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Abstract – Due to the rapid adoption of Internet of Things (IoT) 

technologies, many networks are composed of a patchwork of 

devices designed by different software and hardware developers. In 

addition to the heterogeneity of IoT networks, the general rush-to-

market produced products with poor adherence to core 

cybersecurity principles. Coupled together, these weaknesses leave 

organizations vulnerable to attack by botnets, such as Mirai and 

Gafgyt. Infected devices pose a threat to both internal and external 

devices as they attempt to add new devices to the collective or to 

perpetrate targeted attacks within the network or against third 

parties. Artificial Intelligence (AI) tools for intrusion detection are 

popular platforms for detecting indicators of botnet infiltration. 

However, when training AI tools, the heterogeneity of the network 

hampers detection and classification accuracy due to the 

differences in device architecture and network layout. To 

investigate this challenge, we explored the application of a Neural 

Network (NN) to the N-BaIoT dataset. The NN achieved 94% 

classification accuracy when trained using data from all devices in 

the network. Further, we examined the model’s transferability by 

training on a single device and applying it to data from all devices. 

This resulted in a noticeable decline in classification accuracy. 

However, when considering cyberattack detection the model 

retained a very high true positive rate of 99.6%.  
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I. INTRODUCTION  

Integration of the Internet of Things (IoT) has accelerated the 

growth in edge computing and the decentralization of modern 

computer networks. Utilization of edge computing elements 

permits faster responsiveness for target applications, such as 

consumer, commercial, and industrial use cases. IoT devices 

often trade computational resources for a lower price point in 

order to encourage adoption and increase network coverage. 

However, due to limited computing power and sparse encryption 

capabilities, IoT lacks defensive measures to protect themselves 

from attack [1]. Further, IoT devices need to be easily accessible 

via the local network and misconfiguration can easily expose 

them to the wider Internet. As a result, savvy attackers can use 

simple attack vectors to compromise a large number of devices. 

Compromised devices are then organized into a botnet to disrupt 

operations or facilitate further attacks [2-4]. Botnets are 

dangerous to both institutions with infected devices and without, 

as infected devices can be brought offline or directed to attack 

third-party organizations. Early identification of an attack is 

paramount to network defense to prevent propagation and 

prevent further attacks. Additionally, detection should occur at 

the edge of the network in order to increase responsiveness to 

attacks.  

In order to address these challenges, our research focuses on 

the implementation of Artificial Intelligence-based Intrusion 

Detection Systems (IDS) for the edge of the network. Due to the 

presence of large numbers of unique IoT devices, modern 

networks have high heterogeneity. AI tools are popular for 

anomaly detection and are frequently applied in cyberattack 

detection roles. These tools are trained on a mixture of normal 

network activity and known attack indicators [5-12]. Training 

works well with known attacks and network architectures, 

however, novel attack vectors or changes in the network 

architecture can often lead to a low detection rate. Due to the 

presence of large numbers of unique IoT devices, modern 

networks often have high heterogeneity. High heterogeneity is a 

challenge for training AI-based IDS as normal network traffic 

varies greatly between networks. Ideally, these models should 

be able to maximize their performance on unknown IoT devices 

while minimizing the number of unique devices required to train 

the model. To achieve these goals, we evaluated the performance 

of a Neural Network (NN) under different training conditions.  

Through the remainder of this paper, we will present our work 

regarding the application of Artificial Intelligence towards 

heterogeneity tolerance in IoT botnet attack classification. In 

Section II, we will discuss related work and our previous 

experience in IoT botnet attack detection. Section III presents 

the N-BaIoT dataset and challenges we encountered while 

collecting our results. Next, we will discuss our Neural Network 

model for botnet attack detection and classification in Section 

IV. Results will be provided in Section V. Finally, we’ll wrap up 

our observations and discuss potential future work in Section VI.  

II. RELATED WORKS  

Regarding related work, research has been conducted in 

applying machine learning and artificial intelligence in detecting 

botnet attacks. The main comparison with our work will be the 

N-BaIoT paper by Meidan et al [13]. We have selected the 

dataset used by the authors for our analysis, so it allows us to 

offer the best comparison on accuracy and performance. During 

their research, Meidan et al trained a deep autoencoder on nine 

devices within an IoT network. The researchers observed a very 

high cyberattack detection rate with low false positive rates. Our 

research will contribute to the literature by examining a simpler 

network’s ability to achieve similarly high cyberattack detection 



rates. Additionally, we will examine the transferability of trained 

models by training on a single device and applying the model to 

the other devices.  
In addition to the work by Meidan et al, other work has been 

done regarding cyberattack detection in networks with high 

heterogeneity. In [14], Zhou et al. considered the application of 

game theory for attack detection in an IoT network. Their work 

focused on balancing energy consumption with detection 

efficiency. A network-based IDS was considered in [15] with an 

extreme learning model that achieved 97.7% accuracy for 

cyberattack detection. Finally, an on-device detection system 

was considered in [16] with a variety of machine learning 

techniques applied to the network, including support vector 

machines, neural networks, naïve bayes classifier, and a decision 

tree.  

During our previous work, we examined the application of 

computer vision as a pre-processing tool for detecting IoT botnet 

attacks. Computer vision was selected as it allowed us to group 

temporally related packets for analysis in a lightweight fashion 

compared to popular models such as Long Short-Term Memory 

(LSTM). During pre-processing we were able to set the number 

of packets and features that were included in our images to be 

processed. After pre-processing, we evaluated the accuracy of a 

Neural Network, Autoencoder, and Convolutional Neural 

Network. When examining the results, we considered the 

accuracy when training over the entire dataset and when training 

over a specific device. After applying our pre-processing, we 

observed that the models were transferable between devices 

within the network. Since this was applied to cyberattack 

detection only, our future goals were to expand our research to 

classification as well. This research fits into this overarching 

objective as we are examining attack classification with only the 

Neural Network stage. Future work will apply our computer 

vision pre-processing we used previously.  

III. DATASET  

For our research into detecting botnet activity, we selected the 

N-BaIoT dataset [13]. This dataset includes real traffic data from 

infected IoT devices during the propagation and attack phases of 

the Mirai and Gafgyt botnets. The recorded traffic was converted 

from .pcap to .csv using a feature extractor in order to vectorize 

the data. A total of 115 features are present within the dataset, 

representing statistical data on the network packets. Statistics 

were calculated based on streams of data, which represented 

recent traffic from the packet host. Nine different commercial 

IoT devices with varied functions were used to generate the 

dataset, so the effect of device heterogeneity on botnet detection 

can be studied quite effectively. These devices are listed below 

in Table I.  

While the N-BaIoT paper applied an autoencoder to solely 

provide binary classification of traffic as either benign or 

malicious, the dataset was labeled to distinguish between five 

malicious behaviors for both botnets. These behaviors included 

a vulnerable device scan and four flooding attacks. The 

additional attack classification allows us to train and test multi-

class classification models in order to distinguish between botnet 

behaviors. Identifying individual attack patterns from the botnet 

provides insight into the motivations of the attacker and may 

influence incident response and recovery. For instance, an 

attacker focused on expanding the botnet may pose a lower 

organizational risk compared to an attacker seeing out additional 

information regarding the network. Classification labels for the 

dataset are presented in Table II below.  
 

TABLE I. N-BAIOT IOT DEVICES  

ID Device Name 

1 Danmini_Doorbell 

2 Ecobee_Thermostat 

3 Ennio_Doorbell 

4 Philips_B120N10_Baby_Monitor 

5 Provision_PT_737E_Security_Camera 

6 Provision_PT_838_Security_Camera 

7 Samsung_SNH_1011_N_Webcam 

8 SimpleHome_XCS7_1002_WHT_Security_Camera 

9 SimpleHome_XCS7_1003_WHT_Security_Camera 
 

 

TABLE II. N-BAIOT CLASSIFICATION LABELS  

ID Label Name Description 

0 benign Uninfected device traffic 

1 gafgyt.combo Combined TCP/UDP flooding 

2 gafgyt.junk Sending spam data 

3 gafgyt.scan Scanning for vulnerable devices 

4 gafgyt.tcp TCP flooding 

5 gafgyt.udp UDP flooding 

6 mirai.ack TCP ACK flooding 

7 mirai.scan Scanning for vulnerable devices 

8 mirai.syn TCP SYN flooding 

9 mirai.udp UDP flooding 

10 mirai.udpplain Optimized UDP flooding 
 

IV. ARTIFICIAL INTELLIGENCE MODELS 

Our botnet detection model was developed as a fully 

connected neural network. The input layer has 115 nodes, 

reflecting the number of features in each data point, and the 

output layer has 11 nodes to match the number of classification 

labels. Two hidden layers were placed between with widths of 

64 and 32. The hyperbolic tangent function was used as the 

activation function for the first three layers, and the softmax 



function was used at the output so that the final vector would 

represent the prediction of the model as relative probabilities for 

each class. 

Early experiments revealed that the model was prone to 

overfitting due to the high width of the model necessitated by 

the large number of attributes in the data. To remedy this, L1 

regularization was applied to the first layer. This was intended 

to drive some of the weights in the input layer to zero since the 

number of input features is very high and many are highly 

correlated. The dropout of many nodes and overall reduction of 

capacity in the first layer caused by this regularization resulted 

in greatly reduced overfitting. A visualization of our final 

network is presented in Figure 1.  
 

 
Fig. 1. Neural Network Structure 
 

In order to study the effect of IoT device heterogeneity on the 

ability of a prediction model to identify botnet activity, five 

variants of the model were trained and evaluated. The first model 

was trained on data from the entire set of nine devices and tested 

on separate samples from these same nine devices. Since the 

number of samples per device per class in the original dataset 

varies greatly (from 20,000 to 200,000), it was critical that the 

training set be generated by choosing an equally sized subset 

from each label to prevent biasing the model toward any 

particular prediction. This model served as the baseline case 

where the prediction was performed on data from devices which 

were all seen during training. Each of the other four models were 

instead trained on data from only one of the nine devices and 

tested on data from the remaining eight. This meant that the 

prediction accuracy of the model would be evaluated using 

samples from totally unfamiliar devices. The four devices 

chosen to train these models were the Danmini Video Doorbell, 

the Ecobee Thermostat, the Philips B120 Baby Monitor, and the 

Provision PT-737E Security Camera. These were chosen from 

the original set of devices to maximize inter-device variability. 

All models were trained and run on the Nvidia Jetson Nano.  

V. RESULTS AND ANALYSIS  

After completing the training process, we applied our baseline 

model to our test data and recorded the predictions over the 11 

classes. The resulting classifications are displayed as a confusion 

matrix in Figure 2. The confusion matrix allows us to identify 

which classes were handled well, and which classes proved 

difficult to differentiate. Overall, the model was successful at 

differentiating between most of the classified activity, with near 

perfect classification between the predicted and observed gafgyt 

botnet activity. The model performed well with the mirai data, 

but struggled to differentiate between ACK, SYN, and 

UDPPLAIN activity from the botnet.  
 

 
Fig. 2. Confusion matrix for the baseline model. Values in the matrix represent 

packets labelled by the baseline model.  
 

In addition to examining the per-class predictions of our 

model, we also wanted to observe the separate benign vs 

malicious accuracy for general cyberattack detection purposes. 

For our analysis, we will introduce two new metrics, the True 

Malicious Rate (TMR) and the True Benign Rate (TBR). The 

True Malicious Rate represents the accuracy of the model in 

detecting any of our 10 botnet attack classes while our True 

Benign Rate represents the model’s ability to correctly identify 

the benign data as benign. When compared to the overall 

accuracy, which indicated whether a predicted classification was 

correct, this gives us a more general impression of the pure 

botnet detection performance while overlooking the less serious 

mispredictions. In addition to our baseline, we also applied our 

models trained on a single device. Table III presents our results 

for our baseline (trained on all devices, training on the baby 

monitor, training on the thermostat, training on the doorbell, and 

training on the security camera. Similar to the observations from 

our confusion matrix, the baseline model was very successful at 

detecting the attack class and benign data with 94.34% accuracy 

overall and very strong TMR and TBR values at 99.93% and 

99.65%, respectively.  

 

 
 



TABLE III. BINARY CLASSIFICATION ACCURACY, TRUE MALICIOUS RATE 

(TMR), AND TRUE BENIGN RATE (TBR) FOR OUR MODEL  

Training Set Overall Acc. TMR TBR 

All (Baseline) 94.34% 99.93% 99.65% 

Baby Monitor 82.38% 99.95% 91.99% 

Thermostat 81.76% 99.98% 80.53% 

Doorbell 76.25% 99.60% 69.67% 

Security Camera 64.36% 99.45% 64.01% 

 

When we observe the overall accuracy of our trained models, 

we note that training on individual devices resulted in a 

significant decline in classification accuracy when compared to 

the baseline model. For instance, the security camera performed 

the worst at overall accuracy with a classification accuracy of 

64.36%, meaning that it had low heterogeneity tolerance for 

classification. However, when considering general botnet 

activity and classifying whether an attack had occurred, the 

models fared much better. All models had an observed True 

Malicious Rate at 99%, indicating that our neural network had a 

high degree of heterogeneity tolerance on applications where 

catching malicious activity compared to the discrete 

classification. On the other hand, our True Benign Rate followed 

the overall accuracy, resulting in a higher rate of false positives 

among the datasets. Additionally, training with the baby monitor 

produced the greatest heterogeneity tolerance and shows that the 

device may be a good representation of generalized IoT activity. 

Nonetheless, these results indicate that it’s possible to train our 

model using a small sample of different IoT devices and expect 

good performance when deployed to a diverse IoT environment.  

VI. CONCLUSION  

Overall, we were successful at developing a neural network 

model with high heterogeneity tolerance in identifying 

malicious IoT botnet behavior. When trained against all IoT 

devices within the N-BaIoT dataset, the model showed high 

classification accuracy for our 11 classes. Additionally, we 

showed that training on 4 individual devices yielded True 

Malicious Rate values of over 99%, with the baby monitor 

exhibiting the strongest overall classification accuracy as well. 

For our other devices, we observed a high false positive rate.  

During future work we are interested in establishing an IoT 

testbed to evaluate the model’s cyberattack detection and 

classification capabilities on real-time data and different 

network configurations. We will also explore additional neural 

network models in order to determine whether it’s feasible to 

increase the heterogeneity tolerance for the devices outside of 

the baby monitor.  
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