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Abstract– Principal Component Analysis (PCA) is a versatile 

Unsupervised Learning (UL) technique for reducing the 

dimensionality of datasets. As a result, PCA is widely used in 

consumer and research applications as a preprocessing tool for 

identifying important features prior to further analysis. In 

instances where on-site personnel or developers do not have the 

expertise to apply UL techniques, third party processors are 

frequently retained. However, the release of client or proprietary 

data poses a substantial security risk. This risk increases the 

regulatory and contractual burden on analysts when interacting 

with sensitive or classified information. Homomorphic Encryption 

(HE) cryptosystems are a novel family of encryption algorithms 

that permit approximate addition and multiplication on encrypted 

data. When applied to UL models, such as PCA, experts may apply 

their expertise while maintaining data privacy. In order to evaluate 

the potential application of Homomorphic Encryption, we 

implemented Principal Component Analysis using the Microsoft 

SEAL HE libraries. The resulting implementation was applied to 

the MNIST Handwritten dataset for feature reduction and image 

reconstruction. Based on our results, HE considerably increased 

the time required to process the dataset. However, the HE 

algorithm is still viable for non-real-time applications as it had an 

average pixel error of near-zero for all image reconstructions. 
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I. INTRODUCTION 

Over the past decade, advancements in Machine Learning and 

Artificial Intelligence, coupled with Big Data Analytics, have 

resulted in tailored customer experiences. However, these 

conveniences took a heavy toll on user privacy, consuming 

personal data at an alarming rate. Similarly, companies without 

ML expertise began to rely on third-party experts to conduct 

analysis. In cases where sensitive or confidential data is the 

subject of analysis, transfer to third parties increases the risk of 

data exposure or leaks.  

In response, many regulatory agencies and consumer 

watchdogs are pushing for stronger privacy safeguards and 

security standards. Within the United States, the Federal Trade 

Commission frequently brings enforcement actions against 

companies that fail to properly protect consumer privacy. While 

there are no general privacy or security laws in the US, the FTC 

applies their authority under Section 5 of the FTC Act, 

considering breaches of consumer privacy as deceptive or unfair 

commercial acts. The agency has brought over 80 general 

privacy lawsuits since 2002, including a $5 billion penalty 

against Facebook for misrepresenting user control over personal 

data [1, 2]. Abroad, the General Data Protection Regulation 

(GDPR) includes explicit protections for consumer personal 

data and even extends protection to third party processors [3]. 

After one year of coming in effect in 2018, 91 fines had been 

levied from GDPR enforcement actions [4]. Of these fines, 56 

dealt with the handling of personal information, ranging from 

improper processing, lawful processing, and secure processing.  

To address these challenges, Homomorphic Encryption (HE) 

is a promising tool for enhancing data privacy while also 

maintaining access to popular ML algorithms. HE cryptosystems 

are a new class of encryption that permit approximate addition 

and multiplication operations on encrypted data. By using these 

simple operations, complex ML algorithms can be applied to a 

given dataset without compromising the privacy of the 

underlying data. In our previous work, we explored the potential 

application of HE on a Neural Network [5]. While the 

implementation had a large storage and computation overhead, 

it was still suitable for non-real-time applications. This work 

extends our previous work by exploring a Principal Component 

Analysis (PCA) implementation. PCA was selected as it is 

commonly used in feature reduction, which can be a powerful 

asset for decreasing the number of connections required in ML 

models. Further, PCA can be used to reconstruct the image (we 

will refer to this as image reconstruction) with a reduced number 

of features. This can be useful in highlighting defects or 

imperfections [6-8].  

Through the remainder of this paper, we will evaluate 

Homomorphic Encryption for Principal Component Analysis. 

First, we will discuss Homomorphic Encryption and the 

Microsoft SEAL libraries. Next, Principal Component Analysis 

for feature reduction and image reconstruction will be presented. 

PCA will be applied to the MNIST Handwritten dataset. Finally, 

we will compare the time required to apply PCA on both 

encrypted and plaintext datasets.  

II. HOMOMORPHIC ENCRYPTION 

Currently, the common use-case for HE is for computations in 
a cloud infrastructure, as presented in Figure 1. During 
operation, a client encrypts their data and sends it to a remote 
server. In our case, we will be encrypting images from the 
MNIST Handwritten Dataset. Next, the server will apply the 
desired algorithm on the encrypted dataset in HE. After 



receiving the result and decrypting the data, the client receives 
the desired output. For our application, we will be applying 
Principal Component Analysis for both feature reduction and 
image reconstruction.  

 
Fig. 1. Potential application of Homomorphic Encryption using Cloud 
infrastructure.  

 
For our research, we have selected the Microsoft SEAL 

libraries to implement Principal Component Analysis (PCA) in 
Homomorphic Encryption (HE) [9]. The SEAL libraries are a 
popular tool for software developers to quickly apply HE 
without needing to implement the complex mathematics. 
Currently, C++ and python are supported, however since the 
libraries are written in C++, we selected C++. Three encryption 
schemes are provided with the toolkit, namely BFV, BGV, and 
CKKS. BFV and BGV permit modular arithmetic operations 
with encrypted integers whereas CKKS can be used for 
approximate additions and multiplications on encrypted real or 
complex numbers [10]. Since we will be standardizing our 
dataset for PCA training, we used the CKKS scheme as it 
allowed us to use double values.  

Through our previous work, we explored the potential 
application of HE on a simple Neural Network (NN) and 
observed potential challenges in adoption [5]. Among these 
challenges included limitations regarding the number of 
computations that can be completed, the size of the encrypted 
data, and the computation time. The root cause of these 
limitations occurs during initialization of the CKKS algorithm, 
in which the ciphertext space for operations is set by a poly-
modulus degree. During a multiplication operation, the size of 
ciphertext needs to grow linearly and must be rescaled and re-
linearized before completing the next operation. While this 
rescaling process limits the potential error size, it also sets a hard 
limit on the number of operations we can completed. In the case 
of our Neural Network implementation, we needed to complete 
4 multiplications, which required a poly-modulus degree of 
16,384. For our PCA implementation, we only need to complete 
1 matrix multiplication for feature reduction and 2 matrix 
multiplications for image reconstruction. This translated to a 
poly-modulus degree of 8192. This should positively impact the 
storage requirements for our planned implementation.  

In addition to challenges presented by the poly-modulus 
degree, the complexity of operations is also limited to additions 
and multiplications. As a result, operations such as comparisons 

and divisions, common among activation functions, need to be 
approximated. This was required in our NN approach, in which 
we used polynomial approximation to model the ReLU function. 
However, since PCA only requires multiplication and 
transposition, we did not need to approximate any functions this 
time around. Further, this makes training of our models 
infeasible in the Homomorphic Encryption domain. As a result, 
we will complete training via plaintext operations while the 
application of the trained model will be completed through HE.  

Recently, there has been an increase in similar works applying 
Homomorphic Encryption to Machine Learning Applications. 
Applications include Decision Trees, Neural Networks, and 
Convolutional Neural Networks [11-18]. Additionally, similar 
work has been undertaken regarding Principal Component 
Analysis [19-20]. Our contribution expands the literature on this 
subject by completing a full comparison between the 
computation time of the HE and plaintext implementations, 
analyzing the average error in the results when using the CKKS 
scheme, and reconstructing the images using a reduced feature 
space.  

III. PRINCIPAL COMPONENT ANALYSIS  

Principal Component Analysis (PCA) is a popular 
unsupervised learning technique for feature reduction and image 
reconstruction. During operation, PCA attempts to transform the 
data into a coordinate system where the data is better described 
with fewer dimensions. This is accomplished by maximizing the 
variance between each feature. Since the training process is far 
too complex for our Homomorphic Encryption toolkit to handle, 
we will only briefly describe the steps that we took.  

For our application, we conducted our training using python, 
which streamlined our development process through the numpy 
and scipy libraries. To begin, we standardized our training data 
to a mean of 0 and a standard deviation of 1, which will need to 
be applied to our testing data prior to encryption. Next, we 
calculated the covariance matrix between the features, which 
describes the correlation of the features. Ideally, we want to find 
a plane that describes the most features, which can be 
accomplished by calculating the eigenvalues and eigenvectors of 
the covariance matrix. Each eigenvector describes a spread of 
data, and the eigenvalue describes the magnitude of that spread. 
The eigenvalue with the greatest magnitude represents the 
greatest spread in the dataset, which is what we are looking for. 
At this stage, we may select an arbitrary number of eigenvectors 
(which translates to the number of features we want) or we may 
set a cumulative contribution that we are aiming for. 
Contribution is calculated by dividing each eigenvalue by the 
sum of all eigenvalues. By taking certain eigenvalues and 
eigenvectors, we can determine a cumulative contribution 
towards the overall dataset. For instance, our results indicated 
that for images in the MNIST Handwritten Dataset, 28% of the 
information was retained within 10 features. The trained model 
was then composed of the selected eigenvectors.  

After completing training, we then explored feature reduction 
and image reconstruction. In order to reduce the number of 

features, we multiplied our principal component vector (�) into 

the transpose of our standardized input vector (�). This process 



is described by Equation 1. This was a simple matrix 
multiplication and could be transferred to the Homomorphic 
Encryption Domain. Image reconstruction was completed by 
taking the reduced feature matrix and multiplying it by the 
transpose of the principal component vector. This is described 

by Equation 2, with � being the result from Equation 1. An 
example of image reconstruction with different numbers of 
features is presented in Figure 2. As we increase the number of 
features that are considered, the image starts to get clearer. In the 
future, we anticipate applying image reconstruction to highlight 
defects in Nondestructive Evaluation of Additive 
Manufacturing.  

 

� = ��
� (1) 

� = ��
�  (2) 

 

 
Fig. 2. Image reconstruction of a handwritten 2 from the MNIST Handwritten 
Dataset. a) Initial Image b) 10 Features c) 25 Features d) 75 Features e) 150 
Features f) 300 Features.  

IV. RESULTS AND ANALYSIS  

We selected the MNIST Dataset as it is widely available and 
simple to work with. The dataset is composed of 42,000 training 
images and 28,000 testing images. Each image was a 28x28 
grayscale image of a handwritten digit, between 0 and 9. We took 
each pixel as a feature, bringing our initial features to 784 
features. Since we were applying PCA as an unsupervised 
learning model, we opted to train our dataset on the entirety of 
the 42,000 images of the training dataset. However, when it 
came to applying the trained model, we only used 2000 images 
from the testing dataset. This was done as the HE 
implementation required a considerable amount of time 
compared to the plaintext implementation. Our implementation 
was tested on an 8-core Intel Xeon E-2234 processor that 
operated at 3.60 GHz and had 16 GB of available RAM. For a 

fair comparison of our results, both the HE and plaintext 
implementations were written in C++.  

During testing, our PCA model was applied to the images and 
computation times were recorded for encryption, feature 
reduction, reconstruction, and decryption. Each of these values 
were calculated as an average on a per-image basis as this would 
be expected during run-time. Encryption and decryption 
remained consistent across all calculations with an average 
encryption time of 2.89 seconds and an average decryption time 
of 1.74 seconds per image. This was expected as the input size 
and output size of all images were going to remain constant at 
784 pixels.  

We’ve isolated results for feature reduction into Table I and 
reconstruction in Table II since they are used for different 
applications. In general, we found that the computation time 
increased linearly as additional features were reintroduced. This 
was expected as each additional feature would only increase the 
number of operations by one multiplication and one addition. 
We’ve also included the cumulative contribution based on the 
number of features that were used. This is beneficial as the 
cumulative contribution did not grow linearly and selecting a 
lower set of features requires less computation time.  

 

TABLE I. PRINCIPAL COMPONENT ANALYSIS FEATURE REDUCTION 
IN HOMOMORPHIC ENCRYPTION AND PLAINTEXT 

 

Features 

Homomorphic 

Encryption 
Plaintext 

Cumulative 

Contribution Reduction 
 Time (s) 

Reduction 
 Time (s) 

1 0.758 0.000426 0.0575 

5 3.002 0.000489 0.1914 

10 5.797 0.000575 0.2808 

25 14.248 0.000879 0.4256 

50 28.236 0.001259 0.5590 

75 42.226 0.001710 0.6471 

150 84.213 0.003083 0.8092 

300 168.632 0.005701 0.9423 

500 281.167 0.009953 0.9867 

700 393.37 0.014022 0.9999 
 

Reviewing our results for Feature Reduction, it’s clear that 
Homomorphic Encryption greatly increases the computation 
required to apply the PCA model. At the low end, the HE 
implementation was 2,000 times slower (at 1 feature) than the 
plaintext version and the high end, it was 60,000 times slower 
(at 600 features). As a result, it is recommended that HE be 
applied to non-real-time applications. To combat the large 
computation times, an operator could select a lower number of 
features as the cumulative contribution did not follow a linear 
relationship. Following this logic, we’ve highlighted three rows 
pertaining to 10, 50, and 150 features and correspond to 28%, 
56%, and 81%. Despite having a low number of features 
compared to the overall 784, they offer far better computation 
time compared to higher numbers of features that offer only 
incremental increases in cumulative contributions. Additionally, 
we’ve included a visual comparison between the Reduction 
Time and Cumulative Contribution compared to the Number of 
Features. As is presented in Figure 3, the Reduction Time is 
linearly related to the Number of Features while the Cumulative 
Contribution is logarithmic.  

a) b) 

c) d) 

e) f) 



 
Fig. 3. Cumulative Contribution and Feature Reduction Time (in Homomorphic 
Encryption) based on the Number of Features used. Based on the graph, the 
Feature Reduction Time was linearly related to the Number of Features while 
the Cumulative Contribution had a Logarithmic relationship.  
 

In addition to comparing the computation time for our feature 
reduction, we also examined our image reconstruction times 
(presented in Table II). This yielded a very similar trend, with 
the Homomorphic Encryption implementation being associated 
with a far greater time consumption. In a similar manner, we’ve 
highlighted 10, 50, and 150 features as they are good 
benchmarks for operators and engineers looking to strike a 
balance between performance and time consumption. Since the 
CKKS scheme of HE applies approximate addition and 
multiplication, we also wanted to compare the average pixel 
error between our HE and plaintext implementations. Based on 
our results, the HE implementation had near zero error across all 
784 pixels with the greatest average pixel error at 2.57E-5. 
We’ve included a visual comparison between the Image 
Reconstruction and Cumulative Contribution compared to the 
Number of Features. As is presented in Figure 4, the Image 
Reconstruction is linearly related to the Number of Features 
while the Cumulative Contribution is logarithmic. 

 
TABLE II. PRINCIPAL COMPONENT ANALYSIS IMAGE 

RECONSTRUCTION IN HOMOMORPHIC ENCRYPTION AND 
PLAINTEXT  

 

Features 

Homomorphic 

Encryption 
Plaintext Average 

Pixel 

Error 

Cumulative 

Contribution Reconstruction 
Time (s) 

Reconstruction 
Time (s) 

1 1.234 0.000426 2.74E-5 0.0575 

5 4.927 0.000489 1.18E-5 0.1914 

10 9.532 0.000575 8.72E-6 0.2808 

25 23.471 0.000879 2.43E-5 0.4256 

50 46.587 0.001259 1.87E-5 0.5590 

75 69.824 0.001710 2.17E-5 0.6471 

150 139.375 0.003083 2.22E-5 0.8092 

300 278.913 0.005701 1.55E-5 0.9423 

500 465.632 0.009953 2.42E-5 0.9867 

700 651.675 0.014022 2.57E-5 0.9999 

 

 
Fig. 4. Cumulative Contribution and Image Reconstruction Time (in 
Homomorphic Encryption) based on the Number of Features used. Based on the 
graph, the Image Reconstruction Time was linearly related to the Number of 
Features while the Cumulative Contribution had a Logarithmic relationship. 

V. CONCLUSION  

Overall, we were successful in applying a Principal 
Component Analysis model in Homomorphic Encryption. While 
the overall computation times for the HE implementation were 
drastically greater than their plaintext models, they exhibited 
near-zero error in their computations. For non-real-time 
applications, operators may balance performance and 
computation time by selecting a lower number of features, 
capturing 50% of the data in as little as 50 features (out of 784). 
Additional time savings can be made by exploring additional 
features of the Microsoft SEAL libraries, as different vector 
rotation options may permit faster matrix multiplication. In the 
future, we will pair our PCA implementation with a Neural 
Network for classification purposes. Additionally, we are 
interested in exploring HE applications in the space of 
Nondestructive Evaluation (NDE) as the data is sensitive in 
nature and frequently involves third party experts.  
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