
Utilizing Computer Vision Algorithms to Detect and 

Classify Cyberattacks in IoT Environments in Real-Time 

Mikhail Gromov, David Arnold, and Jafar Saniie  

Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu/) 
Department of Electrical and Computer Engineering 

Illinois Institute of Technology, Chicago IL, U.S.A. 

 
Abstract– Computer vision has proven itself capable of 

accurately detecting and classifying objects within images.  

This also works in cases where images are used as a way of 

representing data, without being actual photographs.  In 

cybersecurity, computer vision is rarely used, however it 

has been used to detect botnets successfully.  We applied 

computer vision to determine how well it would be able to 

detect and classify a large number of attacks and 

determined that it would be able to run at a decent rate on 

a Jetson Nano.  This was accomplished by training a 

convolutional neural network using data publicly available 

in the IoT-23 database, which contains packet captures of 

IoT devices with and without different malware infections.  

The neural network was evaluated on an RTX 3050 and a 

Jetson Nano to see if it could be used in IoT. 

 

I. INTRODUCTION 

IoT devices and networks are often designed in ways which 

attempt to minimize their costs; however, such a design often 

contains many security flaws.  These flaws can be exploited 

by using a variety of cybersecurity attacks.  Such attacks can 

often result in a third person getting full or partial access to 

these devices.  This can allow the attacker to read and modify 

data that the devices should be analyzing, or to utilize the 

resources of these devices to launch further attacks.  

Ultimately, this can result in entire IoT systems being rendered 

useless, or high costs due to these systems being used to 

perform other attacks, which can utilize the network and 

processing capabilities of these systems. 

While it would be best to prevent these attacks by designing 

IoT devices and networks to be more secure from the start, that 

would significantly raise the design cost and complexity.  An 

alternative approach would involve making it so that a system 

is able to detect these cyberattacks as they occur, and respond 

to them appropriately, such as disabling traffic going to or 

from a command-and-control server or disabling devices that 

are known to be infected with a botnet. 

Computer vision and deep learning are machine learning 

algorithms often used for detecting objects in images, however 

they can also be repurposed for cybersecurity applications.  

For example, they can be used to detect malware present in 

files [6, 7].  Another use case is detecting Mirai botnet 

infections on an IoT network in real-time [10].  Since 

computer vision has proven to be successful at detecting these 

threats, we will be using it to detect and classify when a variety 

of different cyberattacks are being used on a IoT device, 

however the same approach should work for an IoT network 

as well. 

For our implementation, we will utilize the IoT-23 dataset, 

which contains pcap (packet capture) files, and extract the 

same features that were used by the N-BaIoT dataset in the 

Mirai botnet detection [10] and Kitsune [9] projects.  Then, 

after feature extraction is complete, a similar image generation 

process as the Mirai botnet detection project will be utilized to 

generate images from the dataset, which can be used to train a 

neural network to detect the cyberattack that was performed 

during these packet captures.  This neural network will be able 

to generate an output corresponding to either a benign dataset, 

or the specific cyberattack that is being performed.  In case a 

cyberattack is unknown, there is a chance that it may appear 

as benign data, however due to the behavior of neural 

networks, it will most likely be detected as the most similar 

attack that is present in the dataset and labels.  After training, 

this neural network will be run on a Jetson Nano, such that it 

is able to capture packets going to multiple IoT devices, as 

shown in Figure 1. 

Fig. 1. Proposed IoT Cyberattack Detection System. Multiple IoT Devices are 

Monitored by One Jetson Nano, which can detect cyberattacks in Real-Time. 
 

The remainder of this paper will first discuss the similar 

works that were done in the field.  Then, we will go over the 

IoT-23 dataset.  Afterwards, we will discuss our data 

processing and implementation in detail, and a final simulation 

will also be performed to measure the Jetson Nano’s utilization 

and speed performance.  Finally, we will discuss the results of 

this study, as well as the future impacts it may have on the IoT 

field. 

II. TERMINOLOGY 

This paper looks at how to protect IoT systems from 

cyberattack.  IoT generally refers to devices that are designed 

to smartly interact with a user and other devices, while 

utilizing little processing power.  These devices often use the 

internet to connect with other devices or a database server.  

Due to this, IoT devices often tend to use the bare minimum-

security consideration and are quite the attractive target for 

cyberattacks.  A cyberattack is considered an attempt by an 



 
unauthorized user to gain control of a computer system for 

their own benefit, against the user’s interests and without the 

user’s knowledge.  When data is sent over the internet in IoT 

or any other application, it is grouped in packets, which can be 

captured by a packet capture program.  These raw packets are 

recorded in a pcap file in plaintext, with the packet metadata 

being plainly readable by anyone.  This packet metadata 

includes a timestamp, the length of the packet, source and 

destination IPs, mac addresses, and ports, as well as the 

protocol being used for communication, and the entire data 

within the packet.  This allows a network administrator or 

program to monitor incoming and outgoing data, and to 

investigate if something suspicious is detected. 

 

III. RELATED WORKS 

The first work that was similar to our research is detecting 

malware embedded in files using computer vision [6, 7].  This 

work visualized the data present in the files as an image, with 

each byte of the data being represented by the image.  After 

generating an image from a file, this image is processed using 

machine vision algorithms, and a binary output is generated 

which determines whether the file contains malware or 

doesn’t.  It is also possible to utilize the same algorithm to get 

a more specific result on the type of malware that is contained 

in a file.  This would require more processing power than the 

binary classification, especially with the large list of known 

malwares. 

Another work that was performed in a similar direction was 

done in the Kitsune paper [9], which utilized a variety of 

autoencoders to detect a botnet.  While this would 

theoretically be able to detect any cyberattack efficiently, since 

the autoencoder would be able to detect when a new type of 

data started to appear in the network, it would require the 

autoencoder to be trained for each usage application 

individually.  Additionally, it would not be able to distinguish 

between different cyberattacks.  With it often being the case 

that different cyberattacks have different mitigation 

procedures, it would not be useful if someone wants to be able 

to mitigate the cyberattacks after one is detected.  Also, in 

some cases, it may be possible for the benign data to have 

some similarities to malicious data, which would prevent some 

cyberattacks from being detected by this approach.  While 

autoencoders would be a more efficient type of neural network 

compared to computer vision algorithms, the need for 

individual training would reflect negatively on the cost and 

complexity of the IoT system design, since each designed 

system would have to have its own autoencoder trained on 

every possible benign use case. 

In our previous work, we used computer vision to detect the 

Mirai botnet in real-time using computer vision [10].  While 

we only focused on being able to detect the Mirai botnet, we 

were also able to detect another botnet, the Gafgyt botnet, and 

used a similar approach to the one used in this paper, with only 

two classification groups.  We were able to distinguish 

between the botnet being present in the network and benign 

data that had similar features to cyberattacks.  This was done 

with a high overall accuracy and performance.  While the 

dataset used for that work only included data about the Mirai 

and Gafgyt botnet, the IoT-23 dataset used in this work will 

include more cyberattacks, so we should be able to train the 

neural network to be more precise in detecting and classifying 

a cyberattack, which can open up ways to automatically 

mitigate the attack while it is in progress before it is able to 

cause significant damage. 

 

IV. DATASET DESCRIPTION 

The IoT-23 dataset contains packets harvested from 23 IoT 

scenarios.  These scenarios include a variety of different 

attacks, like a Mirai, Torii, and Okiru botnet, as well as Trojans 

and various other attacks.  They also include 3 benign 

scenarios.  In the data present, there are two types of files.  The 

first type is pcap files, which contain the packets captured 

from the device.  The other file type is a labeled Zeek flow, 

with each connection being cataloged and summarized.  For 

this research, we will be focusing on the pcap files, as those 

are the files containing data that can be analyzed in real-time.  

The dataset is unbalanced since it has 20 malicious packet 

captures and 3 benign packet captures.  Additionally, it is quite 

unbalanced, as the largest two classes, the Mirai and benign 

data, have 10x and 3x as much data as the other respectively.  

The dataset includes a large amount of packet data, captured 

over the course of several hours to 24 hours for each pcap file.  

To speed up the machine learning process, only the first 

100,000 packets of each pcap will be analyzed.  Additionally, 

the initial 2,000 packets will be discarded since the IoT-23 

dataset also contains some data prior to the malware infection. 

V. METHODOLOGY 

To process the pcap files into a more usable form, feature 

extraction was performed.  During feature extraction, five lists 

of objects were generated, with each object containing 

metadata about a packet when grouped by a certain type of 

connection.  For each packet, an object in every list was 

selected or created such that it had matching parameters.  The 

first list used the source ip to select the object, with the second 

and third list both looking at the source and destination IP.  A 

fourth list was created to look at connections from a source ip 

and mac address, and a fifth list looked at sockets, considered 

connections between a source and destination using the IP and 

port.  A moving average was used for each object, which 

would allow us to add new data as it came in efficiently, and 

output values of the weight, mean, and standard deviation.  

The core data point used was the length, however the third list 

kept track of the jitter between packets.  Bidirectional statistics 

were also extracted, including the magnitude, which is the 

square root of the sum of squares of the mean for both 

directions in a connection.  This also included the radius, 

which was the square root of the sum of the variances in a 

similar case.  For efficient feature extraction, the number of 

objects in each list was limited, with older objects being 

dropped from the list when new objects would need to be 

created.  The extracted features were written in a csv file, 

which we further processed into images.  While many features 

were extracted, only twelve of them were stored in the images 

generated.  These included all the 1-dimensional statistics for 

each source, and source mac pair.  For the host-host group, the 

moving average and 2-dimensional parameters were used for 

the length, with just the moving average of the jitter being 

considered.  The final two data points looked at the socket’s 

moving average and standard deviation. 



 
After the 12 selected features for the first 100,000 packets 

were extracted and stored in a csv file, they needed to be put 

into images.  To accomplish this, the first few thousand data 

points were ignored to give the malware time to initialize.  

Then, after that, the remaining data points were grouped such 

that they occupied 2x2 pixel areas in a 20x20 rgb image.  Four 

such examples are shown below.  The two images on the left 

are from two different benign packet captures from two 

different IoT devices.  The two images in the center left are 

from two packets captures of Mirai infected IoT devices.  

Next, the two images on the center right are from a Gafgyt 

packet capture.  The two images on the right are from a Trojan 

packet capture.  From the images, it can be seen that the 

features in the packet captures of Trojans and Mirai are 

completely different.  However, in the case of Mirai and 

Gafgyt, both of which are botnets, there are less identifying 

features which is due to the similarity in the attacks, but there 

are still some differences present.  The two benign images are 

completely different, however the images for each device are 

similar in appearance.  A convolutional neural network should 

be able to select identifying features that would be able to 

distinguish between malicious and benign data, however it 

may confuse some of the malicious classes which behave 

similarly. 
 

    

    
Fig. 2. Sample 20x20 Images for Benign, Mirai, Gafgyt, and Trojan Data (Left 

to Right) 

The images were than randomly assigned to the training, 

validation and testing sets with a probabilities of 0.5, 0.3, and 

0.1.  For the Mirai data, a random dropout of 80% of the 

images was used to make the final dataset more balanced.  The 

neural network used to classify the cyberattack used a 2x2 

convolution layer with a stride of 2 and 12 channels, followed 

by a 2x2 max-pooling layer to transform the image into a 

5x5x12 image.  Afterwards, a second convolution layer was 

used with a stride of 1 and 16 channels, followed by another 

2x2 max-pooling layer.  At this point, the images were 2x2x16, 

and were flattened into 64.  All of the previous layers had a 

ReLU activation functions.  After flattening the data, it goes 

through three dense layers with sizes 128, 64, and 12.  The 12 

outputs would each correspond to a cyberattack, excluding the 

first one that corresponded to no cyberattack. 

 

 
Fig. 3. Neural Network Structure 

 

VI. RESULTS AND IMPACT 

When training the neural network, it was found to have a 

training accuracy of around 70-80%.  The final validation 

accuracy when distinguishing cyberattacks was 76.23%, with 

an accuracy of 99.84% when a binary classification of whether 

an attack was ongoing was needed.  The testing accuracies was 

quite similar, being 76.31% and 99.68%.  To further discuss 

the relatively low cyberattack classification accuracy, a 

confusion matrix was created, and is presented in Figure 4.  

According to the confusion matrix, it appears that most of the 

cyberattacks were correctly detected, however some of them 

were difficult to distinguish between.  In this case, it was 

mostly different botnets that utilized similar algorithms to 

propagate being confused by the neural network.  Looking at 

the images, we can observe that oftentimes they even look 

similar to the human eye, for example the Mirai and Gafgyt 

images presented in figure 2 appear to share many features, so 

this confusion is justifiable.  In a real-world scenario, 

regardless of the botnet attacks being mixed up, all of them 

would still be mitigated in a similar method.  If the 

propagation method differs significantly enough, then it might 

warrant a different approach to disrupting the botnet, but in 

that case it would be easier for the neural network to 

distinguish between them. 

 

 

 

 

 

 

 

 



 
 

 

B
en

ig
n
 

M
ir

ai
 

T
o

ri
i 

T
ro

ja
n
 

G
af

g
y
t 

K
en

ji
ro

 

O
k

ir
u
 

H
ak

ai
 

IR
C

B
o
t 

H
aj

im
e 

M
u
h

st
ik

 

H
id

eA
n
d

S
ee

k
 

Benign 0.99 0 0 0 0 0 0 0 0 0 0 0

Mira 0.01 0.37 0 0.02 0.27 0.13 0.09 0 0.07 0.04 0.01 0

Torii 0.02 0 0.95 0.01 0 0 0 0 0 0 0.01 0

Trojan 0 0.04 0 0.92 0 0 0 0 0 0.04 0 0

Gafgyt 0 0 0 0 0.99 0.01 0 0 0 0 0 0

Kenjiro 0 0.01 0 0 0.58 0.39 0.02 0 0.01 0 0 0

Okiru 0 0 0 0 0 0.02 0.8 0 0 0.17 0 0

Hakai 0 0 0 0 0 0 0 1 0 0 0 0

IRCBot 0 0.02 0 0 0.35 0.02 0 0 0.59 0 0.02 0.01

Hajime 0 0 0 0 0 0 0.07 0 0 0.93 0 0

Muhstik 0 0 0 0 0 0 0 0 0 0 0.96 0.04

HideAn 0 0 0 0 0 0 0 0 0 0 0 1

 
Fig. 4. Confusion Matrix for Testing Data. The top row represents the 

predicted attack while the left column presents the observed attack. 
 

In terms of the performance, running the model on an RTX 

3050 was able to process a 100-packet image in 720 

microseconds, for a total throughput of around 140,000 

packets per second.  Using a batch size of 64 changes the 

performance to 3 milliseconds, so processing multiple batches 

can be used to increase the throughput.  On a Jetson Nano, the 

single image performance decreased to one image in 6 

milliseconds, for a throughput of 17,000 packets per second.  

Using a batch size of 64 on the Jetson Nano gives an 

evaluation time of 8 milliseconds.  These throughputs are 

generally sufficient for most IoT devices, and should even be 

able to handle multiple devices or systems using one Jetson 

Nano.  In cases where this is not enough, aggregating data and 

running a larger batch should allow 50 times more data to be 

processed in a similar timeframe. 

 

VII. CONCLUSION 

In this paper, a computer vision architecture to detect and 

classify multiple cyberattacks was created.  This system was 

found to have a high attack detection accuracy, and a moderate 

attack classification accuracy with reasonable exceptions.  It 

was also found to be able to run on both medium-grade GPUs, 

as well as a Jetson Nano, so there should be no issues utilizing 

it in IoT devices and edge computing. 

 

 

 

 

 

 

 

VIII. FUTURE WORKS 

While the convolutional neural network performs very well, 

there are a few potential improvements that can be made.  One 

such improvement would be changing the feature extraction.  

In the current implementation, there is simple a limited 

number of connections, before the last active connection is 

dropped.  It would be more accurate to drop connections as 

they are closed, which may help optimize feature extraction.  

Additionally, the size of images and the complexity of the 

neural network can also be reduced to get responses faster, 

however that would significantly impact the accuracy of the 

classification. 

REFERENCES 

[1] E. Bertino and N. Islam, "Botnets and Internet of Things Security," in 

Computer, vol. 50, no. 2, pp. 76-79, 2017 

[2] M. Gromov, D. Arnold and J. Saniie, “Tackling Multiple Security 
Threats in an IoT Environment,” in 2022 IEEE International 

Conference on Electro Information Technology, 2022. 

[3] Y. Meidan, M. Bohadana, Y. Mathov, Y. Mirsky, A. Shabtai, D. 
Breitenbacher and Y. Elovici, “N-BaIoT - Network-Based Detectino 

of IoT Botnet Attacks Using Deep Autoencoder,” IEEE Pervasive 

Computing, vol. 17, no. 3, pp. 12-22, 2018. 
[4] C. Kolias, G. Kambourakis, A. Stavrou and J. Voas, "DDoS in the IoT: 

Mirai and Other Botnets," in Computer, vol. 50, no. 7, pp. 80-84, 2017 

[5] J. Margolis, T. T. Oh, S. Jadhav, Y. H. Kim and J. N. Kim, "An In-
Depth Analysis of the Mirai Botnet," 2017 International Conference on 

Software Security and Assurance (ICSSA), 2017 

[6] I. Baptista, S. Shiaeles and N. Kolokotronis, “A Novel Malware 
Detection System Based on Machine Learning and Binary 

Visualization,” in 2019 IEEE International Conference on 

Communications Workshops , 2019. 
[7] L. Barlow, G. Bendiab, S. Shiaeles and N. Savage, "A Novel Approach 

to Detect Phishing Attacks using Binary Visualisation and Machine 

Learning," 2020 IEEE World Congress on Services (SERVICES), 
2020, pp. 177-182 

[8] NVIDIA , “Jetson Nano Developer Kit,” [Online]. Available: 
https://developer.nvidia.com/embedded/jetson-nano-developer-kit. 

[9] Mirsky, Y., Doitshman, T., Elovici, Y., & Shabtai, A. (2018). Kitsune: 

An Ensemble of Auto-encoders for Online Network Intrusion 
Detection. Proceedings 2018 Network and Distributed System Security 

Symposium. 

[10] M. Gromov, D. Arnold and J. Saniie, “Edge Computing for Real Time 
Botnet Propagation Detection,” in 2022 IEEE Real Time 

Communications Conference & Expo, 2022. 

[11] Sebastian Garcia, Agustin Parmisano, & Maria Jose Erquiaga. (2020). 
IoT-23: A labeled dataset with malicious and benign IoT network 

traffic (Version 1.0.0) [Data set]. Zenodo. 

http://doi.org/10.5281/zenodo.4743746” 
[12] A. Agniel, D. Arnold, and J. Saniie, "Image Processing for Detecting 

Botnet Attacks: A Novel Approach for Flexibility and Scalability", in 

2022 IEEE International Conference on Real Time Communications 
Conference and Expo; 2022 

 

 


