
Environment Provisioning and Management

for Cybersecurity Education

John Ford, David Arnold, and Jafar Saniie

Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu)

Department of Electrical and Computer Engineering

Illinois Institute of Technology, Chicago IL, U.S.A.

Abstract – Hands-on learning environments and cyber ranges are

popular tools in cybersecurity education. These resources provide

students with practical assessments to strengthen their abilities and

can assist in transferring material from the classroom to real-world

scenarios. Additionally, virtualization environments, such as

Proxmox, provide scalability and network flexibility that can be

adapted to newly discovered threats. However, due to the

increasing demand for cybersecurity skills and experience, learning

environments must support an even greater number of students

each term. Manual provisioning and management of environments

for large student populations can consume valuable time for the

instructor. To address this challenge, we developed an

Environment Provisioning and Management Tool for

cybersecurity education. Our solution interacts with the exposed

Proxmox API to automate the process of user creation, server

provisioning, and server destruction for a large set of users. Remote

access will be managed by a pfSense firewall. Based on our testing,

a six-machine user environment could be provisioned in 14.96

seconds and destroyed in 15.06 seconds.

Keywords – Cybersecurity, Education, Automation, Testbed,

Cyber Range, Virtualization, REST

I. INTRODUCTION

Cyber threats and threat actors continue to evolve and adapt

to the changing technology landscape, taxing defense

infrastructure and increasing demand for personnel. According

to the International Information System Security Certification

Consortium (ISC)2, there is a global gap of 3.4 million

cybersecurity jobs and a gap of over 400,000 in the United States

alone [1]. This shortage shows no sign of shrinking as the U.S.

Bureau of Labor Statistics predicts that cybersecurity roles, such

as cybersecurity analyst, are growing 35% over the next decade

[2]. Similarly, the high demand for cybersecurity experience is

driving enrollment in cybersecurity degree programs, requiring

an increase in resources for educational programs. Among these

resources are cyber ranges, testbeds, and practice environments,

which provide essential hands-on experience. Higher enrollment

increases the amount of time required to provision and manage

network resources. In order to address these challenges, we

explored automation solutions for provisioning and managing

environment resources.

Since the late 90s and early 2000s, research has been

conducted for cybersecurity and Information Technology (IT)

testbeds in the commercial, academic, and military domains [3].

Generally, these domains required testbeds for collecting data on

new technologies prior to wider implementation and for training

and educational applications. For instance, the Lincoln

Adaptable Real-time Information Assurance Testbed (LARIAT)

was presented in 2002 and was based on DARPA testbeds in

order to evaluate intrusion detection (ID) models [4]. Similarly,

the Real-Time Immersive Network Simulation Environment for

Network Security Exercises (RINSE) was presented in 2006 to

support large-scale security exercises for denial-of-service

(DoS) attacks [5]. More recently, testbeds have expanded into

domains such as the Internet of Things (IoT), Cyber-Physical

Systems, and Industrial Control Systems (ICS) [6-9]. IoT is a

relatively new field, with explosive growth within the last

decade. On the other hand, digitization efforts within ICS require

retraining of engineers and IT staff.

While cybersecurity testbeds can be applied to research and

education, our primary motivation is to ease the administrative

burden for teaching applications. In order to ensure the testbed

remains up to date with current trends, cybersecurity testbeds for

education fall into a seven-phase cycle which is presented in

Table I [10]. The iterative design cycle focuses on constant

adjustments to the underlying hardware and virtualization

software along with refreshing cybersecurity challenges in order

to keep them up to date with emerging threats. During a typical

semester, manual deployment and maintenance of challenges

can become a burden on educators and administrators,

consuming valuable time and resources at a critical time.

TABLE I

DESIGN CYCLE FOR CYBERSECURITY TESTBEDS

1 Define Environment

2 Deploy Environment

3 Define Challenges

4 Deploy Challenges

5 Conduct Challenges

6 Maintain Environment

7 Maintain Challenges

Our contributions to the field are centered around the

development of an automation tool for interacting with Proxmox

VE and a pfSense firewall for ease of management and

maintenance. The primary objective was to create a system for

dynamically provisioning cybersecurity environments in a

manner that is scalable, reliable, and freely accessible.

Instructors and administrators will be able to generate a

template, clone a virtual machine, and purge virtual machines.

Management will be completed via the command line with

configurable parameters related to the subnet, static IP, clone

name, and username. Cloning operations should occur in a

minimal amount of time, ideally within one minute for a six-

machine environment. Students may access their machines via a

web user interface or an OpenVPN server. We were successfully

able to meet these requirements, making use of Proxmox VE as

our hypervisor solution, the Python programming language, and

Python's proxmoxer package for interacting with the Proxmox

instance.

Through the remainder of this paper, we will explore related

work in cyber range and testbed research. In Section III, we will

present the underlying environment architecture we will be

using to evaluate our automation tool. Next, we will discuss the

proxmoxer libraries used by our tool. After discussing our

software, we will present our tool in action. Finally, we will

wrap up our analysis and discuss future work.

II. RELATED WORKS

Extensive research continues to be conducted regarding the

design and evaluation of cyber range, testbed, and environment

architectures. This research falls within six general categories:

Scenario, Monitoring, Learning, Environment, Teaming, and

Management [11]. The first category, Scenario, investigates

mechanisms for generating and developing new challenges and

environments for student training. For instance, the Alpaca

project implemented an AI engine for generating vulnerability

lattices, which were composed of sequences of vulnerabilities

and exploits for the user to tackle [12]. Next, Monitoring

explores data collection process for evaluating and policing user

activity within the environment. Learning refers to tools that

assess student learning as they navigate through the environment

challenges. Assessment can be completed by score bots that

monitor the status of environment services or post-exploit

questionnaires. Our next category is Environment, which deals

with the hardware and software that hosts the network. For our

application, we opted to use the Proxmox VE operating systems

and virtualization platform to host our virtual machines and the

pfSense open-source firewall and virtual router for our

environment. Teaming refers to research based on the parties

participating in cyber range and security testbeds. Finally,

Management research involves exploration of the roles,

interfaces, command and control, and resource management for

the testbed. Of the mentioned categories, Management is the

closest fit for our research and we will primarily compare our

work to others within this category.

Automation of user generation and challenge deployment

have historically been completed within YAML or novel test

case description languages. For example, the Cyber Range

Instantiation System (CyRIS) utilizes YAML files for

describing the composition and content within the desired cyber

range [13]. Similarly, the work completed by Frank et al. also

used YAML files in order to describe the testbed configuration

[10]. Alternatively, the Virtual Cyber Security Testing

Capability (VCSTC) utilized a novel description language to

specify the desired environment and challenge machines [14].

While these configuration files are preferrable to manual user

generation and deployment, the administrator must generate

fresh entries for each user. Our command line tool simplifies the

process and provides flexibility to the administrator when

generating new accounts.

III. ENVIRONMENT ARCHITECTURE

As part of our investigation, we developed an educational

environment that served as the target application for our

automation tool. The core of the environment was the Proxmox

Virtual Environment, which hosted the virtual machines used in

cybersecurity challenges and would be the primary point of

interaction with our tool. We selected this virtualization software

over competing platforms, such as ESXI and KYPO, as our

members were familiar with the administrative and management

features of the platform. Proxmox VE also exposes REST API

that can be used for most management functions, which will be

used as the foundation of our automation tool. In addition to

Proxmox VE, a pfSense VM was utilized for internal DHCP

management and remote access. Similarly, this was selected as

the team was familiar with the platform. Additionally, six

template VMs were generated for cybersecurity challenges. The

environment architecture used throughout this project is

presented in Figure 1.

Fig. 1. Environment architecture. Upon request from the Instructor, our

automation tool interacts with the Proxmox REST API to provision student

machines from templates. Additionally, environments may be purged at the
request of the Instructor as well.

Proxmox VE is an open-source virtualization platform that

allows for creating and managing virtual machines (VMs) and

containers, providing a web-based graphical user interface

(GUI) [15]. Proxmox VE is developed by Proxmox Server

Solutions GmbH, a company based in Austria that specializes in

open-source virtualization solutions. The company was founded

in 2005 and has since then been actively developing and

improving the Proxmox VE platform. Proxmox VE is

distributed under the open-source license GPLv2, which means

that it is free to use, modify, and distribute. It is designed to be a

complete virtualization solution for both small businesses and

large enterprises. Proxmox offers the full functionality of other

bare-metal hypervisors such as VMware's ESXi. It allows for

managing virtual machines along with emulating various types

of disks and IO devices and connecting them through internal or

to external networks. It supports running both Linux and

Windows VMs on the same infrastructure and provides solutions

for maintaining these VMs with clustering, live migration, and

high availability. Proxmox also offers some advantages to its

competitors, providing full command line access to its

underlying Debian-based Operating system (OS) and an

Application Programming Interface (API) that can be leveraged

by developers to create tools for managing Proxmox remotely.

PfSense is an open-source firewall and routing platform based

on FreeBSD [16]. It was developed by Netgate, a company that

specializes in network security solutions. pfSense was first

released in 2006 as a fork of the m0n0wall project and has since

then been actively developed by Netgate and its community of

contributors. pfSense is distributed under the open-source

license BSD, which means that it is free to use, modify and

distribute. It is designed to provide comprehensive network

security and routing functionality for small to medium-sized

businesses and home networks. pfSense provides a web-based

graphical user interface (GUI) that makes it easy to manage

firewall rules, routing, and network services. It supports a wide

range of security features, including stateful packet inspection,

VPN connectivity, intrusion detection and prevention, and

content filtering. One of the key features of pfSense is its

flexibility and extensibility. It supports third-party packages and

plugins that can be used to add additional functionality, such as

DNS and DHCP servers, web proxies, and load balancers.

pfSense is also highly customizable and can be configured to

meet a wide range of network security and routing needs. It

supports advanced routing protocols such as OSPF and BGP and

can be used to build complex network topologies.

Along with creating fully isolated networked environments,

it's important that these environments have access to the internet

but in a contained manner that would not pose a security risk.

This requires routing network traffic through a firewall

inaccessible to the student that will allow all outgoing

connections but block any incoming connections except those

that are explicitly allowed for the environment at hand. In light

of our decision to keep this project free and open source, we

elected to use the pfSense firewall for this purpose. We were

successfully able to configure pfSense by remotely connecting

to it through SSH, modifying the XML configuration file, and

reloading changes through the php command.

When interacting with our environment, the Instructor is

provided with three options: template, clone, and purge. Our

template script allows the Instructor to generate a Proxmox VE

virtual machine template based on an existing VM. Within the

environment, templates are saved states of virtual machines that

can be used to create copied virtual machines. Instructors may

use this after creating student challenges that they intend to clone

later. Clone completes the cloning process and provisions a set

of virtual machines based on the Instructor’s specifications.

Arguments to this function include the username, the machines

to clone, the IP addresses of the new machines, and DNS servers

for the subnet. Finally, purge allows the Instructor to delete

virtual machines from the environment, ideal for cleaning up at

the end of the semester.

Development of our tool were completed in Python.

Provisioning and account management were accomplished via

the Proxmox API, which is based on a RESTful architectural

style. Discussion regarding these technologies is discussed in the

next section.

IV. DEVELOPMENT TOOLS

The Proxmox API is an interface that allows users to

programmatically interact with the Proxmox VE virtualization

platform for automating tasks, integrating with other systems, or

building custom applications [17]. The API facilitates all

provisioning of VMs and provides access to performance and

monitoring data, allowing for retrieval of information about

resource usage, health, and status of the virtualization

infrastructure. The web-based GUI itself is built on this API and

makes API calls to the back end to perform all provisioning

operations. The Proxmox API is based on the RESTful

architectural style and uses standard HTTP and HTTPS requests

and responses. It supports both JSON and XML data formats for

data exchange and includes comprehensive documentation to

help developers get started, including an online comprehensive

API viewer that details results each request will produce and

which parameters are accepted.

The robustness of the API has fostered the growth of many

frameworks in various languages for managing Proxmox both

locally and remotely. Several client libraries are available for

different programming languages, such as Python, Ruby, and

Perl, that serve as wrappers for interactions with this API. In

Python, this library is called proxmoxer, which supports

performing API calls using the JSON data format [18]. It is built

using Python's standard requests library for making HTTP

requests but allows for writing requests in Python-style dotted

notation rather than in forward-slash HTTP notation. It is also

available as a package, installable through Python's pip package

manager, for easy importing. Many systems administration and

automation tools additionally use these client libraries to

integrate with Proxmox. This includes Ansible for remote host

management, which uses the Python client library for managing

Proxmox, and Terraform for virtual machine provisioning,

which uses the Go client library for managing Proxmox.

Ansible is an open-source IT automation and configuration

management tool. It is designed to simplify the management of

complex IT environments by automating routine tasks, such as

configuration management, application deployment, and system

orchestration. Ansible uses a declarative language, called

YAML, to define system configurations and tasks. YAML is a

human-readable language similar to markup that makes it easy

for system administrators and developers to define tasks and

parameters for those tasks without having to specify

implementation details. Ansible operates over SSH for Linux

and WinRM for Windows, making it easy to manage systems

regardless of their operating system or location. It also has a

large and active community of contributors, which provides a

wide range of pre-built modules and plugins for common tasks.

Despite the pfSense web user interface being fully

documented, its back end lacks any documentation, so

development related to managing pfSense through its back end

comes down to reading and understanding the publicly available

source code. pfSense handles configurations for all its

components by first writing to an XML configuration file

/cf/conf/config.xml and then calling helper functions in PHP for

performing the proper modifications on the underlying

Operating system. These helper functions are stored in inc files

in /etc/inc and are imported in other scripts with require_once.

By reading the the web front-end source code in /usr/local/www,

it's possible (though with some difficulty) to ascertain which

helper functions should be called for various operations. These

functions can be run in pfSense standalone in one of two ways:

by running the /usr/local/php command that comes with the base

PHP installation or by running the /usr/local/sbin/pfSsh.php

developer shell created for pfSense. In our implementation, we

settled on running PHP functions through /usr/local/php since

this allows executing code in line with the -r command line flag

rather than writing to the command's standard input like the

developer shell. To make this process easier, we consulted the

source code for the pfSensible Ansible community module,

which contains many of the helper functions needed for

performing an operation, listed without any additional user

interface-related code [19].

V. ENVIRONMENT PROVISIONING AND MANAGEMENT

After implementing our test environment and deploying our

automation tool, we conducted tests on our template, clone, and

purge commands. Six virtual machines were created and

converted into templates for this task. These VMs are described

in Table II. We varied the VM storage, memory, and Operating

Systems in order to test the tool’s ability to operate with different

scenarios. Aside from installing the QEMU guest agent, no

further modifications were made to the base installation.

TABLE II

SAMPLE VIRTUAL MACHINE CONFIGURATIONS

of VMs BIOS Storage Memory OS

2 SeaBIOS 2 GB 512 MB Debian 11

2 SeaBIOS 16 GB 4 GB Ubuntu

22.10

Desktop

2 OVMF

(UEFI)

64 GB 8 GB Windows

11

Desktop

Timing was measured by prepending each of the template,

clone, and purge commands with time on Linux. The Linux time

command measures the time taken to fully execute a command.

Template, clone, and purge are implemented to detect when all

configuration changes to Proxmox and pfSense are completed,

so the time they take to execute is an accurate measure of the

time taken to fully perform these operations. Each command was

executed ten times, and these times are averaged in Table III.

TABLE III

TIMING EVALUATION FOR THE AUTOMATION TOOL

Script Average Execution Time (seconds)

Template 4.02

Clone 14.96

Purge 15.06

Based on these results, we have successfully achieved the

goals of this project. Exact timing for templating, provisioning

(cloning), and purging of environments is dependent on the

environment, its size, and its state. Additionally, in order for

virtual machines to be converted to templates, they were

powered off prior to being converted to templates. If they were

powered on, time taken to convert them to templates would

include the time taken to receive the shutdown signal and

perform a graceful shutdown, which is platform dependent.

Speed for HTTPS API requests to the Proxmox VE server and

SSH connections made to the pfSense firewall will depend on

distance between the remote manager running the scripts and

these devices. It will also depend on the specifications for all

devices involved, including allocated RAM and CPU speed.

Therefore, the values in this table should not be taken as

absolute, and we recommend performing testing on your

environment prior to releasing it for production. However, with

similar hardware, timing comparable to this is expected.

Sample operation of our clone command can be seen in Figure

2. In this figure, we can see the Administrator creating a new

user “David” within the environment, selecting the six virtual

machines for the environment, and setting up the DHCP and

DNS configurations for the user. Changes made within Proxmox

are shown in Figure 3, showing successful server provisioning.

Fig. 2. Sample command line output from our clone command. The user “David”

is created within the environment and six VMs are provisioned for their use.

Fig. 3. Successful provisioning of servers for the user “David”. In a), the

administration view of the Proxmox web interface is shown with the six

templates that we wish to clone. After cloning, we see the results in b). Since the
user does not have administrative permissions within the environment they may

only view their own machines.

Additionally, sample operation of our purge command can be

seen in Figure 4. This command is simpler and should only be

used when instruction has been completed as deleted server

cannot be recovered after deletion. During this sample, the user

“John” is purged from the environment and their virtual

a) b)

machines are removed from both the Proxmox interface and the

pfSense firewall configuration.

Fig. 4. Sample command line output from our purge command. The user “John”

is purged from the environment and the VMs associated with the user are
removed.

VI. CONCLUSION

Overall, we were able to successfully develop an automation

tool for managing users and provisioning within a cybersecurity

practice environment. Our tool was developed in the Python

programming language and used the proxmox and ansible-

pfsense packages in order to configure our Proxmox VE

hypervisor and pfSense firewall. The tool exceeded our

expectations in dynamically provisioning cybersecurity

environments for students, providing a simple command line

tool for creating templates, cloning VMs, and purging users.

Further evaluation of the tool showed that it could create VM

templates in 4.02 seconds, provision environments for students

in 14.96 seconds, and purge environments in 15.06 seconds. This

performance exceeded our initial goal of task completion within

one minute.

In the future, we plan on incorporating this tool into our

cybersecurity education programs, providing automated

provisioning for course projects and exercises. We will also

explore additional virtual machine and network configurations,

conducting timing analysis and comparing it to the results

received during this report. Additional network configurations

would expand the number of scenarios available to evaluate

students.

REFERENCES

[1] U.S. Bureau of Labor Statistics, "Information Security Analysts," 8
September 2022. [Online]. Available:

https://www.bls.gov/ooh/computer-and-information-

technology/information-security-analysts.htm.
[2] (ISC)2, "(ISC)2 Cybersecurity Workforce Study," (ISC)2, 2022.

[3] J. David and S. Magrath, "A Survey of Cyber Ranges and

Testbeds," Cyber Electronic Warfare Division, Australian
Government Department of Defense , Edinburgh, 2013.

[4] L. M. Rossey, R. K. Cunningham, D. J. Fried, J. C. Kabek, R. P.

Lippmann, J. W. Haines and M. A. Zissman, "LARIAT: Lincoln
adaptable real-time information assurance testbed," in Proceedings,

IEEE Aerospace Conference, 2002.

[5] M. Liljenstam, J. Liu, D. M. Nicol, Y. Yuan, G. Yan and C. Grier,
"RINSE:The Real-Time Immersive Network Simulation

Environment for Network Security Exercises (Extended Version),"

Simulation, vol. 82, no. 1, pp. 43-59, 2006.
[6] O. Nock, J. Starkey and C. M. Angelopoulos, "Addressing the

Security Gap in IoT: Towards an IoT Cyber Range," Sensors, vol.

20, no. 18, pp. 5439-5457, 2020.
[7] K. E. Balto, M. M. Yamin, A. Shalaginov and B. Katt, "Hybrid IoT

Cyber Range," Sensors, vol. 23, no. 6, pp. 3071-3106, 2023.

[8] C. Cruz and P. Simões, "Down the Rabbit Hole: Fostering Active
Learning through Guided Exploration of a SCADA Cyber Range,"

Applied Sciences, vol. 11, no. 20, pp. 9509-9531, 2021.

[9] V. Giuliano and V. Formicola, "ICSrange: A Simulation-based
Cyber Range Platform for Industrial Control Systems,"

https://doi.org/10.48550/arXiv.1909.01910.

[10] M. Frank, M. Leitner and T. Pahi, "Design considerations for cyber
security testbeds: A case study on a cyber security testbed for

education," in 2017 IEEE 15th Intl Conf on Dependable,

Autonomic and Secure Computing, 15th Intl Conf on Pervasive
Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence

and Computing and Cyber Science and Technology Congress

(DASC/PiCom/DataCom/CyberSciTech, 2017.
[11] M. M. Yamin, B. Katt and V. Gkioulos, "Cyber Ranges and

Security Testbeds: Scenarios, Functions, Tools and Architecture,"

Computers & Security, doi:
https://doi.org/10.1016/j.cose.2019.101636.

[12] J. Eckroth, K. Chen, H. Gatewood and B. Belna, "Alpaca: Building

dynamic cyber ranges with procedurally-generated vulnerability
lattices," in Proceedings of the 2019 ACM Southeast Conference,

2019.

[13] C. Pham, D. Tang, K.-i. Chinen and R. Beuran, "Cyris: A cyber
range instantiation system for facilitating security training," in

Proceedings of the 7th Symposium on Information and

Communication Technology, 2016.
[14] G. Shu, D. Chen, Z. Liu, L. Na, L. Sang and D. Lee, "VCSTC:

Virtual Cyber Security Testing Capability–An Application

Oriented Paradigm for Network Infrastructure Protection," in
Testing of Software and Communicating Systems: 20th IFIP TC

6/WG 6.1 International Conference, TestCom 2008 8th
International Workshop, FATES 2008, Tokyo, 2008.

[15] Proxmox Server Solutions GmbH, "Proxmox," 2023. [Online].

Available: https://www.proxmox.com/en/.
[16] Electric Sheep Fencing, LLC, "pfsense," [Online]. Available:

https://www.pfsense.org/.

[17] "Proxmox VE API," 16 February 2023. [Online]. Available:
https://pve.proxmox.com/wiki/Proxmox_VE_API

[18] "Welcome to Proxmoxer," 22 March 2022. [Online]. Available:

https://proxmoxer.github.io/docs/2.0/.
[19] "ansible-pfsense / pfsensible.core," 15 March 2023. [Online].

Available: https://github.com/pfsensible/core

