
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Smart Infant Monitoring System
Using Computer Vision and AI

Gurpreet Singh, Abhishek Raj Shekhar, Xinrui Yu, and Jafar Saniie
Embedded Computing and Signal Processing Research Laboratory (http://ecasp.ece.iit.edu/)

Department of Electrical and Computer Engineering

Illinois Institute of Technology, Chicago, IL, U.S.A.

Abstract—The new era of technology is being greatly

influenced by the field of artificial intelligence. Computer vision

and deep learning have become increasingly important due to

their ability to process vast amounts of data and provide insights

and solutions in a variety of fields. Computer vision, deep learning

and signal analysis have been used in a growing number of

applications and services including smart devices, image, and

speech recognition, healthcare, etc., one such device is an infant

monitoring system. It monitors the daily activities of the infant

such as their sleeping patterns, sounds, and movements. In this

paper, deep learning and computer vision libraries were used to

develop algorithms to detect whether the infant was in any

uncomfortable situation such as sleeping on its back, face being

covered and whether the infant was awake. The smart infant

monitoring system detects the infant's unsafe resting situation in

real time and sent immediate alerts to the caretaker’s device. This

paper presents the design flow of a smart infant monitoring system

consisting of a night vision camera, a Jetson Nano, and a Wi-Fi

internet connection. The pose estimation and awake detection

algorithms were developed and tested successfully for different

infant resting/sleeping situations. The smart infant monitoring

system provides significant benefits for safety and an improved

understanding of infants’ sleep patterns and behavior.

Keywords—infant monitoring system, deep learning, face

detection, pose detection, jetson nano, computer vision.

I. INTRODUCTION

This project is aimed at developing a smart infant monitoring
system that utilizes computer vision technology to automatically
recognize the potentially harmful conditions an infant can be in
at any instance. After the detection of any anomalies by the
algorithms, alerts can be sent to the caretaker's devices, if their
intervention is necessary for the infant's well-being.

Current infant monitoring system transfer video and audio
cues to the caretakers. The full scale of insights that can be
derived from this data is not fully explored. This project
proposes a prototype addressing these basic cases: (a) Determine
instances whenever the infant is sleeping on its stomach with
face down on the mattress. (b) Determine when the infant's face
is covered with a blanket, or the body is not covered with a
blanket. (c) Determine whether the infant is awake during the
time of nap. Cases (a) and (b) solutions involve building pose
estimation models and tweaking them to cater to these specific
problem statements and case (c) involves facial landmark
detections. Deep learning-based algorithms are used to achieve
the required results. For the real-time application of the
developed prototype algorithms, the NVIDIA Jetson Nano
module is used. This is an embedded device packing a CPU and

dedicated GPU. Hence it has the optimal processing power to
build a real-time system, run neural networks and at the same
time keep the latency minimum. The significant needs of such
systems can be justified using the following points:

• Annually, there are around 3,400 SUIDs (sudden
unexpected infant deaths) in the United States [1]. These
infant fatalities, which affect those under a year old, are
not immediately apparent. SUIDs can be classified into
the following categories: sudden infant death syndrome
(SIDS), unknown origin, accidental bed strangulation,
and suffocation. In 2020, around 1,389 infants died from
SIDS, 1,062 from unclear causes, and 905 from
accidental suffocation and strangulation in bed.

• Generally, the safest position for an infant to sleep is on
their back [2]. Infants may squirm to their sides in sleep,
they can be in this posture without risk as they get
stronger. However, lying on one's stomach, especially at
first, increases the risk of asphyxia and SIDS. Sleeping
face down on the mattress could be harmful to an infant.
The formation of pockets of carbon dioxide in the space
where the infant lays can be lethal if the infant is sleeping
on its stomach face down. As the infant re-breathes the
air exhaled, there is a drop in the oxygen level and a rise
in the levels of carbon dioxide. And with oxygen
suffocation is caused that may lead to fatality. This
deprivation of oxygen can be the reason for the
development of abnormality which can be directly linked
to SIDS [2].

• Infants wake up at nightfall due to discomfort or
disturbed circadian rhythm. An infant's erratic sleep
patterns may mean that no one in the family snoozes very
soundly. Parents prefer to know when their infant is
awake which can be made possible by the proposed
smart infant monitoring system.

• Studies prove that over 60% of parents with babies under
the age of 24 months get no more than three and a half
hours of sleep every night. Long-term insomnia can be
developed due to disturbance in sleep patterns in new
parents. Mental health problems are common in such
cases leading to chronic anxiety and depression. Physical
health problems such as heart disease, diabetes, and
obesity can be caused due to such a lifestyle [3].

• The proposed system will help the new parents to know
the situations when the infant needs care, eliminating the

need for constant attention hence significantly reducing
their stress levels and letting them have a healthy sleep.

II. TECHNICAL DESCRIPTION

The proposed prototype’s performance was evaluated on
both a traditional personal computer GPU and the NVIDIA
Jetson Nano developer kit [4]. NVIDIA Jetson Nano comes with
a built-in Maxwell 128-core GPU, which can run multiple neural
networks simultaneously for computer vision tasks like image
processing, speech recognition, object detection, etc.

A. Hardware

The NVIDIA® Jetson Nano development kit is the
processing unit. It's the ideal choice for edge computing and
real-time neural network applications since it's a single
embedded platform tailored specifically for image processing
and neural networks. It has a Quad-core ARM A57 @ 1.43 GHz
CPU, a 128-core Maxwell graphics processing unit (GPU), 4
GB 64-bit LPDDR4 25.6 GB/s memory, four USB 3.0, USB 2.0,
Micro-B ports, microSD storage (up to 1TB), 2x MIPI CSI-2
DPHY lanes camera, Gigabit Ethernet M.2 Key E connectivity,
HDMI and display port, mechanical 69 mm x 45 mm, 260-pin
edge connector, etc., A USB interface connects a night-vision
camera to the Jetson Nano. The camera has 5 Megapixels sensor
and supports 1080P resolution. It has photosensitive resistance
and an IR-CUT built-in, allowing it to detect and identify light
to automatically transition between night-vision and day-time
photography modes. A Wi-Fi adapter is linked to the Jetson
Nano's USB port for wireless internet connection.

B. Software

Linux4Tegra (L4T) operating system (OS), was installed on
the Jetson Nano board's SD card (32 GB). All of the necessary
packages, such as OpenCV, Dlib, and OpenPose, were installed
on Jetson Nano which came with preloaded rudimentary
models. For pose estimation, different models were tested such
as TRTPose [5], MediaPipe [6], Openpose [7], etc. OpenPose is
found to be best suited for the proposed system. One of the
libraries used in the awake detection algorithm is the Dlib image
processing library. It is a deep learning-based C++ library used
for image processing, threading, networking, etc. Dlib is a
license-free open-source library that can run across multiple
platforms. This library is also present in python. Python
programming language is versatile and easy to use. It also has a
vast number of libraries and is platform-independent. This
makes python quite convenient. Therefore, the suggested
system's source code is written in Python. The Jupyter notebook,
a web-based IDE is used as our working environment.

III. METHODOLOGY

The smart infant monitoring system comprises a night vision
indoor webcam, an NVIDIA Jetson Nano module, a Wi-Fi
adapter, and a monitor for displaying alerts. The infant is
monitored in real time by a night vision camera which sends the
input feed to the Jetson nano via a Wi-Fi server [8]. The camera
is set up such that the field of view of the camera covers the
infant perfectly from head to toe. This input feed is processed in
the Jetson Nano where image processing-based pose estimation
and awake detection algorithms are implemented

simultaneously. Further on, the results obtained from these
algorithms are analyzed and alerts are sent out to parents or
caregivers accordingly as shown in Fig. 1.

There are two integral parts to this problem. To detect
whether the infant is in a vulnerable position, estimating the pose
and body parts becomes the most important part of the problem.
By first estimating the pose by utilizing Artificial Intelligence,
we can write basic algorithms on top of it to get the desired
result. For instance, we can get the instances when the infant is
not covered in a blanket by detection of the lower body parts like
hips and leg joints. Some positions when the infant is in critical
conditions like sleeping with a ‘face down in the mattress’ case
can also be detected by detecting the nose of the infant. Hence it
all boils down to accurately estimating the pose by detection of
different body parts. Secondly, to detect when the infant is
awake, we opt for localized body part detections. Facial
landmarks are detected by pre-trained models and the
coordinates of respective landmarks are grouped to detect the
eyes. After the detection of the eyes, formulas can be constructed
on top of it to get the instance when the eyes are closed or opened
for a specified time duration. Based on this, conclusions can be
made about when the infant is awake or asleep. Now utilizing
Jetson Nano these model algorithms can be implemented on the
video stream captured by the camera in parallel to achieve the
objectives of the project.

Fig. 1. Flowchart demonstration of the process for the development of the
prototype Infant Monitoring System.

IV. POSE ESTIMATION

Pose estimation has received a significant amount of interest
in the discipline of computer vision. The capacity to employ
computer vision algorithms to recognize and follow the motion
of a person or an item in real time is increasing in popularity
since it has a wide range of applications across industries [9].
Pose estimate has emerged as a valuable tool in graphics,
medical rehabilitation, gaming, sports biomechanics,
automation, and surveillance in the ever-evolving technological

era. technology. Because stance movements are frequently
driven by unique human activities, knowing a human's body
position is crucial for action identification. Pose estimation, in
essence, anticipates possible positions in a picture or video based
on a person's body components and joint positioning.

A. Types and Challenges

Pose estimation can be segregated into two categories 2
Dimensional and 3 Dimensional. In 2D human pose estimation,
from visuals like images and videos, the 2D position or spatial
placement of the human body's essential points is recognized.
Traditional 2D human pose estimate methods employ feature
extraction techniques for each body part and treat human bodies
as stick figures to get global posture structures [10]. In contrast,
3D Human Pose Estimation is utilized to predict where body
joints would be in 3D space. The 3D human mesh may also be
recovered from visuals like images or videos using 3D pose
techniques [11]. For estimation of the pose of the infant in a
cradle, we hereby require the 2D pose estimation techniques as
the information needed is the spatial location of body key points
from the video feed to run the algorithm we want.

Position estimation is a difficult task since the body's
appearance dynamically varies due to various types of clothing,
arbitrary occlusion, viewing angle, and surrounding
environments [7]. Human pose estimation must be resistant to
real-world variables such as illumination and weather. As a
result, image processing methods struggle to recognize fine-
grained joint coordinates. Tracking tiny and faintly visible joints
is especially challenging.

Some of the most popular models currently developed in the
2D pose estimation space are OpenPose [12], Movenet [13],
Posenet [14], DCPose [15], DensePose [16], HigherHRNet [17],
AlphaPose [18], TransPose [19], etc. Also, there is a model
called trt_pose which aims to enable real-time pose estimation
on NVIDIA platforms. This model is an open-source NVIDIA
project which is optimized for use with the NVIDIA Jetson
processor. Any of these models is capable of mapping the key
points of a person and estimating the corresponding poses even
in occluded scenarios. OpenPose is the model utilized in this
project to perform pose estimation.

B. Architecture and Algorithms

OpenPose follows a bottom-up approach i.e., identifying the
key points first and assigning that to the individuals in the post-
processing phase of the model [7]. The pipeline is a coalescence
of different advanced fields such as calculus, set theory, graph
theory, and deep learning. The first step followed in this pipeline
is preprocessing of input frame images. The image is converted
from [0, 255] to [-1, 1] [20]. To extract the features from the
image, the frames are passed through the image extraction layer
VGG-19 [7]. Then the network is split into two branches to
predict different things. A set of 18 different confidence heat
maps representing each different part of the human body is
predicted by the first branch [7]. The location of different body
parts out of 18 generated matrices is extracted from the
information derived. The confidence heatmap is then
transformed into certainty by using non-maximum suppression
(NMS) [20]. After passing through NMS, the non-zero-pixel
values now denote the candidates for each one of the body parts.

After this, the graph theory is applied to obtain a complete
bipartite graph where the edges denote each possible
association, and the vertices represent part candidates. Now the
objective is to assign weights to each edge of the graph to find
the right connection. This is where the significance of the second
layer is, it gives the sense of which two parts can be combined
or association between a couple of parts can be made to give a
pair. This is done by producing 38-part affinity field matrices in
association with every pair [7]. This part affinity field matrix
gives information on the position and direction in each x and y-
axis of pairs. There are multiple stages of the networks where
the output of the previous stage is refined. The line integral of
PAF and the bipartite graph is taken to assign the weights to the
graph edges. A line integral is integral that evaluates the function
to be integrated along a curve. In practical terms, it defines the
effect of any field.

Fig. 2. OpenPose Pipeline for Pose Estimation.

The objective then is to find the connection that gives a
maximum total score. This algorithm is called the assignment
algorithm. In this sorting is done from maximum to minimum,
and a greedy approach is used to find the maximum of each pair
of connections [20]. These detected connections are then to be
transformed into human skeletons. It is considered that each
connection belongs to different humans. At this point, merging
is done to club all the connections having the same part
coordinates and part index values to form an individual human
[7]. The output is hence obtained where each human figure is

defined as a set of parts containing its index, coordinates, and
score.

Now the aim is to determine the conditions in which the
infant is in a vulnerable state. Algorithms are designed using the
principle that if the infant’s nose is not in view for a while, a
conclusion can be made either the infant is sleeping in a bad
posture on its stomach, or the blanket is covering the infant’s
face both of which are not healthy situations for an infant to be
in [8]. These specific body parts can be detected by accessing
the part indices in the COCO format [21]. If hips, knees, and feet
are detected then it can be concluded that the blanket is not
completely on the infant.

Fig. 3. Pose Output Format (COCO) [21].

C. Results

Along with its real-time model based on OpenPose, the
suggested pose estimation approach was tested on several stock
infant images, as shown in Fig. 4. The suggested approaches can
successfully estimate the poses and algorithms are executed on
those poses to generate alerts. In Fig. 4(a), the algorithm is not
able to detect the nose of the infant, this is a condition when
alerts will be issued as the infant’s posture is not a healthy one.
Other images in Fig. 4 are relatively healthy positions for an
infant to sleep in.

Fig. 4. Results obtained when pose estimation is performed on infants.

V. AWAKE DETECTION

To figure out whether the infant is awake or not, an awake
detection algorithm has been created. It uses two levels-facial
feature extraction from the input frame and calculation of the
eye aspect ratio (EAR) values. The night vision camera provides
the real feed of the baby. The feed is sent to the Jetson Nano
module via a Wi-Fi connection. The algorithm present in the
jetson nano is implemented on each frame of the input video

feed. There are two proposed methods for facial feature
detection: OpenCV Haar cascades and Dlib face detection. The
Haar cascade algorithm selects features based on the difference
in the sum of intensities of the dark and light regions in the Haar-
like feature. An integral image is created where a pixel in the
image is equal to the sum of the pixels to its left and above. The
Adaboost method generates a robust classifier by linearly
combining weak classifiers [22]. Finally, a cascade classifier is
formed by chaining together more complicated classifiers such
as Adaboost together.

 Dlib face detection also has two different methods for facial
feature extraction and detection. The histogram of oriented
gradients with linear support vector machine (HoG+SVM)
algorithms is capable of implementing a very efficient facial
recognition system [23]. HoG is a reductive yet fast algorithm
that deconstructs a picture into constituent groups of pixels from
which it extracts features that may be connected to recognized
categories of objects. To do so, it first generates a low-level
histogram that defines the contours of objects in the picture
based on pixel intensity and the extent to which it abruptly goes
off. The linear SVM classifiers are trained to classify the input
images and the resultant output is obtained. Max-Margin
(MMOD) CNN algorithm is a strong and dependable GPU-
accelerated face detector that uses a convolutional neural
network (CNN) and is significantly more capable of collecting
faces from obscure angles and in difficult settings, making it
suitable for casual surveillance and urban analysis [23].

A. Architecture and Algorithm

Dlib is a powerful and widely used facial recognition library
that offers a perfect mix of resource utilization, latency, and
accuracy, making it suitable for real-time face recognition [24].
It's becoming a frequent, if not necessary, library in the facial
recognition scene, and it's a better fit for our computer awake
detection framework. For awake detection, Dlib, an image
processing package, is utilized to extract the facial landmarks
from each frame using the Dlib pre-trained facial landmark
detector, which is then used for awake detection [25]. The
histograms are formed using the frequencies of the gradient
direction of the face. The pre-trained face detector function is
used to extract all 68 facial landmarks [26]. The eyes feature 38
to 42 for the left eye and 43 to 48 for the right eye is extracted
and represented in Fig. 5 [26]. The eye-aspect ratio (EAR) is
calculated for both eyes.

Fig. 5. Facial Landmark points detected by Dlib [27].

The points marked in Fig. 6 are the eye coordinates. The
EAR for an open eye is between 0.2- 0.4 and between 0.1-0.15
for a closed eye as shown in Fig. 7. The EAR of both eyes is
calculated using the eye-aspect ratio equation shown in (1).

��� �
|�2 � �6|
 |�3 � �5|

2
|�1 � �4|��

1�

������� ��� �
��� ����
 ��� ���ℎ�

2

2�

Fig. 6. Demonstration of eye aspect ratio variation over time

The average distance between the upper and lower eyelids is
divided by the eye size which is determined by the horizontal
endpoints of the eye. The average value is taken for both eyes.
The points marked in Fig. 6 are the eye coordinates. The EAR
for an open eye is between 0.2- 0.4 and between 0.1-0.15 for a
closed eye as shown in Fig. 7. The EAR of both eyes is
calculated using the eye-aspect ratio equation shown in (1). The
average distance between the upper and lower eyelids is divided
by the eye size which is determined by the horizontal endpoints
of the eye. The average value is taken for both eyes [28]. The
algorithm calculates the average eye aspect ratio as shown in (2).
If the values exceed a threshold value (0.2 in our case) for a
certain number of consecutive frames determined by a
consecutive frame threshold, it is concluded that the infant is
awake. The counter variable is initialized which is incremented
by one for each frame where the eyes were open. The counter
value is then compared with the frame threshold set up to be 200
for the algorithm. If the value of the counter variable exceeds the
set threshold, a notification is delivered to the parent that their
child is awake and in the need of assistance [29]. However, if
the counter value is below the threshold, it indicates that the
infant is sleeping. The block design of our suggested awake
detection algorithm is shown in Fig. 7.

Fig. 7. Awake Detection Algorithm.

B. Results

Along with its real-time model, the suggested detection
approach was tested on several infant images, as shown in Fig.
8. The suggested approaches can successfully detect the eye-
closed condition shown in Fig. 8(a) and 8(c), as well as the
awake condition shown in Fig. 8(b) and 8(d).

Fig. 8. Result for awake detection. (a) Baby is awake (EAR=0.29), (b) Baby
sleeping (EAR=0.11), (c) Baby is awake (EAR=0.35), (d) Baby is sleeping
(EAR =0.14).

The Dlib face detector was used for awake detection.
Another alternative method for awake detection was using the
MTCNN [30] model for eye detection and using a queue-based
EAR value storage and sorting system instead of using a single
variable (counter) for a more elaborate and efficient algorithm.

VI. CONCLUSION

This paper presents a smart infant monitoring system based
on technologies such as computer vision and artificial
intelligence. The proposed prototype works on the principles of
image processing and deep learning to detect certain movements
of infants and predict instances whenever the infant is in a
vulnerable situation. Then the corresponding alerts are issued to
the caretaker or parents. A microcontroller-based system
capable of real-time applications and an interface to a camera
are used to implement the algorithms. This monitoring system
can find great application in the home environment, daycare
centers, and hospitals, especially in neonatal intensive care units
(NICUs). By providing continuous monitoring of an infant, this
system can help provide vital information to medical staff,
improving the efficiency and the service provided by the
caretakers. With this infant monitoring system, single parents or
working parents can carry out their daily chores while still being
able to keep an eye on their infant.

 REFERENCES

[1] “Data and statistics for SIDS and suid,” Centers for Disease Control and
Prevention, 21-Jun-2022. [Online]. Available:
https://www.cdc.gov/sids/data.htm/. [Accessed: 01-Mar-2023].

[2] L. Anderson and L. Anderson, “My baby sleeps face down in the mattress,
should I worry?,” MomInformed. [Online]. Available:
https://mominformed.com/my-baby-sleeps-face-down-in-the-mattress-
should-i-worry/. [Accessed: 01-Mar-2023].

[3] “New parents have 6 months sleep deficit during first 24 months of Baby's
Life,” Medical News Today. [Online]. Available:
https://www.medicalnewstoday.com/articles/195821#1. [Accessed: 01-
Mar-2023].

[4] “Jetson Nano Developer Kit,” NVIDIA Developer, 28-Sep-2022.
[Online]. Available: https://developer.nvidia.com/embedded/jetson-
nano-developer-kit. [Accessed: 01-Mar-2023]. M. Young, The Technical
Writer’s Handbook. Mill Valley, CA: University Science, 1989.

[5] Nvidia-Ai-Iot, “Nvidia-ai-IOT/TRT_POSE: Real-time pose estimation
accelerated with Nvidia TENSORRT,” GitHub. [Online]. Available:
https://github.com/NVIDIA-AI-IOT/trt_pose. [Accessed: 01-Mar-2023].

[6] “Mediapipe,” PyPI. [Online]. Available:
https://pypi.org/project/mediapipe/. [Accessed: 01-Mar-2023].

[7] Z. Cao, G. Hidalgo, T. Simon, S.-E. Wei, and Y. Sheikh, “OpenPose:
Realtime multi-person 2D pose estimation using part affinity fields,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 43,
no. 1, pp. 172–186, 2021.

[8] T. Khan, “An intelligent baby monitor with automatic sleeping posture
detection and notification,” AI, vol. 2, no. 2, pp. 290–306, 2021.

[9] S. C. Babu, “A 2019 guide to human pose estimation with deep learning,”
Nanonets AI & Machine Learning Blog, 05-Aug-2019. [Online].
Available: https://nanonets.com/blog/human-pose-estimation-2d-guide/.
[Accessed: 01-Mar-2023].

[10] E. Odemakinde, “Human pose estimation with deep learning - ultimate
overview in 2023,” viso.ai, 25-Feb-2023. [Online]. Available:
https://viso.ai/deep-learning/pose-estimation-ultimate-overview/.
[Accessed: 01-Mar-2023].

[11] A. Benzine, B. Luvison, Q. C. Pham, and C. Achard, “Deep, robust and
single shot 3D multi-person human pose estimation from monocular

images,” 2019 IEEE International Conference on Image Processing
(ICIP), 2019.

[12] CMU-Perceptual-Computing-Lab, “CMU-Perceptual-Computing-
Lab/openpose: OpenPose: Real-time multi-person keypoint detection
library for body, face, hands, and foot estimation,” GitHub. [Online].
Available: https://github.com/CMU-Perceptual-Computing-
Lab/openpose. [Accessed: 01-Mar-2023].

[13] “MoveNet: Ultra fast and accurate pose detection model. : tensorflow
hub,” TensorFlow. [Online]. Available:
https://www.tensorflow.org/hub/tutorials/movenet. [Accessed: 01-Mar-
2023].

[14] A. Kendall, M. Grimes, and R. Cipolla, “PoseNet: A convolutional
network for real-time 6-DOF camera relocalization,” 2015 IEEE
International Conference on Computer Vision (ICCV), 2015.

[15] Z. Liu, H. Chen, R. Feng, S. Wu, S. Ji, B. Yang, and X. Wang, “Deep dual
consecutive network for human pose estimation,” 2021 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021

[16] R. A. Guler, N. Neverova, and I. Kokkinos, “DensePose: Dense human
pose estimation in the wild,” 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2018.

[17] B. Cheng, B. Xiao, J. Wang, H. Shi, T. S. Huang, and L. Zhang,
“Higherhrnet: Scale-aware representation learning for bottom-up human
pose estimation,” 2020 IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), 2020.

[18] H.-S. Fang, J. Li, H. Tang, C. Xu, H. Zhu, Y. Xiu, Y.-L. Li, and C. Lu,
“Alphapose: Whole-body regional multi-person pose estimation and
tracking in real-time,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, pp. 1–17, 2022.

[19] S. Yang, Z. Quan, M. Nie, and W. Yang, “Transpose: Keypoint
localization via Transformer,” 2021 IEEE/CVF International Conference
on Computer Vision (ICCV), 2021.

[20] A. Solano, “Human pose estimation using openpose with tensorflow (part
2),” Medium, 20-Nov-2017. [Online]. Available:
https://arvrjourney.com/human-pose-estimation-using-openpose-with-
tensorflow-part-2-e78ab9104fc8. [Accessed: 01-Mar-2023].

[21] “Common objects in context,” COCO. [Online]. Available:
https://cocodataset.org/#home. [Accessed: 01-Mar-2023].

[22] Z. Mahmood, T. Ali, and S. Khattak, “Automatic player detection and
recognition in images using AdaBoost,” Proceedings of 2012 9th
International Bhurban Conference on Applied Sciences & Technology
(IBCAST), 2012

[23] A. Rosebrock, “Face detection with dlib (Hog and CNN),”
PyImageSearch, 17-Apr-2021. [Online]. Available:
https://pyimagesearch.com/2021/04/19/face-detection-with-dlib-hog-
and-cnn/. [Accessed: 01-Mar-2023].

[24] dlib C++ Library - Machine Learning. [Online]. Available:
http://dlib.net/ml.html. [Accessed: 01-Mar-2023].

[25] dlib C++ Library - Image Processing. [Online]. Available:
http://dlib.net/imaging.html#shape_predictor. [Accessed: 01-Mar-2023].

[26] A. Rosebrock, “Facial landmarks with dlib, opencv, and python,”
PyImageSearch, 03-Jul-2021. [Online]. Available:
https://pyimagesearch.com/2017/04/03/facial-landmarks-dlib-opencv-
python/. [Accessed: 01-Mar-2023].

[27] i·bug - resources - Facial point annotations. [Online]. Available:
https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/. [Accessed:
01-Mar-2023].

[28] S. Shaily, S. Krishnan, S. Natarajan, and S. P., “Smart Driver Monitoring
System using AI,” Advances in Medical Technologies and Clinical
Practice, pp. 225–250, 2021.

[29] A. Rosebrock, “Eye blink detection with opencv, python, and dlib,”
PyImageSearch, 20-Feb-2023. [Online]. Available:
https://pyimagesearch.com/2017/04/24/eye-blink-detection-opencv-
python-dlib/. [Accessed: 01-Mar-2023].

[30] K. Zhang, Z. Zhang, Z. Li, and Y. Qiao, “Joint face detection and
alignment using multitask cascaded convolutional networks,” IEEE
Signal Processing Letters, vol. 23, no. 10, pp. 1499–1503, 2016.

