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Abstract—This paper presents a real-time prototype system for 

monitoring the distraction levels of the driver. Due to the nature 

of high traffic conditions commonly seen nowadays, accidents are 

highly likely to occur as drivers cannot always recognize their 

exhaustion levels themselves. We utilize a single low-cost camera 

facing the driver connected to a single-board computer; a series of 

frame captures from the camera are fed to a neural network, and 

a pattern detection algorithm to predict the driver’s distraction 

level is utilized. All training is conducted under personalized 

training sets to increase accuracy and to match an individual’s 

driving patterns as accurately as possible. This system is designed 

to serve as a baseline for further system development, and many 

vital sub-components can be changed regarding input data type 

and choices of machine learning algorithms. 
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I. INTRODUCTION 

Many collisions on the road occur due to the driver being 
distracted or not in a proper state to drive. As stated in [1], “In 
the United States, over 3,100 people were killed, and about 
424,000 were injured in crashes involving a distracted driver in 
2019”. Systems have been in place to assist in some of these 
scenarios, such as for drowsy drivers. Also as indicated in [1], 
“Some states have installed rumble strips on highways to alert 
drowsy, distracted, or otherwise inattentive drivers that they are 
veering off the road. These rumble strips are effective at 
reducing certain types of crashes”. These rumble strips may 
serve as effective in certain situations and areas in the roadway, 
yet they are only there to passively prevent collisions, not 
actively. A few systems attempted to prevent drivers from 
getting distracted by items, people, and pets in their vehicles, 
such as chatting with passengers or phone usage. Companies 
have worked on reducing phone usage while driving, for 
example, Tesla’s center console [2]. This console allows the 
driver and passenger to place their phone on charge and close 
the compartment so their phones are out-of-sight. However, this 
works on the honor system and allows the driver to look at their 
phone by choosing not to close the compartment. 

Furthermore, not all cars or people have the luxury of these 
compartments in their vehicles. As this is just one scenario that 
was examined, many other situations have not been accounted 
for, and many solutions to these problems are based on the honor 
system. Creating a system that can monitor a driver using a 

singular camera would be beneficial in a vehicle. Not only 
would a system like such be integrated as an after-market 
product but it can also be designed to recognize the driver’s 
driving patterns and have higher accuracy in judging the state of 
the driver. Creating a mechanical stimulation, such as a beep or 
a buzz, can alert the driver when they are not paying attention to 
the road and the surrounding environment. The long-term effect 
of such would be to subconsciously train the driver to drive with 
more focus on the road. 

II. RELATED WORK 

The concept of monitoring the driver is an open-ended 
problem; many papers and projects exist on this topic. 

A. Real-time monitoring of driver drowsiness on mobile 

platforms using 3D neural networks 

In this paper, a 3D convolutional neural network was utilized 
to create a system for real-time video monitoring of the driver, 
with considerable attention given to model deployment on 
mobile phones and other cost-effective vehicle-based 
computers. This has reduced the need for specialized hardware, 
enabling a cost-effective solution [3]. Drowsiness was the driver 
state targeted for measurement and the drowsiness detection was 
broken down into three categories: vehicle-based 
measurements, physiological measurements, and computer 
vision techniques. In this study, computer vision was utilized. 

B. NVIDIA DRIVE IX cabin perception software 

NVIDIA DRIVE IX is an open and scalable cockpit software 
platform that provides a range of in-cabin experiences. These 
include functions such as intelligent visualization, augmented 
reality, virtual reality, conversational AI, and interior sensing. 
With these sensing features, the platform can utilize the Audio 
and Visual (AV) system to monitor and ensure the driver is 
paying attention to the road [4]. Facial expressions have many 
different meanings, such as a shift or wrinkle of the brow. 
DRIVE IX utilizes multiple DNNs (Deep Neural Networks) to 
decipher expressions. The first DNN detects the face; the second 
identifies reference markings and points. Additionally, various 
DNNs work to determine if the driver is paying attention. 
GazeNet DNN is designed to track gazes by creating a map of 
vectors corresponding to the driver’s eye and the road. This map 
is then used to see if the driver can see hazards on the road. 
SleepNet monitors drowsiness by determining whether the 
driver’s eyes are open or closed and can determine a level of 
exhaustion. ActivityNet monitors the drivers’ activities, such as 



phone usage, hands-on or off-the-wheel, and their attention to 
events outside the vehicle. Additionally, DRIVE IX monitors 
the drivers’ sitting positions, emotions, and conversations via 
various methods. 

C. Real-Time Driver’s Focus of Attention Extraction and 

Prediction using Deep Learning 

This paper discusses the design, implementation, and 
evaluation of DFaep, a deep learning network to examine, 
estimate, and predict drivers’ focus of attention using dual low-
cost dash cameras for driver-centric and car-centric views [5]. 
DFaep deployed real-time head movement tracking to monitor 
the driver’s gaze. The driver’s attention was then broken down 
into (11) grids within (5) gaze zones in the vehicle. A DNN then 
takes this data and determines whether the driver is distracted. 
DFaep showed an average accuracy of 99.38%. 

D. Existing Studies for Driver Drowsiness Detection utilizing 

Drowsiness Detection 

Table I shows some other studies on this topic that were not 
discussed in this paper. 

TABLE I. LIST OF CURRENT STUDIES ON DRIVER ATTENTION MONITORING 

Study Method of Deployment 

Jiménez et 

al. [6] 

Haar classifiers for the head, eye, and mouth segment 
detection in video frames; a NN then classifies the level of 
driver distraction in each frame 

Ying et al. 

[7] 

Contour detection methods to locate the face, mouth, and 
eyes; a NN follows and assesses the state of each feature 

Ribarić et 

al. [8] 

Classifies head rotation, eye, and mouth openness to issue 
alarms based on drowsiness levels 

Ji et al. [9] 
Bayesian network is fed head and eyelid movements with 
facial features to access fatigue 

Jiangwei et 

al. [10] 

Single feature NN to classify whether the driver is dozing, 
talking, or silent; focuses on the mouth 

Rong-ben 

et al. [11] 
Single feature NN to detect drowsiness; focuses on eyes 

Harada et 

al. [12] 

Calculates pupil diameter from eye-tracking data; RNN 
predicts distraction levels 

III. DRIVER DROWSINESS DETECTION SYSTEM DESIGN 

Fig. 1 shows the system diagram and the system functions as 
follows. The camera captures a frame that marks the initial 
event. This image, stored in memory, is processed through a 
series of pre-processing steps to ensure the image is in the 
appropriate size for the model and similar to what the model was 
trained on. These steps include but are not limited to 
thresholding and grayscale conversions. 

Additionally, it is desired for the driver’s head to be located 
and a rectangle surrounding said head to be extracted from the 
image. This eliminates any background and primarily focuses on 
the driver’s head movements. Once the pre-processing steps are 
completed, the image is transferred to the first model, where a 
label is given to the image. This label is saved in the database. 
Fig. 2 shows an example of a database for driver states. 
 

 

Fig. 1. System Flowchart for Driver Attention Monitoring 

 

Fig. 2. Example of Database for Driver States 

In Fig. 2, each block represents a fixed timestamp. The first 
block can be at one unit of time, the second block at one unit of 
time, the third block at one unit of time, and so on. This database 
is an array containing all previous and current states of the 
driver. A fixed amount is fed into the second model to output 
whether the driver is distracted or not. If the model finds 
irregularities, the system alerts the driver through mechanical 
stimulations—either a mechanical buzzer or sound using a 
speaker. Finally, a new camera frame is captured, and the 
program pre-processes the image again. 

IV. HARDWARE DESIGN 

The hardware consists of a 3-channel camera and a single-
board computer. The model of the camera used is LT-IMX219-
MIPI-FF-NANO-H136 V1.3 [13]. The resolution of this camera 
is 8.08 megapixels. The Intel RealSense Depth Camera D435i 
can also be considered as a method of using a depth map to aid 
the program for our system. 

Several single-board computers and one proprietary system 
were examined as possible platforms. Table II shows a table 
comparing these single-board computers. They are all within a 
price range of around $100. The Nvidia Jetson Nano 4GB was 
selected as the best fit for this project. The other two single-
board computers were the Raspberry Pi 4 and the Google Coral 
Development Board. All three were comparable in physical 
dimensions, and no concerns were raised in terms of the system's 
feasibility. From a power consumption perspective, the Jetson 
Nano would draw 10 watts at peak performance, the Raspberry 
Pi consumes around 6 watts, and the Google Coral Development 
Board consumes around 2 watts. 

 

 

 

 

 

 



TABLE II. HARDWARE COMPARISON FOR DRIVER DROWSINESS DETECTION 

 Jetson Nano 

4GB 
Raspberry Pi 4 

Coral Dev 

Board 

Power 

Consumption 
10W 5W 2W 

CPU 
Quad-Core Arm 

Cortex-A57 
Quad-Core 
Cortex-A72 

Quad-Core 
Cortex-A53 

GPU 
128-Core 
Maxwell 

VideoCore VI GC7000 Lite 

TPU N/A N/A 
Google Edge 

TPU 

RAM 4 GB 8 GB 1 GB 

Computation 

Power 
472 GFLOPs 9.69 GFLOPs 64 GFLOPs 

 

The NVIDIA Jetson Nano 4GB requires 10W of power (5V 
@ 2A) to operate at its fullest. There are multiple ways to supply 
10W of power from a vehicle without making modifications, 
thus it was determined that there were no power limitations to 
the computers to be examined. The system is designed as a 
module plugged into an external power supply; batteries were 
not in this project’s scope and were not looked at as an option. 
Comparing the three computers, all possessed a CPU, yet only 
the Jetson Nano and Google Coral Development Board were 
equipped with a GPU. The purpose and benefit of having a GPU 
are to compute tedious calculations significantly faster than 
running the same processes on a CPU. Machine learning can be 
considered a ‘net’ of tedious computations. The Jetson Nano 
became the final choice for our system design as it outperformed 
the Google Coral Development Board as shown in Table II. 

V. SOFTWARE DESIGN 

A. Design Criteria 

A few design criteria were in place to aid the design process 
to fulfill the functional expectations of the system. One of the 
most significant issues regarding monitoring systems is privacy. 
Our system shall have a closed-loop camera feed, where the 
taken images will remain in memory only on the Jetson Nano. 
Furthermore, we require a system to take all our training videos 
and pre-process them into the correct format. For this purpose, 
we need to design a streamlined system, ideally using a single 
script to handle this. This is because we want to compare data 
types and pre-processing methods to achieve the most accurate 
model. 

B. AI Algorithm and Software Tools 

Two libraries were examined as part of the project’s scope: 
TensorFlow and PyTorch. TensorFlow is an open-source library 
for machine learning and artificial intelligence. With uses in all 
areas due to its implementation of tensors, its primary focus 
resides in the training and inference of deep neural networks. 
PyTorch, on the other hand, is commonly used for applications 
involving computer vision and natural language processing. 
TensorFlow and PyTorch are sought after due to their extensive 
documentation, uses, and available functions. However, 
TensorFlow was the chosen library for this system design due to 
the numerous models available online due to the age of the 
library. PyTorch was a great competitor and performed very 

well, however, there were technical issues with running our 
models on the GPU of the Jetson Nano when using PyTorch. 

C. Feature Extraction Model 

Our program contains two models; the former is responsible 
for feature extraction. With an input of a frame from the camera, 
its output matches one of six states: eyes open, eyes closed, 
looking up, looking down, looking left, or looking right. The 
frame goes under pre-processing operations as described. The 
frame is a 3-channel image, with each channel corresponding to 
a color channel. The frame is converted to grayscale, and a 
flattening operation is then used to create an array that can be 
inputted into the model. A custom dataset was constructed for 
this model. 

Additionally, an eye cascade file was used as a part of 
OpenCV to aid in detecting the eyes of the driver. The model 
was trained on the custom dataset as it created a model that 
would best fit a specific driver. Utilizing approximately 3,000 
and 500 frames respectively for the training and testing set, we 
were able to achieve an accuracy of 95% during training. All 
output of this model was saved to a database for use in the 
second model, Driver State Determination. 

D. Driver State Determination Model 

Every driver has a different driving style and pattern. The 
driver state determination model in the program was responsible 
and designed to learn these patterns of a specific driver. There 
are many unique case scenarios, such as the time one looks over 
their shoulder when changing lanes. This leads us to need a 
machine learning model to be implemented to account for these 
patterns. This model was designed to take a segment of the 
database, as shown in Fig. 2 previously, as the input. The output 
is a Boolean expression of whether the driver is distracted. 

E. Time Constraints of Model 

The speed at which the program executes needs to be near 
real-time as a part of the project requirements—the significance 
of such lies in what happens if an unexpected event occurs 
during operation. If the program performance were to lag for any 
reason or reset itself, the model could lack data that could 
indicate a distracted driver. If this were ever the case, the system 
would fail to alert the driver, and an accident could occur. Our 
program operated in a range of 45 to 60 frames per second. No 
lags or unexpected events occurred during our testing, but it does 
not guarantee that our system is protected against such. 

F. Security 

A significant concern in many systems available on the 
market is privacy. The system developed in this paper functions 
on a closed-loop feed, meaning the camera feed is only given to 
the Jetson Nano for processing and then discarded. There is no 
Wi-Fi or Bluetooth connection, and no images or driving 
patterns are saved onboard the single-board computer, resting 
privacy concerns as there is no possibility for any data to be 
leaked as a part of the code. 

VI. RESULTS 

Regarding results, we are focused on two different libraries 
and on how each effectively assists us in developing and training 
the model. Furthermore, based on prior states, we have 



identified a reliable technique for identifying a distracted driver. 
We assembled the dataset to produce the results and trained the 
network within days. To choose and finish the library for the 
model, one team member worked in TensorFlow while the other 
used PyTorch. However, PyTorch was not considered as there 
were some functionality problems. Data will be collected 
individually and compiled into one database that will be shared 
with everyone to ensure consistent results. The following figure, 
Fig. 3, shows seven directories being created after running the 
script for the first time. The following figures display different 
training frames stored in the training frame directory after 
extracting the frames from the video file using OpenCV. The 
different stored frames include eyes opened and closed, looking 
up, down, left, and right. 

     

 

   

Fig. 3. Stored Frames for Training and Testing 

Fig. 4 displays the terminal output as it currently displays the 
action either none, which means looking straight, or right, 
meaning looking right. It also displays the current time, and if 
eyes are opened or closed, if the driver is distracted, it will show 
the driver distracted, and a sound will also play in the preview. 

 

 
Fig. 4. Terminal Output of Driver Attention Monitoring 

Fig. 5 displays different actions none (looking straight), left, 
right, up, and down as well as if eyes are opened and closed. 

 
Fig. 5. Examples of Driver Facial Actions 

VII. SYSTEM DESIGN DISCUSSION 

With the current state of the system and the classification of 
this topic being open-ended, there are many opportunities to 
build off this system and advance its features. In terms of what 
else can be added, a system that lets drivers add their 
requirements into the system according to their behavior when 
behind the wheel would be preferable. Also, other features 
including head position and how the driver uses the steering 
wheel can be added, as well as the speed of the driver as some 
young drivers and older drivers are the leading cause of 
accidents due to either being too hyper or not experienced 
enough. For older drivers, not having enough reaction time 
while driving is an issue worth considering. 

Further discussion is also to be had on how we can develop 
a system that follows the same process. Furthermore, it enhances 
and utilizes the second model we had proposed but not 
implemented, the pattern network model, which will determine 
the requirements and behavior of that user and may even identify 
the user through facial recognition. As well as the depth camera 
D435i, which can help us further enhance and improve the 
dataset. When the camera moves, adding an IMU enables the 
application to improve its depth perception. This camera allows 
for simple monitoring and SLAM applications that enable better 
point-cloud alignment. Additionally, it enables the system to 
identify any driving motions, even in low light, thanks to better 
environmental awareness. 

The Feature Extraction Model has many optimization 
opportunities available, such as adopting a more efficient and 



calculated neural network structure. The goal is to discard the 
eye cascade file as it slows the program down due to its 
inefficient method of finding patterns. An alternative YOLO 
(You Only Look Once) algorithm could be applied, yet it would 
only complicate and buckle down the code compared to a 
singular or even multiple deep neural network that can run on 
the GPU. 

VIII. CONCLUSION 

As this is an open-ended area of work, there are many 
solutions to different problems, and each solution can build off 
each other to further advance driver monitoring systems. This 
paper discussed the importance of driver attention monitoring 
systems and the method that was carried out to create a system 
that functioned to a certain extent. Many improvements can be 
made, and this paper serves as a baseline for future work and for 
others to build off the ideas in this paper. The goal is for a refined 
and renewed version of this code to be completed and tested in 
a real-world situation. 
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