the 
distance/collision evaluation module; accordingly, networks 
without these capabilities were eliminated. With these filters in 
place, we then chose the network with the highest average 
confidence on successful predictions and lowest average 
confidence on erroneous predictions; SSD-mobilenet-v2 yielded 
superior performance when combining these considerations. We 
note that some research has indicated superior image recognition 
accuracy of the Yolo v3 architecture when compared to SSD-
mobilenet-v2 [9], although these researchers have also found 
computational performance of Yolo to be lacking. Hardware 
differences and the relative importance of quick detection in our 
application were the main drivers of our difference in 
conclusion.  

TABLE I. DNN PERFORMANCE COMPARISON 

DNN 
Avg 

FPS 

Fls. + 

rate 

Fls. - 

rate 

Avg 

conf., 

error 

Avg 

conf., 

success 

Incl. 

coord

? 

AlexNet 60 2% 22% 38% 66% No 

GoogleNet 59 2% 16% 32% 80% No 

Inception-v4 10 2% 10% 12% 72% No 

ResNet-18 77 4% 26% 16% 68% No 

SSD-

mobilenet-v2 
22 0% 22% 12% 84% Yes 

SSD-Inception-

v2 
24 2% 16% 26% 76% Yes 

Yolo v3 2.5 4% 46% 32% 74% Yes 

 

C. Distance/Collision Evaluation Test 

     To test the crash prevention feature, we took our helmet 
to a busy street in order to feed input images to our camera that 
reflect the same images a biker would collect from the 
perspective of the back of their helmet. As displayed in Fig. 6, 
the algorithm detects the persons, cars, and bus in the frame. In 
the first picture, since the people and the bus are not in the threat 
zone, the collision risk is not high. The cars on the road coming 
towards the biker are in the threat zone, but they aren’t big 
enough on the frame, meaning that they are not close enough to 
be considered as high collision risk. The borders of the boxes 
stay green if there is a low risk of collision. 

     In the second picture, the cars get closer to the biker and 
the bounding box around the dangerous car turns red. This 
means that this car has a high collision risk with the rider, and a 
Bluetooth message was sent to the SSAN that activated the 
helmet buzzer. We note that positioning the camera on the back 
of the helmet proved particularly useful for cars positioned in 
the biker’s blind spots. In several cases, electric cars with silent 
engines (which are growing increasingly prevalent on city 
streets) were detected by the helmet, and these cars would have 
been very difficult for a bike rider to detect in their blind spot 
due to the lack of engine noise. 



 

Fig. 6 Output from Distance/Collision Evaluation 

D. Data Visualization in the ThingSpeak Server 

The IoT capabilities of the helmet allow the biker to create 
visualizations and view statistics of their journey by accessing 
their account on the ThingSpeak web server. The biker can view 
a graphical history of accelerometer and barometer data, along 
with their longitude and latitude throughout their previous ride. 
This GPS data can also be accessed via a geographical map 
developed with a MATLAB script, which is presented in Fig. 7.  

 

 
Fig. 7 Graphical Display of Historical Ride Coordinates 

V. CONCLUSION 

In this paper, we have presented a full-featured bike helmet 
safety system. This system contains multiple nodes that work 
together to take input from the biker and their surroundings and 
provide output to the rider that alerts them of unsafe conditions 
during their ride. In street testing, the helmet provided accurate 
detection of potentially dangerous objects that were out of the 
line of sight of the rider yet within collision distance and 
position. 

Various improvements, left as future work, could enhance 
the overall design and usability of the system. Ideally, the way 

the rider would interact with the system would be via a 
smartphone app, which would reduce the system weight on the 
helmet and provide a more seamless user experience. Replacing 
the Jetson Nano in our system with a smartphone that is capable 
of running the collision evaluation algorithms, and integrating 
the SSAN with a smartphone app via Bluetooth, would provide 
a more seamless experience for the user. 

For warning other riders of unsafe conditions, it would be 
ideal if an open-source API could be developed to allow 
multiple entities the ability to provide warnings. For example, if 
a city has red light cameras that detect unsafe drivers, then it is 
imaginable that our helmets could receive alerts of these 
situations; this would require coordinated development into an 
open-source API with government entities. As mentioned 
above, using a lower-cost power source and reducing the power 
requirements of the system could improve cost considerations. 
Of course, replacing our LED light emulation of an airbag with 
a deployable safety device is an additional area for future 
development. Finally, we note that safety standards for bike 
helmets exist in many countries, such as the U.S. CPSC Safety 
Standard for Bicycle Helmets for Persons Age 5 and Older; our 
helmet was not yet vetted for such standards. 
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