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Abstract — We propose a distributed system based on low-

power embedded FPGAs designed for edge computing 

applications focused on exploring distributing scheduling 

optimizations for Deep Learning (DL) workloads to obtain the 

best performance regarding latency and power efficiency. Our 

cluster was modular throughout the experiment, and we have 

implementations that consist of up to 12 Zynq-7020 chip-based 

boards as well as 5 UltraScale+ MPSoC FPGA boards connected 

through an ethernet switch, and the cluster will evaluate 

configurable Deep Learning Accelerator (DLA) Versatile 

Tensor Accelerator (VTA). This adaptable distributed 

architecture is distinguished by its capacity to evaluate and 

manage neural network workloads in numerous configurations 

which enables users to conduct multiple experiments tailored to 

their specific application needs. The proposed system can 

simultaneously execute diverse Neural Network (NN) models, 

arrange the computation graph in a pipeline structure, and 

manually allocate greater resources to the most computationally 

intensive layers of the NN graph.  
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I. INTRODUCTION 

 The field of Deep Learning (DL) has witnessed 
significant advancements due to collaborative research efforts 
in both Hardware (HW) and Software (SW) designs. Although 
DL frameworks have facilitated the exploration of novel DL 
architectures, Electronic Design Automation (EDA) tools 
have lagged behind and Register Transfer Level (RTL) 
designs still rely on traditional HDL. Despite improvements 
in C++/High-Level Synthesis (HLS) tools, the resulting RTL 
often consumes excessive logic resources and can be 
challenging to modify, leading to a growing gap between HW 
and DL architecture. 

A primary challenge lies in supporting new operations on 
HW as Neural Network (NN) computation graphs become 
more complex. With ASIC Neural Processing Units (NPUs), 
Processing Elements (PE) are fixed, and DL compilers must 
support new computations on existing hardware—a complex 
and time-consuming process. As the demand for efficient DL 
computation at the edge increases, the focus has shifted 
towards optimizing NN architectures and allocating dedicated 
hardware to appropriate computational blocks for improved 
power efficiency, reduced latency, and scheduling 
optimizations. While DL frameworks have contributed to the 
progress of new architectures, the development of dedicated 
ASIC (Application Specific Integrated Circuit) hardware for 
DL workloads is more time-consuming due to EDA tool 
limitations and RTL development costs vs FPGA [1-3]. 

As workload intensity and compute resource requirements 
vary between applications, a more dynamic approach is 
necessary. FPGAs play a crucial role in providing adaptability 
and parallelism while maintaining low latency and optimal 

power levels. Our proposed FPGA cluster architecture 
interconnected through an Ethernet switch, functions as a 
hardware stack that accommodates diverse NN models, 
arranges computation graphs in a pipeline structure and 
allocates resources to computationally intensive layers of the 
NN graph. This versatile system effectively addresses the 
challenges of supporting new operations and handling varying 
workloads in edge computing applications. 

The importance of exploring FPGA cluster architecture 
lies in its inherent advantages for edge computing applications 
in the realm of Deep Learning. FPGA clusters offer superior 
performance compared to traditional CPU/GPU-based 
systems regarding low latency applications. Low latency 
directly translates to faster data processing speeds that are 
essential for edge computing applications, especially in 
scenarios where instant decision-making is crucial such as 
autonomous vehicles, drones, and network configurations [4, 
5]. These real-time applications require rapid processing and 
decision-making capabilities to ensure safety and efficiency. 
By utilizing FPGA clusters in edge computing applications, it 
becomes possible to achieve the required processing speeds 
and cater to the demands of latency-sensitive applications, 
providing a compelling reason for the exploration and 
development of FPGA cluster architectures. 

As deep learning accelerators become increasingly 
essential for driving advancements in technology and edge 
computing, their compatibility with FPGA platforms offers a 
promising solution for harnessing the full potential of versatile 
and adaptable hardware-software co-designs. The Versatile 
Tensor Accelerator (VTA) is an open-source, scalable, and 
customizable deep learning accelerator designed to address 
the challenges of deploying deep learning workloads on a 
wide range of hardware platforms [6, 7]. VTA enables 
researchers and engineers to explore the co-design of both 
software and hardware to create efficient and adaptable deep 
learning systems. It provides a flexible and extensible 
infrastructure that supports a variety of neural network models 
and accelerates their computation. 

VTA is designed to work seamlessly with popular deep 
learning frameworks like Apache TVM, an end-to-end 
compiler stack for deep learning systems. By integrating with 
these frameworks, VTA enables the efficient execution of 
deep learning workloads on various hardware platforms, 
including FPGAs, ASICs, and other custom accelerators. The 
modularity of VTA allows users to easily adapt and extend the 
accelerator design to accommodate the evolving requirements 
of deep learning algorithms and achieve the desired 
performance, power efficiency, and latency. 

 In section II we discuss the proposed system as an FPGA 
cluster in terms of the hardware, firmware, and software 
design. In section III we show our results from one 
development using VTA and discuss our results, current, and 
future research in section IV. Finally, we leave with 
concluding remarks in section V.   



 

 

II. SYSTEM DESIGN 

A. Hardware 

The cluster hardware features two distinct FPGA SoC 
variants, both founded on the same heterogeneous system 
concept where a low-power Processing System (PS) connects 
to Programmable Logic (PL). The primary distinction 
between these FPGA SoCs lies in the available PL logic 
resources and the PS CPU performance. The compute-lite 
cluster incorporates up to 12 Xilinx Zynq-7020 chips, 
combining PYNQ-Z1 as well as ZedBoards. As only the 
Ethernet port and the Zynq-7020 chip are utilized, there's no 
need to consider the differences in I/O peripherals between the 
two boards. The Zynq-7020 is an All-Programmable System 
on Chip (APSoC) that seamlessly integrates an FPGA with a 
multi-core processor into a single, unified circuit. The 
programmable logic (PL) inside the APSoC consists of 13,300 
logic slices (6 LUTs and 8 flip-flops), 630 KB fast block 
RAM, 220 DSP slices, and a 50 Hz input clock. In addition to 
the PL, the APSoC includes PS with a 650 MHz dual-core 
Cortex-A9 ARM processor, a DDR3 memory controller with 
8 DMA channels, and 4 high-performance AXI3 slave ports 
for communication between the PL and PS. A picture of this 
FPGA stack can be observed in Fig . 1. 

For a more computationally intensive FPGA cluster, the 
proposed system will integrate 5 Zynq UltraScale+ MPSoC 
platforms by Xilinx into the stack, differing mainly on the 
number of logic units inside the chip from the Zynq-7000 
boards. The MPSoC is based on a hybrid CPU-FGA 
architecture where the configurable logic and a multi-core 
processor are routed into a single chip. The programmable 
logic (PL) combines logic cells (LUTs and FFs), BRAM, 
URAM, and DSP slices. In addition to the PL, the MPSoC 
includes Processing System (PS) with a 1.5 GHz Quad-core 
Arm Cortex-A53 processor, a 600 MHz Dual-core Cortex-R5 
RT processor, MaliTM-400 MP2 GPU, a memory controller 
with DMA channels, and high-performance AXI4 slave ports 
for communication between the PL and PS. 

Zynq-7000 will provide fewer available resources than 
Zynq Ultrascale+ devices, also achieving lower clock rates if 
timing wants to be met without any negative slack or hold time 
violation. Additionally, the existing Arm CPU to the FPGA’s 
fabric is comparably different, both in the instruction set and 
compute capacity. One of the main advantages of using Zynq-
7000 is their overall power efficiency and cost, making it easy 
to scale computing for power constraint systems. 

To connect all boards to the cluster, we used a standard 
Cisco switch together with RJ-45 connectors to connect the 
FPGA slave nodes to the master of the cluster. This switch 
offers 1GB/s ethernet speed.  The system will be orchestrated 
from a master host PC although it could be done from one of 
the FPGA CPU nodes acting as master instead of the slave 
node.  

B. Firmware 

In our design, VTA was explored because it offers a 
flexible and efficient solution to deep learning acceleration. 
The modular architecture allows for customizable and 
optimizable hardware parameters to suit specific application 
requirements. The VTA architecture is designed to optimize 
resource utilization and maximize performance in deep 
learning workloads. The VTA comprises four primary 
modules: fetch, load, compute, and store, which work together 
to enable high memory bandwidth usage for memory-bound 
workloads and efficient compute resource utilization on the 
PL side. A simplified block diagram for the VTA architecture 
can be observed in Fig. 2. 

On-chip memory SRAM is employed via unidirectional 
data channels to facilitate communication between the 
modules. Each of the four modules establishes a connection 
with both a consumer and a producer. By incorporating Read-
After-Write (RAW) and Write-After-Read (WAR) queue 
dependencies, proper timing and execution of producer-to-
consumer tokens are ensured. VTA architecture allows for the 
concurrent use of compute and memory modules to optimize 
resource usage in every clock cycle. 

TVM achieves this optimization by generating virtual 
threads, which results in partitioning tasks into two separate 
execution contexts that prevent interference between fetch, 
load, compute, and store operations. VTA provides the 
capability to modify hardware parameters in the accelerator, 
including the GEMM (General Matrix Multiplications) core 
tensor intrinsic, I/O, weight, and accumulator tensor 
dimensions. Additionally, the on-chip SRAM port memory 
and data type sizes for weights and accumulation can be 
adjusted. VTA's register file can execute two tensor operators: 
The ALU handles element-wise tensor operations like 
addition, activation, pooling, and more, while GEMM 
performs more intricate arithmetic operations, such as 
complex matrix multiplication computations needed for 2D 
convolutions and dense layers.  

Fig. 2. Versatile Tensor Accelerator Block Diagram 

Fig. 1. FPGA Stack with Four ZedBoards and Four PYNQ-Z1s 



 

 

The configuration parameters for the VTA involve mainly 
the on-chip memory buffer size and tensor data types, 
including the matrix multiply quantization and data type of 
input and parameter to perform computation inside the 
GEMM block. The initial hardware parameters followed the 
values in Table I below. Note that the clock speeds differ 
between the Zynq-7000 FPGA stack and the UltraScale+ 
FPGA stack. This is because meeting the timing requirements 
became the limitation of the VTA configuration. 

 

 

 

 

C. Software 

 For the implementation of our programs, a PC acted as a 
control for the processes running on the FPGAs. This involved 
sending and retrieving data from the FPGAs which acted as 
accelerator cores in our experiments. FPGA-to-FPGA 
communication was not completely implemented for this 
configuration, but it could be easily done using AXI or AXIS 
protocols through Ethernet. We also used existing drivers for 
the software components for communication between the 
network interfaces and the PC.  

 When scheduling the NN computational graphs across the 
FPGA hardware domain, we tested four different approaches: 

1. Scatter-Gather 

2. AI Core Assignment 

3. Pipeline Scheduling 

4. Fused Schedule 

Scatter-Gather is a technique used to increase the number 
of input images processed in a single inference run by 
distributing input frames across multiple FPGA channels. This 
method begins with a scatter operation to distribute data and 
ends with a gather operation to collect and store the outputs in 
an ordered batch. Scatter-Gather operations can occur at both 
ends of a DFG or in-between and can happen multiple times 
across the NN graph. 

AI Core Assignment aims to maximize overall 
performance by assigning more compute resources to the 
bottleneck workload in the computational graph. This 
approach increases the number of consumer nodes for a given 
task and minimizes graph latency. It is crucial to maintain the 
order of subsequent computations on each assigned hardware 
to ensure tensors are gathered and processed correctly. 

Pipeline Scheduling involves executing segments of an 
NN model in a distributed manner across independent or 

shared hardware resources. This method removes the single-
input bottleneck by allowing the next input to be fed to each 
segment as soon as the consumer is free. As a result, all 
segments of the NN graph are consistently processing input 
data, increasing overall hardware utilization. 

The Fused Schedule combines pipeline scheduling with AI 
core assignment to increase hardware utilization and distribute 
intensive compute tasks across the NN subgraphs. By 
allocating more compute units to the highest demanding 
segment, this approach reduces the NN bottleneck and 
continually performs computations across the subgraphs, 
maximizing the benefits of pipeline execution. 

III. RESULTS 

 The initial cluster test on the VTA platform was 
conducted using the parameters and clock frequency 
specifications outlined in Table I. For this VTA configuration, 
a bitstream design without any timing violations or node 
overlaps was successfully generated for both the Zynq-7000 
and UltraScale+ platforms. 

 Fig. 3 and Fig. 4 present the inference time required to 
process a single image through the ResNet-18 graph on the 
compute-lite cluster type on the Zynq-7000 FPGA stack and 
the UltraScale+ stack respectively. Fig. 3 (a) shows the table 
of execution time in milliseconds, and Fig. 3 (b) is a graphical 
representation of this data for the Zynq-7000 stack. The same 
is true for Fig. 4 (a) and (b), but for the UltraScale+ stack. The 
model was trained with an input shape of (N, 224, 224, 3), and 
no input resizing was applied during the inference step. The 
obtained values were categorized based on the number of 
compute resources utilized and the cluster strategy employed 
for distributing the NN workloads. Inference time results were 
determined by performing 10 evaluations on 10,000 random 
test images extracted from the ImageNet test dataset. For each 
evaluation, the average inference time was calculated and then 
averaged across the 10 evaluation results. Each run evaluation 
was carefully verified to ensure no data discrepancies or 
deviations from the expected time interval occurred. 

Upon running inference on a single FPGA, an optimized 
micro-kernel generated through AutoTVM schedule 
exploration resulted in an inference time of 27.34 ms. As the 
number of FPGA resources increases for all cluster strategies, 
the workload became more distributed, and the expected 
inference time for each input image should have decreased. 
However, the table reveals that reduced latency is not always 
directly proportional to the addition of more FPGA devices to 
the cluster. Among the four strategies, distributing bottleneck 
operators (those necessitating greater computing power) 
across more FPGAs proved more effective as the number of 
FPGAs in the cluster increased. Notably, this approach 
negatively impacts latency when two or three FPGA nodes are 
used. The primary factor contributing to this performance loss 
is network bandwidth and processor involvement in 
transmitting data packet streams between two or more FPGA 
devices. The distributed cluster was tested using RJ-45 
connectors with speeds of up to 1 GB/s, compounded by the 
FPGA CPU's need to DMA data buffers from the FPGA's 
logic and transmit them through the network to the next node, 
resulting in significant CPU handling overhead. Moreover, 
buffers are sent as blocking call MPI messages, which also 
affect the overall node message-passing handshake.  

When testing the UltraScale+ FPGA cluster, the results for 
the first VTA configuration showed an improvement of 
approximately 6% compared to the Zynq-7000 cluster 

PARAMETERS SIZE 

CLOCK_FREQUENCY (ZYNQ-7000) 100 MHz 

CLOCK_FREQUENCY (UltraScale+) 300 MHz 

INPUT_WIDTH 8-bit 

WIEGHT_WIDTH 8-bit 

ACCUMULATOR_WIDTH 32-bit 

BATCH_SIZE 1 

BLOCK_SIZE 16 

MICRO_OP_BUFFER_SIZE 32 Kb 

INPUT_BUFFER_SIZE 32 Kb 

WEIGHT_BUFFER_SIZE 256 Kb 

ACCUMULATOR_BUFFER_SIZE 128 Kb 

TABLE I. INITIAL VTA CONFIGURATION PARAMETERS 



 

 

  

IV. DISCUSSION AND CURRENT RESEARCH 

Our data provides evidence that a significant speedup with 
an FPGA stack for our tested DNN platform is exhibited. This 
correlates with current research that we experience significant 
improvements in throughput [8-11]. We also explored 
increasing the overall architecture parameters for the VTA 
platform in the UltlraScale+ stack without having timing 
violations in the RTL design. For the same configuration 
parameters as Table I, we found the clock limit to be 350 MHz 
exhibiting a speedup of approximately 5.7% in execution time 
from Fig. 4. For another case we increased the GEMM block 
size to 32-bits, micro-op cache buffer, and input size to 64 Kb, 
weight buffer to 512 Kb, and accumulator to 256 Kb. The data 
type remained the same, and the clock frequency was reduced 
to 200 MHz to avoid negative hold slack. The result was a 
speedup of approximately 43.86% from Fig. 4.  

For our experiment, our scope is limited by our one 
exploration of a DL Accelerator (DLA). In the future, we plan 
to implement several other DLA architectures on the FPGA 
cluster. Our targeted DLA architectures are Nvidia DLA, 
Tensil CU, PipeCNN, and Xilinx DPU.  

 

 

V. CONCLUSION 

 In conclusion, the implementation and evaluation of the 
VTA platform on Zynq-7000 and UltraScale+ FPGA clusters 
demonstrate the potential of leveraging FPGAs to accelerate 
deep learning workloads. The exploration of different cluster 
strategies, such as scatter-gather, AI core assignment, pipeline 
scheduling, and fused scheduling, has provided valuable 
insights into the trade-offs between latency, resource 
utilization, and network communication overhead. While the 
addition of FPGA resources in the cluster does not always 
result in a linear reduction of latency, distributing bottleneck 
operators across more FPGAs proves to be more effective as 
the number of FPGAs increases. Additionally, 
communication overhead and network bandwidth play crucial 
roles in determining the overall performance of the system. 
The findings from this study can serve as a foundation for 
future research in optimizing FPGA-based deep learning 
accelerators and their effective deployment in large-scale 
distributed systems. 

 

 

(milliseconds)  

Num. 
FPGA / 
Cluster  

Scatter-
Gather 
Method 

AI Core 
Assignment 

Pipeline 
Scheduling 

Fused 
Schedule 

1 27.34 27.34 27.34 27.34 

2 17.53 36.85 20.43 19.32 

3 12.33 28.32 15.59 16.87 
4 7.87 20.31 11.29 9.13 

5 6.44 15.40 9.03 7.37 

6 5.66 9.63 7.33 6.62 
7 4.78 4.55 5.93 4.92 

8 3.94 3.98 4.22 4.01 

9 3.17 2.46 3.88 3.45 

10 2.84 2.11 3.22 2.94 

11 2.71 1.93 2.94 2.74 

12 2.58 1.84 2.62 2.66 

Fig. 3. Zynq-7000 VTA Cluster Test: a) Table of execution times in milliseconds per scheduling method, b) Execution time 

(ms) vs Number of FPGA 

(a) (b) 

UltraScale+: Different Scheduling Methods Execution Time 
(milliseconds) 

Num. 
FPGA / 
Cluster 

Scatter-
Gather 

AI Core 
Assignment 

Pipeline 
scheduling 

Fused 
schedule 

1 25.15 25.15 25.15 25.15 

2 16.73 33.96 19.03 18.28 

3 11.78 26.24 14.57 16.04 

4 7.42 18.70 10.88 8.63 

5 6.01 14.14 8.58 6.93 

Fig. 4. UltraScale+ VTA Cluster Test: a) Table of execution times in milliseconds per scheduling method, b) Execution 

time (ms) vs Number of FPGA 

(a) (b) 
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