
Evaluation of Homomorphic Encryption for Privacy
in Principal Component Analysis

David Arnold and Jafar Saniie

Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu)

Department of Electrical and Computer Engineering

Illinois Institute of Technology, Chicago IL, U.S.A.

Abstract– Principal Component Analysis (PCA) is a versatile

Unsupervised Learning (UL) technique for reducing the

dimensionality of datasets. As a result, PCA is widely used in

consumer and research applications as a preprocessing tool for

identifying important features prior to further analysis. In

instances where on-site personnel or developers do not have the

expertise to apply UL techniques, third party processors are

frequently retained. However, the release of client or proprietary

data poses a substantial security risk. This risk increases the

regulatory and contractual burden on analysts when interacting

with sensitive or classified information. Homomorphic Encryption

(HE) cryptosystems are a novel family of encryption algorithms

that permit approximate addition and multiplication on encrypted

data. When applied to UL models, such as PCA, experts may apply

their expertise while maintaining data privacy. In order to evaluate

the potential application of Homomorphic Encryption, we

implemented Principal Component Analysis using the Microsoft

SEAL HE libraries. The resulting implementation was applied to

the MNIST Handwritten dataset for feature reduction and image

reconstruction. Based on our results, HE considerably increased

the time required to process the dataset. However, the HE

algorithm is still viable for non-real-time applications as it had an

average pixel error of near-zero for all image reconstructions.

Keywords– Unsupervised Learning, Principal Component Analysis,

Homomorphic Encryption

I. INTRODUCTION

Over the past decade, advancements in Machine Learning and

Artificial Intelligence, coupled with Big Data Analytics, have

resulted in tailored customer experiences. However, these

conveniences took a heavy toll on user privacy, consuming

personal data at an alarming rate. Similarly, companies without

ML expertise began to rely on third-party experts to conduct

analysis. In cases where sensitive or confidential data is the

subject of analysis, transfer to third parties increases the risk of

data exposure or leaks.

In response, many regulatory agencies and consumer

watchdogs are pushing for stronger privacy safeguards and

security standards. Within the United States, the Federal Trade

Commission frequently brings enforcement actions against

companies that fail to properly protect consumer privacy. While

there are no general privacy or security laws in the US, the FTC

applies their authority under Section 5 of the FTC Act,

considering breaches of consumer privacy as deceptive or unfair

commercial acts. The agency has brought over 80 general

privacy lawsuits since 2002, including a $5 billion penalty

against Facebook for misrepresenting user control over personal

data [1, 2]. Abroad, the General Data Protection Regulation

(GDPR) includes explicit protections for consumer personal

data and even extends protection to third party processors [3].

After one year of coming in effect in 2018, 91 fines had been

levied from GDPR enforcement actions [4]. Of these fines, 56

dealt with the handling of personal information, ranging from

improper processing, lawful processing, and secure processing.

To address these challenges, Homomorphic Encryption (HE)

is a promising tool for enhancing data privacy while also

maintaining access to popular ML algorithms. HE cryptosystems

are a new class of encryption that permit approximate addition

and multiplication operations on encrypted data. By using these

simple operations, complex ML algorithms can be applied to a

given dataset without compromising the privacy of the

underlying data. In our previous work, we explored the potential

application of HE on a Neural Network [5]. While the

implementation had a large storage and computation overhead,

it was still suitable for non-real-time applications. This work

extends our previous work by exploring a Principal Component

Analysis (PCA) implementation. PCA was selected as it is

commonly used in feature reduction, which can be a powerful

asset for decreasing the number of connections required in ML

models. Further, PCA can be used to reconstruct the image (we

will refer to this as image reconstruction) with a reduced number

of features. This can be useful in highlighting defects or

imperfections [6-8].

Through the remainder of this paper, we will evaluate

Homomorphic Encryption for Principal Component Analysis.

First, we will discuss Homomorphic Encryption and the

Microsoft SEAL libraries. Next, Principal Component Analysis

for feature reduction and image reconstruction will be presented.

PCA will be applied to the MNIST Handwritten dataset. Finally,

we will compare the time required to apply PCA on both

encrypted and plaintext datasets.

II. HOMOMORPHIC ENCRYPTION

Currently, the common use-case for HE is for computations in
a cloud infrastructure, as presented in Figure 1. During
operation, a client encrypts their data and sends it to a remote
server. In our case, we will be encrypting images from the
MNIST Handwritten Dataset. Next, the server will apply the
desired algorithm on the encrypted dataset in HE. After

receiving the result and decrypting the data, the client receives
the desired output. For our application, we will be applying
Principal Component Analysis for both feature reduction and
image reconstruction.

Fig. 1. Potential application of Homomorphic Encryption using Cloud
infrastructure.

For our research, we have selected the Microsoft SEAL

libraries to implement Principal Component Analysis (PCA) in
Homomorphic Encryption (HE) [9]. The SEAL libraries are a
popular tool for software developers to quickly apply HE
without needing to implement the complex mathematics.
Currently, C++ and python are supported, however since the
libraries are written in C++, we selected C++. Three encryption
schemes are provided with the toolkit, namely BFV, BGV, and
CKKS. BFV and BGV permit modular arithmetic operations
with encrypted integers whereas CKKS can be used for
approximate additions and multiplications on encrypted real or
complex numbers [10]. Since we will be standardizing our
dataset for PCA training, we used the CKKS scheme as it
allowed us to use double values.

Through our previous work, we explored the potential
application of HE on a simple Neural Network (NN) and
observed potential challenges in adoption [5]. Among these
challenges included limitations regarding the number of
computations that can be completed, the size of the encrypted
data, and the computation time. The root cause of these
limitations occurs during initialization of the CKKS algorithm,
in which the ciphertext space for operations is set by a poly-
modulus degree. During a multiplication operation, the size of
ciphertext needs to grow linearly and must be rescaled and re-
linearized before completing the next operation. While this
rescaling process limits the potential error size, it also sets a hard
limit on the number of operations we can completed. In the case
of our Neural Network implementation, we needed to complete
4 multiplications, which required a poly-modulus degree of
16,384. For our PCA implementation, we only need to complete
1 matrix multiplication for feature reduction and 2 matrix
multiplications for image reconstruction. This translated to a
poly-modulus degree of 8192. This should positively impact the
storage requirements for our planned implementation.

In addition to challenges presented by the poly-modulus
degree, the complexity of operations is also limited to additions
and multiplications. As a result, operations such as comparisons

and divisions, common among activation functions, need to be
approximated. This was required in our NN approach, in which
we used polynomial approximation to model the ReLU function.
However, since PCA only requires multiplication and
transposition, we did not need to approximate any functions this
time around. Further, this makes training of our models
infeasible in the Homomorphic Encryption domain. As a result,
we will complete training via plaintext operations while the
application of the trained model will be completed through HE.

Recently, there has been an increase in similar works applying
Homomorphic Encryption to Machine Learning Applications.
Applications include Decision Trees, Neural Networks, and
Convolutional Neural Networks [11-18]. Additionally, similar
work has been undertaken regarding Principal Component
Analysis [19-20]. Our contribution expands the literature on this
subject by completing a full comparison between the
computation time of the HE and plaintext implementations,
analyzing the average error in the results when using the CKKS
scheme, and reconstructing the images using a reduced feature
space.

III. PRINCIPAL COMPONENT ANALYSIS

Principal Component Analysis (PCA) is a popular
unsupervised learning technique for feature reduction and image
reconstruction. During operation, PCA attempts to transform the
data into a coordinate system where the data is better described
with fewer dimensions. This is accomplished by maximizing the
variance between each feature. Since the training process is far
too complex for our Homomorphic Encryption toolkit to handle,
we will only briefly describe the steps that we took.

For our application, we conducted our training using python,
which streamlined our development process through the numpy
and scipy libraries. To begin, we standardized our training data
to a mean of 0 and a standard deviation of 1, which will need to
be applied to our testing data prior to encryption. Next, we
calculated the covariance matrix between the features, which
describes the correlation of the features. Ideally, we want to find
a plane that describes the most features, which can be
accomplished by calculating the eigenvalues and eigenvectors of
the covariance matrix. Each eigenvector describes a spread of
data, and the eigenvalue describes the magnitude of that spread.
The eigenvalue with the greatest magnitude represents the
greatest spread in the dataset, which is what we are looking for.
At this stage, we may select an arbitrary number of eigenvectors
(which translates to the number of features we want) or we may
set a cumulative contribution that we are aiming for.
Contribution is calculated by dividing each eigenvalue by the
sum of all eigenvalues. By taking certain eigenvalues and
eigenvectors, we can determine a cumulative contribution
towards the overall dataset. For instance, our results indicated
that for images in the MNIST Handwritten Dataset, 28% of the
information was retained within 10 features. The trained model
was then composed of the selected eigenvectors.

After completing training, we then explored feature reduction
and image reconstruction. In order to reduce the number of

features, we multiplied our principal component vector (�) into

the transpose of our standardized input vector (�). This process

is described by Equation 1. This was a simple matrix
multiplication and could be transferred to the Homomorphic
Encryption Domain. Image reconstruction was completed by
taking the reduced feature matrix and multiplying it by the
transpose of the principal component vector. This is described

by Equation 2, with � being the result from Equation 1. An
example of image reconstruction with different numbers of
features is presented in Figure 2. As we increase the number of
features that are considered, the image starts to get clearer. In the
future, we anticipate applying image reconstruction to highlight
defects in Nondestructive Evaluation of Additive
Manufacturing.

� = ��
� (1)

� = ��
� (2)

Fig. 2. Image reconstruction of a handwritten 2 from the MNIST Handwritten
Dataset. a) Initial Image b) 10 Features c) 25 Features d) 75 Features e) 150
Features f) 300 Features.

IV. RESULTS AND ANALYSIS

We selected the MNIST Dataset as it is widely available and
simple to work with. The dataset is composed of 42,000 training
images and 28,000 testing images. Each image was a 28x28
grayscale image of a handwritten digit, between 0 and 9. We took
each pixel as a feature, bringing our initial features to 784
features. Since we were applying PCA as an unsupervised
learning model, we opted to train our dataset on the entirety of
the 42,000 images of the training dataset. However, when it
came to applying the trained model, we only used 2000 images
from the testing dataset. This was done as the HE
implementation required a considerable amount of time
compared to the plaintext implementation. Our implementation
was tested on an 8-core Intel Xeon E-2234 processor that
operated at 3.60 GHz and had 16 GB of available RAM. For a

fair comparison of our results, both the HE and plaintext
implementations were written in C++.

During testing, our PCA model was applied to the images and
computation times were recorded for encryption, feature
reduction, reconstruction, and decryption. Each of these values
were calculated as an average on a per-image basis as this would
be expected during run-time. Encryption and decryption
remained consistent across all calculations with an average
encryption time of 2.89 seconds and an average decryption time
of 1.74 seconds per image. This was expected as the input size
and output size of all images were going to remain constant at
784 pixels.

We’ve isolated results for feature reduction into Table I and
reconstruction in Table II since they are used for different
applications. In general, we found that the computation time
increased linearly as additional features were reintroduced. This
was expected as each additional feature would only increase the
number of operations by one multiplication and one addition.
We’ve also included the cumulative contribution based on the
number of features that were used. This is beneficial as the
cumulative contribution did not grow linearly and selecting a
lower set of features requires less computation time.

TABLE I. PRINCIPAL COMPONENT ANALYSIS FEATURE REDUCTION
IN HOMOMORPHIC ENCRYPTION AND PLAINTEXT

Features

Homomorphic

Encryption
Plaintext

Cumulative

Contribution Reduction
 Time (s)

Reduction
 Time (s)

1 0.758 0.000426 0.0575

5 3.002 0.000489 0.1914

10 5.797 0.000575 0.2808

25 14.248 0.000879 0.4256

50 28.236 0.001259 0.5590

75 42.226 0.001710 0.6471

150 84.213 0.003083 0.8092

300 168.632 0.005701 0.9423

500 281.167 0.009953 0.9867

700 393.37 0.014022 0.9999

Reviewing our results for Feature Reduction, it’s clear that
Homomorphic Encryption greatly increases the computation
required to apply the PCA model. At the low end, the HE
implementation was 2,000 times slower (at 1 feature) than the
plaintext version and the high end, it was 60,000 times slower
(at 600 features). As a result, it is recommended that HE be
applied to non-real-time applications. To combat the large
computation times, an operator could select a lower number of
features as the cumulative contribution did not follow a linear
relationship. Following this logic, we’ve highlighted three rows
pertaining to 10, 50, and 150 features and correspond to 28%,
56%, and 81%. Despite having a low number of features
compared to the overall 784, they offer far better computation
time compared to higher numbers of features that offer only
incremental increases in cumulative contributions. Additionally,
we’ve included a visual comparison between the Reduction
Time and Cumulative Contribution compared to the Number of
Features. As is presented in Figure 3, the Reduction Time is
linearly related to the Number of Features while the Cumulative
Contribution is logarithmic.

a) b)

c) d)

e) f)

Fig. 3. Cumulative Contribution and Feature Reduction Time (in Homomorphic
Encryption) based on the Number of Features used. Based on the graph, the
Feature Reduction Time was linearly related to the Number of Features while
the Cumulative Contribution had a Logarithmic relationship.

In addition to comparing the computation time for our feature
reduction, we also examined our image reconstruction times
(presented in Table II). This yielded a very similar trend, with
the Homomorphic Encryption implementation being associated
with a far greater time consumption. In a similar manner, we’ve
highlighted 10, 50, and 150 features as they are good
benchmarks for operators and engineers looking to strike a
balance between performance and time consumption. Since the
CKKS scheme of HE applies approximate addition and
multiplication, we also wanted to compare the average pixel
error between our HE and plaintext implementations. Based on
our results, the HE implementation had near zero error across all
784 pixels with the greatest average pixel error at 2.57E-5.
We’ve included a visual comparison between the Image
Reconstruction and Cumulative Contribution compared to the
Number of Features. As is presented in Figure 4, the Image
Reconstruction is linearly related to the Number of Features
while the Cumulative Contribution is logarithmic.

TABLE II. PRINCIPAL COMPONENT ANALYSIS IMAGE

RECONSTRUCTION IN HOMOMORPHIC ENCRYPTION AND
PLAINTEXT

Features

Homomorphic

Encryption
Plaintext Average

Pixel

Error

Cumulative

Contribution Reconstruction
Time (s)

Reconstruction
Time (s)

1 1.234 0.000426 2.74E-5 0.0575

5 4.927 0.000489 1.18E-5 0.1914

10 9.532 0.000575 8.72E-6 0.2808

25 23.471 0.000879 2.43E-5 0.4256

50 46.587 0.001259 1.87E-5 0.5590

75 69.824 0.001710 2.17E-5 0.6471

150 139.375 0.003083 2.22E-5 0.8092

300 278.913 0.005701 1.55E-5 0.9423

500 465.632 0.009953 2.42E-5 0.9867

700 651.675 0.014022 2.57E-5 0.9999

Fig. 4. Cumulative Contribution and Image Reconstruction Time (in
Homomorphic Encryption) based on the Number of Features used. Based on the
graph, the Image Reconstruction Time was linearly related to the Number of
Features while the Cumulative Contribution had a Logarithmic relationship.

V. CONCLUSION

Overall, we were successful in applying a Principal
Component Analysis model in Homomorphic Encryption. While
the overall computation times for the HE implementation were
drastically greater than their plaintext models, they exhibited
near-zero error in their computations. For non-real-time
applications, operators may balance performance and
computation time by selecting a lower number of features,
capturing 50% of the data in as little as 50 features (out of 784).
Additional time savings can be made by exploring additional
features of the Microsoft SEAL libraries, as different vector
rotation options may permit faster matrix multiplication. In the
future, we will pair our PCA implementation with a Neural
Network for classification purposes. Additionally, we are
interested in exploring HE applications in the space of
Nondestructive Evaluation (NDE) as the data is sensitive in
nature and frequently involves third party experts.

REFERENCES

[1] Federal Trade Commission (FTC) , "Federal Trade Commission 2020
Privacy and Data Security Update," 2020.

[2] Federal Trade Commission (FTC), "FTC Imposes $5 Billion Penalty and
Sweeping New Privacy Restrictions on Facebook," FTC, 24 July 2019.
[Online]. Available: https://www.ftc.gov/news-events/news/press-
releases/2019/07/ftc-imposes-5-billion-penalty-sweeping-new-privacy-
restrictions-facebook.

[3] B. Wolford, "What is GDPR, the EU's New Data Protection Law?," Proton
Technologies , 2023. [Online]. Available: https://gdpr.eu/what-is-gdpr/.

[4] C. Barrett, "Emerging Trends from the First Year of EU GDPR
Enforcement," American Bar Association, 28 February 2020. [Online].
Available:
https://www.americanbar.org/groups/science_technology/publications/scit
ech_lawyer/2020/spring/emerging-trends-the-first-year-eu-gdpr-
enforcement/.

[5] D. Arnold, J. Saniie and A. Heifetz, "Homomorphic Encryption for
Machine Learning and Artificial Intelligence Applications," Argonne
National Lab, 2022.

[6] X. Zhang, J. Saniie, S. Bakhtiari and A. Heifetz, "Compression of Pulsed
Infrared Thermography Data with Unsupervised Learning for
Nondestructive Evaluation of Additively Manufactured Metals," IEEE

Access, vol. 10, pp. 9094-9107, 2022.

0

0.2

0.4

0.6

0.8

1

1.2

0

100

200

300

400

500

0 200 400 600 800

C
u

m
u

la
ti

v
e
 C

o
n

tr
ib

u
ti

o
n

F
e
a

tu
r
e
 R

e
d

u
c
ti

o
n

 T
im

e
 (

s)

Number of Features

Cumulative Contribution and Feature Reduction Time

Homomorphic Encryption

Feature Reduction Time Cumulative Contribution

0

0.2

0.4

0.6

0.8

1

1.2

0

100

200

300

400

500

600

700

0 200 400 600 800 C
u

m
u

la
ti

v
e
 C

o
n

tr
ib

u
ti

o
n

R
e
c
o

n
st

r
u

c
ti

o
n

 T
im

e
 (

s)

Number of Features

Cumulative Contribution and Reconstruction Time

Homomorphic Encryption

Reconstruction Time Cumulative Contribution

[7] X. Zhang, J. Saniie and A. Heifetz, "Detection of Defects in Additively
Manufactured Stainless Steel 316L with Compact Infrared Camera and
Machine Learning Algorithms," JOM, vol. 72, no. 12, pp. 4244-4253, 2020.

[8] X. Zhang, J. Saniie, W. Cleary and A. Heifetz, "Quality Control of
Additively Manufactured Metallic Structures with Machine Learning of
Thermography Images," JOM, vol. 72, no. 12, pp. 4682-4694, 2020.

[9] Microsoft Research, Microsoft SEAL, Redmond, Washington, 2022.

[10] J. H. Cheon, A. Kim, M. Kim and Y. Song, "Homomorphic Encryption for
Arithmetic of Approximate Numbers," in International Conference on the
Theory and Application of Cryptology and Information Security, 2017.

[11] E. Hesamifard, H. Takabi and M. Ghasemi, "CryptoDL: Deep Neural
Networks over Encrypted Data," 2017. [Online]. Available:
https://arxiv.org/abs/1711.05189v1.

[12] S. Meftah, B. H. M. Tan, C. F. Mun, K. M. M. Augn, B. Veeravalli and V.
Chandrasekhar, "DOReN: Toward Efficient Deep Convolutional Neural
Networks with Fully Homomorphic Encryption," IEEE Transactions on

Information Forensics and Security, vol. 16, pp. 3740-3752, 2021.

[13] E. Lee, J.-W. Lee, J. Lee, Y.-S. Kim, Y. Kim, J.-S. No and W. Choi, "Low-
Complexity Deep Convolutional Neural Network on Fully Homomorphic
Encryption Using Multiplexed Parallel Convolutions," in International

Conference on Machine Learning, 2022.

[14] B. Pulido-Gaytan, A. Tchernykh, J. Cortes-Mendoza, M. Babenko, G.
Radchenko, A. Avetisyan and A. Y. Drozdov, "Privacy-Preserving Neural
Networks with Homomorphic Encryption: Challenges and Opportunities,"

Peer-to-Peer Networking and Applications, vol. 14, no. 3, pp. 1666-1691,
2021.

[15] J.-W. Lee, H. Kang, Y. Lee, W. Choi, J. Eom, M. Deryabin, E. Lee, J. Lee,
D. Yoo, Y.-S. Kim and J.-S. No, "Privacy-Preserving Machine Learning
with Fully Homomorphic Encryption for Deep Neural Network," IEEE

Access, vol. 10, pp. 30039-30054, 2022.

[16] X. Sun, P. Zhang, J. K. Liu, J. Yu and W. Xie, "Private Machine Learning
Classification Based on Fully Homomorphic Encryption," IEEE

Transactions on Emerging Topics in Computing, vol. 8, no. 2, pp. 352-364,
2018.

[17] K. Cong, D. Das, J. Park and H. V. L. Pereira, "SortingHat; Efficient Private
Decision Tree Evaluation via Homomorphic Encryption and Transcribing,"
in Proceedings of the 2022 ACM SIGSAC Conference on Computer and

Communications Security, 2022.

[18] R. Hamza, A. Hassan, A. Ali, M. B. Bashir, S. M. Alqhtani, T. M. Tawfeeg
and A. Yousif, "Towards Secure Big Data Analysis via Fully Homomorphic
Encryption Algorithms," Entropy, vol. 24, no. 519, pp. 1-17, 2022.

[19] S. Panda, "Principal Component Analysis using CKKS Homomorphic
Scheme," in Cyber Security Cryptography and Machine Learning: 5th

International Symposium, CSCML 2021, 2021.

[20] W.-j. Lu, S. Kawasaki and J. Sakuma, "Using Fully Homomorphic
Encryption for Statistical Analysis of Categorical, Ordinal and Numerical
Data," IACR Cryptography ePrint Archive, 2016.

