
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Application of Machine Learning and
Image Recognition for Driver Attention Monitoring

Manav Tailor, Jahangir Ali, Xinrui Yu, Won-Jae Yi, and Jafar Saniie
Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu)

Department of Electrical and Computer Engineering
Illinois Institute of Technology, Chicago IL, U.S.A.

Abstract—This paper presents a real-time prototype system for

monitoring the distraction levels of the driver. Due to the nature

of high traffic conditions commonly seen nowadays, accidents are

highly likely to occur as drivers cannot always recognize their

exhaustion levels themselves. We utilize a single low-cost camera

facing the driver connected to a single-board computer; a series of

frame captures from the camera are fed to a neural network, and

a pattern detection algorithm to predict the driver’s distraction

level is utilized. All training is conducted under personalized

training sets to increase accuracy and to match an individual’s

driving patterns as accurately as possible. This system is designed

to serve as a baseline for further system development, and many

vital sub-components can be changed regarding input data type

and choices of machine learning algorithms.

Keywords—Artificial Intelligence, Machine Learning, Driver

Attention Monitoring, Edge Computing, Real-time Image

Processing

I. INTRODUCTION

Many collisions on the road occur due to the driver being
distracted or not in a proper state to drive. As stated in [1], “In
the United States, over 3,100 people were killed, and about
424,000 were injured in crashes involving a distracted driver in
2019”. Systems have been in place to assist in some of these
scenarios, such as for drowsy drivers. Also as indicated in [1],
“Some states have installed rumble strips on highways to alert
drowsy, distracted, or otherwise inattentive drivers that they are
veering off the road. These rumble strips are effective at
reducing certain types of crashes”. These rumble strips may
serve as effective in certain situations and areas in the roadway,
yet they are only there to passively prevent collisions, not
actively. A few systems attempted to prevent drivers from
getting distracted by items, people, and pets in their vehicles,
such as chatting with passengers or phone usage. Companies
have worked on reducing phone usage while driving, for
example, Tesla’s center console [2]. This console allows the
driver and passenger to place their phone on charge and close
the compartment so their phones are out-of-sight. However, this
works on the honor system and allows the driver to look at their
phone by choosing not to close the compartment.

Furthermore, not all cars or people have the luxury of these
compartments in their vehicles. As this is just one scenario that
was examined, many other situations have not been accounted
for, and many solutions to these problems are based on the honor
system. Creating a system that can monitor a driver using a

singular camera would be beneficial in a vehicle. Not only
would a system like such be integrated as an after-market
product but it can also be designed to recognize the driver’s
driving patterns and have higher accuracy in judging the state of
the driver. Creating a mechanical stimulation, such as a beep or
a buzz, can alert the driver when they are not paying attention to
the road and the surrounding environment. The long-term effect
of such would be to subconsciously train the driver to drive with
more focus on the road.

II. RELATED WORK

The concept of monitoring the driver is an open-ended
problem; many papers and projects exist on this topic.

A. Real-time monitoring of driver drowsiness on mobile

platforms using 3D neural networks

In this paper, a 3D convolutional neural network was utilized
to create a system for real-time video monitoring of the driver,
with considerable attention given to model deployment on
mobile phones and other cost-effective vehicle-based
computers. This has reduced the need for specialized hardware,
enabling a cost-effective solution [3]. Drowsiness was the driver
state targeted for measurement and the drowsiness detection was
broken down into three categories: vehicle-based
measurements, physiological measurements, and computer
vision techniques. In this study, computer vision was utilized.

B. NVIDIA DRIVE IX cabin perception software

NVIDIA DRIVE IX is an open and scalable cockpit software
platform that provides a range of in-cabin experiences. These
include functions such as intelligent visualization, augmented
reality, virtual reality, conversational AI, and interior sensing.
With these sensing features, the platform can utilize the Audio
and Visual (AV) system to monitor and ensure the driver is
paying attention to the road [4]. Facial expressions have many
different meanings, such as a shift or wrinkle of the brow.
DRIVE IX utilizes multiple DNNs (Deep Neural Networks) to
decipher expressions. The first DNN detects the face; the second
identifies reference markings and points. Additionally, various
DNNs work to determine if the driver is paying attention.
GazeNet DNN is designed to track gazes by creating a map of
vectors corresponding to the driver’s eye and the road. This map
is then used to see if the driver can see hazards on the road.
SleepNet monitors drowsiness by determining whether the
driver’s eyes are open or closed and can determine a level of
exhaustion. ActivityNet monitors the drivers’ activities, such as

phone usage, hands-on or off-the-wheel, and their attention to
events outside the vehicle. Additionally, DRIVE IX monitors
the drivers’ sitting positions, emotions, and conversations via
various methods.

C. Real-Time Driver’s Focus of Attention Extraction and

Prediction using Deep Learning

This paper discusses the design, implementation, and
evaluation of DFaep, a deep learning network to examine,
estimate, and predict drivers’ focus of attention using dual low-
cost dash cameras for driver-centric and car-centric views [5].
DFaep deployed real-time head movement tracking to monitor
the driver’s gaze. The driver’s attention was then broken down
into (11) grids within (5) gaze zones in the vehicle. A DNN then
takes this data and determines whether the driver is distracted.
DFaep showed an average accuracy of 99.38%.

D. Existing Studies for Driver Drowsiness Detection utilizing

Drowsiness Detection

Table I shows some other studies on this topic that were not
discussed in this paper.

TABLE I. LIST OF CURRENT STUDIES ON DRIVER ATTENTION MONITORING

Study Method of Deployment

Jiménez et

al. [6]

Haar classifiers for the head, eye, and mouth segment
detection in video frames; a NN then classifies the level of
driver distraction in each frame

Ying et al.

[7]

Contour detection methods to locate the face, mouth, and
eyes; a NN follows and assesses the state of each feature

Ribarić et

al. [8]

Classifies head rotation, eye, and mouth openness to issue
alarms based on drowsiness levels

Ji et al. [9]
Bayesian network is fed head and eyelid movements with
facial features to access fatigue

Jiangwei et

al. [10]

Single feature NN to classify whether the driver is dozing,
talking, or silent; focuses on the mouth

Rong-ben

et al. [11]
Single feature NN to detect drowsiness; focuses on eyes

Harada et

al. [12]

Calculates pupil diameter from eye-tracking data; RNN
predicts distraction levels

III. DRIVER DROWSINESS DETECTION SYSTEM DESIGN

Fig. 1 shows the system diagram and the system functions as
follows. The camera captures a frame that marks the initial
event. This image, stored in memory, is processed through a
series of pre-processing steps to ensure the image is in the
appropriate size for the model and similar to what the model was
trained on. These steps include but are not limited to
thresholding and grayscale conversions.

Additionally, it is desired for the driver’s head to be located
and a rectangle surrounding said head to be extracted from the
image. This eliminates any background and primarily focuses on
the driver’s head movements. Once the pre-processing steps are
completed, the image is transferred to the first model, where a
label is given to the image. This label is saved in the database.
Fig. 2 shows an example of a database for driver states.

Fig. 1. System Flowchart for Driver Attention Monitoring

Fig. 2. Example of Database for Driver States

In Fig. 2, each block represents a fixed timestamp. The first
block can be at one unit of time, the second block at one unit of
time, the third block at one unit of time, and so on. This database
is an array containing all previous and current states of the
driver. A fixed amount is fed into the second model to output
whether the driver is distracted or not. If the model finds
irregularities, the system alerts the driver through mechanical
stimulations—either a mechanical buzzer or sound using a
speaker. Finally, a new camera frame is captured, and the
program pre-processes the image again.

IV. HARDWARE DESIGN

The hardware consists of a 3-channel camera and a single-
board computer. The model of the camera used is LT-IMX219-
MIPI-FF-NANO-H136 V1.3 [13]. The resolution of this camera
is 8.08 megapixels. The Intel RealSense Depth Camera D435i
can also be considered as a method of using a depth map to aid
the program for our system.

Several single-board computers and one proprietary system
were examined as possible platforms. Table II shows a table
comparing these single-board computers. They are all within a
price range of around $100. The Nvidia Jetson Nano 4GB was
selected as the best fit for this project. The other two single-
board computers were the Raspberry Pi 4 and the Google Coral
Development Board. All three were comparable in physical
dimensions, and no concerns were raised in terms of the system's
feasibility. From a power consumption perspective, the Jetson
Nano would draw 10 watts at peak performance, the Raspberry
Pi consumes around 6 watts, and the Google Coral Development
Board consumes around 2 watts.

TABLE II. HARDWARE COMPARISON FOR DRIVER DROWSINESS DETECTION

 Jetson Nano

4GB
Raspberry Pi 4

Coral Dev

Board

Power

Consumption
10W 5W 2W

CPU
Quad-Core Arm

Cortex-A57
Quad-Core
Cortex-A72

Quad-Core
Cortex-A53

GPU
128-Core
Maxwell

VideoCore VI GC7000 Lite

TPU N/A N/A
Google Edge

TPU

RAM 4 GB 8 GB 1 GB

Computation

Power
472 GFLOPs 9.69 GFLOPs 64 GFLOPs

The NVIDIA Jetson Nano 4GB requires 10W of power (5V
@ 2A) to operate at its fullest. There are multiple ways to supply
10W of power from a vehicle without making modifications,
thus it was determined that there were no power limitations to
the computers to be examined. The system is designed as a
module plugged into an external power supply; batteries were
not in this project’s scope and were not looked at as an option.
Comparing the three computers, all possessed a CPU, yet only
the Jetson Nano and Google Coral Development Board were
equipped with a GPU. The purpose and benefit of having a GPU
are to compute tedious calculations significantly faster than
running the same processes on a CPU. Machine learning can be
considered a ‘net’ of tedious computations. The Jetson Nano
became the final choice for our system design as it outperformed
the Google Coral Development Board as shown in Table II.

V. SOFTWARE DESIGN

A. Design Criteria

A few design criteria were in place to aid the design process
to fulfill the functional expectations of the system. One of the
most significant issues regarding monitoring systems is privacy.
Our system shall have a closed-loop camera feed, where the
taken images will remain in memory only on the Jetson Nano.
Furthermore, we require a system to take all our training videos
and pre-process them into the correct format. For this purpose,
we need to design a streamlined system, ideally using a single
script to handle this. This is because we want to compare data
types and pre-processing methods to achieve the most accurate
model.

B. AI Algorithm and Software Tools

Two libraries were examined as part of the project’s scope:
TensorFlow and PyTorch. TensorFlow is an open-source library
for machine learning and artificial intelligence. With uses in all
areas due to its implementation of tensors, its primary focus
resides in the training and inference of deep neural networks.
PyTorch, on the other hand, is commonly used for applications
involving computer vision and natural language processing.
TensorFlow and PyTorch are sought after due to their extensive
documentation, uses, and available functions. However,
TensorFlow was the chosen library for this system design due to
the numerous models available online due to the age of the
library. PyTorch was a great competitor and performed very

well, however, there were technical issues with running our
models on the GPU of the Jetson Nano when using PyTorch.

C. Feature Extraction Model

Our program contains two models; the former is responsible
for feature extraction. With an input of a frame from the camera,
its output matches one of six states: eyes open, eyes closed,
looking up, looking down, looking left, or looking right. The
frame goes under pre-processing operations as described. The
frame is a 3-channel image, with each channel corresponding to
a color channel. The frame is converted to grayscale, and a
flattening operation is then used to create an array that can be
inputted into the model. A custom dataset was constructed for
this model.

Additionally, an eye cascade file was used as a part of
OpenCV to aid in detecting the eyes of the driver. The model
was trained on the custom dataset as it created a model that
would best fit a specific driver. Utilizing approximately 3,000
and 500 frames respectively for the training and testing set, we
were able to achieve an accuracy of 95% during training. All
output of this model was saved to a database for use in the
second model, Driver State Determination.

D. Driver State Determination Model

Every driver has a different driving style and pattern. The
driver state determination model in the program was responsible
and designed to learn these patterns of a specific driver. There
are many unique case scenarios, such as the time one looks over
their shoulder when changing lanes. This leads us to need a
machine learning model to be implemented to account for these
patterns. This model was designed to take a segment of the
database, as shown in Fig. 2 previously, as the input. The output
is a Boolean expression of whether the driver is distracted.

E. Time Constraints of Model

The speed at which the program executes needs to be near
real-time as a part of the project requirements—the significance
of such lies in what happens if an unexpected event occurs
during operation. If the program performance were to lag for any
reason or reset itself, the model could lack data that could
indicate a distracted driver. If this were ever the case, the system
would fail to alert the driver, and an accident could occur. Our
program operated in a range of 45 to 60 frames per second. No
lags or unexpected events occurred during our testing, but it does
not guarantee that our system is protected against such.

F. Security

A significant concern in many systems available on the
market is privacy. The system developed in this paper functions
on a closed-loop feed, meaning the camera feed is only given to
the Jetson Nano for processing and then discarded. There is no
Wi-Fi or Bluetooth connection, and no images or driving
patterns are saved onboard the single-board computer, resting
privacy concerns as there is no possibility for any data to be
leaked as a part of the code.

VI. RESULTS

Regarding results, we are focused on two different libraries
and on how each effectively assists us in developing and training
the model. Furthermore, based on prior states, we have

identified a reliable technique for identifying a distracted driver.
We assembled the dataset to produce the results and trained the
network within days. To choose and finish the library for the
model, one team member worked in TensorFlow while the other
used PyTorch. However, PyTorch was not considered as there
were some functionality problems. Data will be collected
individually and compiled into one database that will be shared
with everyone to ensure consistent results. The following figure,
Fig. 3, shows seven directories being created after running the
script for the first time. The following figures display different
training frames stored in the training frame directory after
extracting the frames from the video file using OpenCV. The
different stored frames include eyes opened and closed, looking
up, down, left, and right.

Fig. 3. Stored Frames for Training and Testing

Fig. 4 displays the terminal output as it currently displays the
action either none, which means looking straight, or right,
meaning looking right. It also displays the current time, and if
eyes are opened or closed, if the driver is distracted, it will show
the driver distracted, and a sound will also play in the preview.

Fig. 4. Terminal Output of Driver Attention Monitoring

Fig. 5 displays different actions none (looking straight), left,
right, up, and down as well as if eyes are opened and closed.

Fig. 5. Examples of Driver Facial Actions

VII. SYSTEM DESIGN DISCUSSION

With the current state of the system and the classification of
this topic being open-ended, there are many opportunities to
build off this system and advance its features. In terms of what
else can be added, a system that lets drivers add their
requirements into the system according to their behavior when
behind the wheel would be preferable. Also, other features
including head position and how the driver uses the steering
wheel can be added, as well as the speed of the driver as some
young drivers and older drivers are the leading cause of
accidents due to either being too hyper or not experienced
enough. For older drivers, not having enough reaction time
while driving is an issue worth considering.

Further discussion is also to be had on how we can develop
a system that follows the same process. Furthermore, it enhances
and utilizes the second model we had proposed but not
implemented, the pattern network model, which will determine
the requirements and behavior of that user and may even identify
the user through facial recognition. As well as the depth camera
D435i, which can help us further enhance and improve the
dataset. When the camera moves, adding an IMU enables the
application to improve its depth perception. This camera allows
for simple monitoring and SLAM applications that enable better
point-cloud alignment. Additionally, it enables the system to
identify any driving motions, even in low light, thanks to better
environmental awareness.

The Feature Extraction Model has many optimization
opportunities available, such as adopting a more efficient and

calculated neural network structure. The goal is to discard the
eye cascade file as it slows the program down due to its
inefficient method of finding patterns. An alternative YOLO
(You Only Look Once) algorithm could be applied, yet it would
only complicate and buckle down the code compared to a
singular or even multiple deep neural network that can run on
the GPU.

VIII. CONCLUSION

As this is an open-ended area of work, there are many
solutions to different problems, and each solution can build off
each other to further advance driver monitoring systems. This
paper discussed the importance of driver attention monitoring
systems and the method that was carried out to create a system
that functioned to a certain extent. Many improvements can be
made, and this paper serves as a baseline for future work and for
others to build off the ideas in this paper. The goal is for a refined
and renewed version of this code to be completed and tested in
a real-world situation.

REFERENCES

[1] “Distracted driving,” Centers for Disease Control and Prevention, 26-
Apr-2022. [Online]. Available:
https://www.cdc.gov/transportationsafety/distracted_driving/.
[Accessed: 12-Jun-2022].

[2] K. Barry, “Tesla’s camera-based driver monitoring fails to keep driver
attention on the road, CR tests show,” Consumer Reports, 22-Dec-2022.
[Online]. Available: https://www.consumerreports.org/car-safety/tesla-
driver-monitoring-fails-to-keep-driver-focus-on-road-a3964813328/

[3] J. S. Wijnands, J. Thompson, K. A. Nice, G. D. P. A. Aschwanden, and
M. Stevenson, “Real-time monitoring of driver drowsiness on mobile
platforms using 3D Neural Networks - neural computing and
applications,” SpringerLink, 13-Oct-2019. [Online]. Available:
https://link.springer.com/article/10.1007/s00521-019-04506-0.
[Accessed: 09-Jun-2022].

[4] J. 19 and P. Subramanian, “Nvidia Drive IX keeps drivers focused on the
road ahead,” NVIDIA Blog, 19-Jan-2021. [Online]. Available:

https://blogs.nvidia.com/blog/2021/01/19/drive-ix-ai-software-drivers-
safe/. [Accessed: 09-Jun-2022].

[5] K. Barry, “Tesla’s camera-based driver monitoring fails to keep driver
attention on the road, CR tests show,” Consumer Reports, 22-Dec-2022.
[Online]. Available: https://www.consumerreports.org/car-safety/tesla-
driver-monitoring-fails-to-keep-driver-focus-on-road-a3964813328/

[6] P.-heng Hong and Y. Wang, “Real-time driver’s focus of attention
extraction and prediction using Deep Learning,” International Journal of
Advanced Computer Science and Applications (IJACSA), 2021. [Online].
Available:
https://thesai.org/Publications/ViewPaper?Volume=12&Issue=6&Code=
IJACSA&SerialNo=1. [Accessed: 09-Jun-2022].

[7] Jiménez R, Avilés O, Amaya D (2014) Driver distraction detection using
machine vision techniques. Ing Compet 16(2):55–63.
https://doi.org/10.25100/iyc.v16i2.3683

[8] Ying Y, Jing S, Wei Z (2007) The monitoring method of driver’s fatigue
based on neural network. In: Proceedings of the 2007 IEEE international
conference on mechatronics and automation, IEEE, Harbin, pp 3555–
3559. https://doi.org/10.1109/ICMA.2007.4304136

[9] Ribarić S, Lovrenčić J, Pavešić N (2010) A neural-network-based system
for monitoring driver fatigue. In: Melecon 2010–2010 15th IEEE
Mediterranean electrotechnical conference, IEEE, Valletta, pp 1356–
1361. https://doi.org/10.1109/MELCON.2010.5475993

[10] Ji Q, Zhu Z, Lan P (2004) Real-time nonintrusive monitoring and
prediction of driver fatigue. IEEE Trans Veh Technol 53(4):1052–1068.
https://doi.org/10.1109/TVT.2004.830974

[11] Jiangwei C, Lisheng J, Bingliang T, Shuming S, Rongben W (2004) A
monitoring method of driver mouth behavior based on machine vision. In:
2004 IEEE intelligent vehicles symposium, IEEE, Parma, pp 351–356.
https://doi.org/10.1109/IVS.2004.1336408

[12] Rong-ben W, Ke-you G, Shu-ming S, Jiang-wei C (2003) A monitoring
method of driver fatigue behavior based on machine vision. In:
Proceedings of IEEE IV2003 intelligent vehicles symposium. IEEE,
Columbus, OH, pp 110–113. https://doi.org/10.1109/IVS.2003.1212893

[13] Harada T, Iwasaki H, Mori K, Yoshizawa A, Mizoguchi F (2013)
Evaluation model of cognitive distraction state based on eye-tracking data
using neural networks. In: Proceedings of the 12th IEEE international
conference on cognitive informatics and cognitive computing, IEEE, New
York, NY, pp 428–434. https://doi.org/10.1109/ICCI-CC.2013.6622278

[13] Leopard Imaging Inc, “LI-IMX219-MIPI-FF-NANO SPECIFICATION”,
26. Apr. 2019.

