
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

IoT-Enabled Smart Bike Helmet with an AI-Driven
Collision Avoidance System

Jacob Solus, Maureen Rakotondraibe, Xinrui Yu, Won-Jae Yi, Mikhail Gromov and Jafar Saniie

Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu)

Department of Electrical and Computer Engineering

Illinois Institute of Technology, Chicago IL, U.S.A.

Abstract—This paper presents a system design for a smart bike

helmet with multiple safety features that are intended to empower

bicycle riders to proactively avoid potential sources of danger or

injury. A Smart Sensor/Actuator Node (SSAN), driven by an

Arduino Uno single-board microcontroller, contains input sensors

and actuators to provide riders the ability to send and receive

warnings promptly on their helmet. A Vision Node, driven by an

NVIDIA Jetson Nano and a cable pin-connected camera, executes

AI object detection algorithms for any dangerous objects that are

out of sight of the rider and sends alerts to the SSAN as needed.

By combining safety features of the SSAN and Vision Node while

continuously sending data to an IoT-enabled backend web server,

the safety operation of a typical bike ride can be substantially

improved.

Keywords—Computer Vision, Artificial Intelligence, Deep

Learning, Edge Computing, Internet of Things, Bicycle Safety

I. INTRODUCTION

Many cities have made great progress over the past 5-10
years in building out infrastructure for bike transportation.
Municipalities have employed separate bike lanes on major
streets, biker-friendly crossing signals, harsher penalties for
drivers who injure bikers, and even biker-only side roads. Yet
despite societal advances in the safety of bike transportation,
accidents remain a common and occasionally fatal occurrence in
the daily life of many riders: approximately 130,000 cyclist
injuries and 1,000 cyclist fatalities occur every year in the
United States [1]. Enhanced protections from cities are not
moving fast enough to prevent this seemingly avoidable source
of injury and death. The bike helmet is the main source of
protection for cyclists, and enhancing the capabilities of the
helmet would be a seamless way to improve the safety of the
bicycle riding experience.

Our smart bike helmet design incorporates multiple
technical components that send and receive data through the
Bluetooth protocol to help riders prevent accidents. Our helmet
can detect collisions (using an accelerometer and an ultrasonic
sensor) and send GPS-located messages to emergency contacts
after a crash; an airbag-type system is then automatically
deployed if a “false error” button is not pressed after the crash.
This GPS sensor also enables the rider to warn other users of
similar helmets within a user-defined distance if they see an
unsafe driver, which results in network-empowered safety
effects. The helmet uses a barometer to detect atmospheric shifts
that are precursors to rain and warns the user when such a shift
occurs. Finally, AI object detection algorithms are utilized on
input images captured by a camera mounted on the back of the

helmet. This system setup is used to detect whether an object
outside of the rider’s line of sight is both dangerous and within
collision distance and alerts the user in these situations. All input
and output data is continuously sent to a backend server for easy
access and visualization by the user.

II. RELATED WORKS

Some previous research has explored basic technological
improvements for bike helmets. Reference [2] developed a
helmet with theft protection features and capabilities to detect
whether the rider has consumed alcohol before the initiation of
a ride. Reference [3] designed an RFID-based security system
that ensures an electronic bike could only be started once the
helmet is in the vicinity of the bike. Reference [4] created a
system that ensures the helmet is being worn while riding a bike
and provides a basic accident avoidance module that warns users
when certain types of collisions may occur. Reference [5]
incorporated similar alcohol detection features but additionally
included a collision module with a GPS interface that allows the
helmet to send a location signal of the biker to nearby hospitals
when an accident occurs. However, even in the most
sophisticated smart bike helmets that are commercially available
(such as the Livall BH MT1, Lumos Ultra Helmet, and Hovding
3 Helmet), we see a lack of helmets that incorporate a cohesive
set of safety features that harness the latest technological
capabilities in the fields of artificial intelligence and edge
computing.

Our AI image recognition research is inspired by previous
work on plant image recognition [6] and license plate
recognition [7]. However, we take our research farther by
incorporating the output of an image recognition system with a
supplementary system that uses positional and size data of the
detected object to determine the proximity of the object to the
camera. In our bike riding application, including this
supplementary collision evaluation module is necessary in order
to make AI image detection features actionable. Without such a
module, the system would warn the rider of threatening objects
that are too far from the rider to pose a realistic threat.

III. SMART BIKE HELMET SYSTEM DESIGN

Our system contains three main components: a Smart
Sensor/Actuator Node (SSAN), a Vision Node, and a backend
web server. A diagram of the system, including the components
and the types of communication, is shown in Fig. 1.

Fig. 1. System Flowchart of Smart Bike Helmet

A. Hardware Components of the System

The SSAN of the system is driven by an Arduino Uno single-
board microcontroller operating at 5V voltage. An HC-06
Bluetooth module is connected to the Arduino Uno, which
allows wireless communication with other parts of the system
(both receiving and sending data). An ADXL345 accelerometer
and HC-SR04 ultrasonic sensor work in tandem to detect when
the rider has experienced a collision. To simulate the
deployment of an airbag, an LED light is implemented to
indicate when a signal is received for deploying an airbag in the
case of a crash. Two push buttons are present on the helmet: one
that allows the rider to inform the system they are safe when a
crash is detected (and hence prevent emails being sent to
emergency contacts), and one that allows the rider to alert others
within their vicinity of unsafe riding conditions (such as a
dangerous driver on the road). A BMP180 barometer detects
changes in atmospheric pressure that could indicate the
possibility of future unanticipated rain, and a Neo-6M GPS
receiver collects GPS data while the system is powered on. All
sensor node components are connected via pin wiring.

The core component of the Vision Node is an NVIDIA
Jetson Nano with a built-in 128-core GPU with a 10W power
consumption rate. The Jetson Nano in our design is equipped
with an IMX 219 8MP camera and an Intel 8265 Wi-
Fi/Bluetooth adapter. Finally, the back-end web server for the
system is a ThingSpeak web server, which is accessed via a
Python script running on the Jetson Nano that sends data via an
HTTP web socket connection.

The entire system is powered by a portable and rechargeable
power source with 24,000 mAh capacity. In practice, a power
source with much less capacity could be employed, which would
improve system cost and weight considerations.

B. Design Architecture of Programmatic Components

The SSAN, located on the helmet, is responsible for
collecting the data from the different sensors and activating
alerts and protection features if needed. The general flowchart
of the SSAN is shown in Fig. 2.

Fig. 2. Operation Flowchart for SSAN

If the acceleration magnitude is sufficiently high and the
ultrasonic sensor detects an object within a certain distance (both
inputs configurable by the user), the crash alert is raised. Also,
if the unsafe button is pressed, the unsafe alert flag is set to 1 and
sends an email to an emergency contact for assistance
(alternatively, the system can send a warning to other users of
the helmet within a certain distance of the rider). For rain
detection, if the air pressure drops below a set threshold, the
buzzer emits an alarm.

If there are no crashes or unsafe alerts, the system sends log
data using the Bluetooth module every 15 seconds. If a crash is
detected and the false positive button is not pressed within 5
seconds, an emergency email is sent to an emergency contact
along with the last known GPS coordinates of the rider. With the
false positive button acting as a safeguard, if the biker
experiences a fall event but does not require assistance, then the
biker can simply press the false positive button to avoid
unnecessary contact triggers.

The design of data transmission across 15-second intervals
allows us to reduce the power consumption of the Bluetooth
module. Within 15 seconds, the air pressure and GPS data are
unlikely to change significantly, so the chance of losing
important data is low. This also ensures that the Bluetooth
module is not overflowed and that the server has the time to
process each received message. The message sent from the
SSAN is a string containing all the information with a comma as

a separator. In addition, we include start and stop characters to
ensure the message is not truncated.

C. AI Features and Algorithms

For designing the AI algorithms used to detect potential
collisions, it is desired to split the task into two main
components, since determining the potential danger posed by a
captured image can be segmented into two questions: whether
an object that is detected in the image is potentially dangerous,
and whether that object is approaching a collision zone near the
rider. We call these, respectively, the object recognition module
and distance/collision evaluation module.

The object recognition module is tasked with detecting an
object within an image captured by the rider, classifying that
image, and then determining whether that image falls within a
predefined set of potentially dangerous objects. For this module,
we evaluated the performance of various Deep Neural Networks
(DNNs) for recognizing live objects with the Jetson Nano
camera in the street. We used this approach instead of testing on
static image files to ensure that the DNN was appropriately
vetted for the environment in which our helmet would be
applied.

Each DNN detects the “class” of an object in an image and
outputs the confidence level of the algorithm in its prediction
(from a level of 0-100%). These confidence levels are used in
our system for allowing users to heighten or lower the frequency
of warnings being sent to the rider; if the DNN is not sufficiently
confident that the detected object is a threat, no warning will be
sent. For each network, we tested 50 live video samples, with
half representing a car passing by on the street and the other half
representing a non-car object such as a mailbox, garbage can, or
tree. We stored several measures during each trial, which are
presented in Table I. The average frames per second (FPS) of
the DNN tells us how many image frames are processed per
second and is an important measure of the computational speed
of each network. We stored whether the DNN made a successful
or erroneous prediction in each trial and the confidence level of
the DNN for each prediction. The false positive rate tells us the
percentage of positive threat warnings that were incorrect, and
the false negative rate tells us the percentage of non-threat
predictions that were incorrect (i.e. the network indicated an
object was not a threat when it was a threat). Average confidence
levels were bifurcated for successful predictions and
unsuccessful predictions. Only three of the networks provided
positional coordinates of detected objects in the image (i.e. the
region within the image that a detected object lies within), which
is an important input for the distance/collision evaluation
module.

The detected objects are then analyzed by a
distance/collision evaluation module. To derive a solution
without additional hardware or complex software
implementation, we designed an algorithm that directly analyzes
the content of each frame. To avoid detecting cars parked on the
side of the road or pedestrians on the sidewalk as threats, a
“threat zone” is defined that excludes sidewalks and street
parking spaces. An example is shown in Fig. 3; the threat zone
is delimited by the white line in the bottom center of the frame.

Fig. 3. Evaluated Threat Zone for Distance/Collision Evaluation

If a threat object is detected within the threat zone, the
system then checks the size of the detected object. The closer it
is to the biker, the bigger it will be on the frame due to
perspective. We used OpenCV to visualize the bounding boxes
and threat status. A box is drawn if the object detected is a threat.
If all the criteria are met, the system flags a high collision risk.
A message is then sent to the SSAN on the helmet to turn on the
buzzer and alert the user. We evaluated research when
considering the incorporation of additional OpenCV features in
our evaluation module [8], but as mentioned above, we found
that too much computational complexity for this module led to
poor performance that compromised the ability of warnings to
be sent to the rider within a sufficient time to react to the threat.
An operation flowchart is shown in Fig. 4.

Fig. 4. Operation Flowchart for Vision Node

IV. RESULTS AND ANALYSIS

A picture of the implemented helmet is included in Fig. 5.
The helmet was tested in street conditions, and multiple safety
features were vetted.

Fig. 5 Picture of Implemented Smart Bike Helmet

A. Live Trial of Crash Event

We performed a live demonstration of a rider getting into a
crash while wearing the helmet. First, the user fell to the ground
and did not press the “false alarm” button, which caused the
accelerometer and ultrasonic sensor to trigger a warning. The
warning was processed by the SSAN and sent via Bluetooth to
the Vision Node, which immediately sent a notification to an
emergency contact with the GPS coordinates of the fallen rider.
Subsequently, the rider sent an unsafe conditions alert to an
emergency contact, which was received promptly after the input
button was pressed.

B. Object Recognition DNN Comparison

When choosing an object recognition algorithm to use for
the system, we evaluated performance measures collected for
each network as described above and presented in Table I. We
eliminated networks from consideration with average frames per
second (FPS) under 20, since FPS values under this level reflect
compromised ability to detect fast-moving vehicles. Notably,
not all of the DNNs provided positional coordinates of the
detected object, which is an important input to the
distance/collision evaluation module; accordingly, networks
without these capabilities were eliminated. With these filters in
place, we then chose the network with the highest average
confidence on successful predictions and lowest average
confidence on erroneous predictions; SSD-mobilenet-v2 yielded
superior performance when combining these considerations. We
note that some research has indicated superior image recognition
accuracy of the Yolo v3 architecture when compared to SSD-
mobilenet-v2 [9], although these researchers have also found
computational performance of Yolo to be lacking. Hardware
differences and the relative importance of quick detection in our
application were the main drivers of our difference in
conclusion.

TABLE I. DNN PERFORMANCE COMPARISON

DNN
Avg

FPS

Fls. +

rate

Fls. -

rate

Avg

conf.,

error

Avg

conf.,

success

Incl.

coord

?

AlexNet 60 2% 22% 38% 66% No

GoogleNet 59 2% 16% 32% 80% No

Inception-v4 10 2% 10% 12% 72% No

ResNet-18 77 4% 26% 16% 68% No

SSD-

mobilenet-v2
22 0% 22% 12% 84% Yes

SSD-Inception-

v2
24 2% 16% 26% 76% Yes

Yolo v3 2.5 4% 46% 32% 74% Yes

C. Distance/Collision Evaluation Test

 To test the crash prevention feature, we took our helmet
to a busy street in order to feed input images to our camera that
reflect the same images a biker would collect from the
perspective of the back of their helmet. As displayed in Fig. 6,
the algorithm detects the persons, cars, and bus in the frame. In
the first picture, since the people and the bus are not in the threat
zone, the collision risk is not high. The cars on the road coming
towards the biker are in the threat zone, but they aren’t big
enough on the frame, meaning that they are not close enough to
be considered as high collision risk. The borders of the boxes
stay green if there is a low risk of collision.

 In the second picture, the cars get closer to the biker and
the bounding box around the dangerous car turns red. This
means that this car has a high collision risk with the rider, and a
Bluetooth message was sent to the SSAN that activated the
helmet buzzer. We note that positioning the camera on the back
of the helmet proved particularly useful for cars positioned in
the biker’s blind spots. In several cases, electric cars with silent
engines (which are growing increasingly prevalent on city
streets) were detected by the helmet, and these cars would have
been very difficult for a bike rider to detect in their blind spot
due to the lack of engine noise.

Fig. 6 Output from Distance/Collision Evaluation

D. Data Visualization in the ThingSpeak Server

The IoT capabilities of the helmet allow the biker to create
visualizations and view statistics of their journey by accessing
their account on the ThingSpeak web server. The biker can view
a graphical history of accelerometer and barometer data, along
with their longitude and latitude throughout their previous ride.
This GPS data can also be accessed via a geographical map
developed with a MATLAB script, which is presented in Fig. 7.

Fig. 7 Graphical Display of Historical Ride Coordinates

V. CONCLUSION

In this paper, we have presented a full-featured bike helmet
safety system. This system contains multiple nodes that work
together to take input from the biker and their surroundings and
provide output to the rider that alerts them of unsafe conditions
during their ride. In street testing, the helmet provided accurate
detection of potentially dangerous objects that were out of the
line of sight of the rider yet within collision distance and
position.

Various improvements, left as future work, could enhance
the overall design and usability of the system. Ideally, the way

the rider would interact with the system would be via a
smartphone app, which would reduce the system weight on the
helmet and provide a more seamless user experience. Replacing
the Jetson Nano in our system with a smartphone that is capable
of running the collision evaluation algorithms, and integrating
the SSAN with a smartphone app via Bluetooth, would provide
a more seamless experience for the user.

For warning other riders of unsafe conditions, it would be
ideal if an open-source API could be developed to allow
multiple entities the ability to provide warnings. For example, if
a city has red light cameras that detect unsafe drivers, then it is
imaginable that our helmets could receive alerts of these
situations; this would require coordinated development into an
open-source API with government entities. As mentioned
above, using a lower-cost power source and reducing the power
requirements of the system could improve cost considerations.
Of course, replacing our LED light emulation of an airbag with
a deployable safety device is an additional area for future
development. Finally, we note that safety standards for bike
helmets exist in many countries, such as the U.S. CPSC Safety
Standard for Bicycle Helmets for Persons Age 5 and Older; our
helmet was not yet vetted for such standards.

REFERENCES

[1] Centers for Disease Control and Prevention Web-based Injury Statistics
Query and Reporting System (WISQARS). [online]

[2] P. C, R. C, P. N. M, R. P. S and S. M, "Smart Bike Helmet with Vehicle
Tracking System using Arduino," 2022 International Conference on Edge
Computing and Applications (ICECAA), Tamilnadu, India, 2022, pp.
579-582, doi: 10.1109/ICECAA55415.2022.9936590.

[3] D. K. P. Gudavalli, B. S. Rani and C. V. Sagar, "Helmet operated smart
E-bike," 2017 IEEE International Conference on Intelligent Techniques
in Control, Optimization and Signal Processing (INCOS), Srivilliputtur,
India, 2017, pp. 1-5, doi: 10.1109/ITCOSP.2017.8303138.

[4] N. Nataraja, K. S. Mamatha, Keshavamurthy and Shivashankar, "SMART
HELMET," 2018 3rd IEEE International Conference on Recent Trends
in Electronics, Information & Communication Technology (RTEICT),
Bangalore, India, 2018, pp. 2338-2341, doi:
10.1109/RTEICT42901.2018.9012338.

[5] A. Jesudoss, R. Vybhavi and B. Anusha, "Design of Smart Helmet for
Accident Avoidance," 2019 International Conference on Communication
and Signal Processing (ICCSP), Chennai, India, 2019, pp. 0774-0778, doi:
10.1109/ICCSP.2019.8698000.

[6] S. Chavan, J. Ford, X. Yu and J. Saniie, "Plant Species Image Recognition
using Artificial Intelligence on Jetson Nano Computational Platform,"
2021 IEEE International Conference on Electro Information Technology
(EIT), Mt. Pleasant, MI, USA, 2021, pp. 350-354, doi:
10.1109/EIT51626.2021.9491893.

[7] N. Awalgaonkar, P. Bartakke and R. Chaugule, "Automatic License Plate
Recognition System Using SSD," 2021 International Symposium of
Asian Control Association on Intelligent Robotics and Industrial
Automation (IRIA), Goa, India, 2021, pp. 394-399, doi:
10.1109/IRIA53009.2021.9588707.

[8] F. K. Noble, "Comparison of OpenCV's feature detectors and feature
matchers," 2016 23rd International Conference on Mechatronics and
Machine Vision in Practice (M2VIP), Nanjing, China, 2016, pp. 1-6, doi:
10.1109/M2VIP.2016.7827292.

[9] A. C. Rios, D. H. dos Reis, R. M. da Silva, M. A. de Souza Leite Cuadros
and D. F. T. Gamarra, "Comparison of the YOLOv3 and SSD MobileNet
v2 Algorithms for Identifying Objects in Images from an Indoor Robotics
Dataset," 2021 14th IEEE International Conference on Industry
Applications (INDUSCON), São Paulo, Brazil, 2021, pp. 96-101, doi:
10.1109/INDUSCON51756.2021.9529585.

