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Abstract— In ultrasonic nondestructive evaluation (NDE) of 

materials an essential step in characterizing an ultrasonic signal is 

decomposing the patterns of multiple interfering echoes. The 

Chirplet Transform (CT) is a powerful method to analyze the 

echoes in an ultrasonic signal. However, CT analysis is 

computationally heavy and impractical. Motivated by achieving 

real-time execution of the CT this research presents a speed-

optimized implementation of the chirplet functions on FPGA. 

Chirplet echo generation used in Fast Chirplet Decomposition 

(FCD) Algorithm for ultrasonic signal analysis necessitates the 

frequent generation of chirplet functions with a 6-degree of 

freedom associated with chirplet parameters including the 

amplitude scaler; the time of arrival; the Gaussian envelope 

scaler; the phase of the chirplet; the center frequency and the 

frequency sweep. By minimizing the processing time of the 

chirplet generation, the FCD algorithm can be implemented 

efficiently on FPGA System-on-Chip (SoC). This study presents 

the hardware realization of the chirplet function on FPGA which 

is 37 times faster compared to using a Teensy 4.0 microcontroller, 

and 146 times faster than a highly popular Raspberry Pi 4.0 single 

board computer. 
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I. INTRODUCTION 

In the NDE of materials using ultrasound, determining echo 
patterns in an ultrasonic signal provides useful information 
about any deformities and multipath interference [1-3]. This 
information is important for ultrasonic medical imaging and 
industrial nondestructive testing. The chirplet signal 
decomposition algorithm is an effective method for echo 
characterization of a channel and provides useful information 
about the ultrasonic propagation path through materials [1]. 
Motivated by this problem, this research presents speed-
optimized hardware solutions for Fast Chirplet Decomposition 
(FCD) intended for use on an FPGA System-on-Chip. The 
foundation for exploring FCD algorithm improvement is 
presented in [2]. This algorithm demands frequent generation of 
chirplet functions with 6 degrees of freedom.  

To achieve better execution time for chirplet generation, our 
research provides a scheme to implement the multiplications and 
LUT in hardware. The hardware multiplications and additions 
will use floating-point arithmetic for a large portion of the 
calculations using principles from [4] and [5]. A major 
motivation for using floating points is to take advantage of the 
large dynamic range that the floating point format provides 
while maintaining 24 significant bits [6]. Additionally, multiple 
multiplications and LUTs will be performed in parallel on the 

FPGA. For the chirplet generation, multiple chirplet generators 
will be undersampled and run in parallel to generate a data bus 
capable of generating multiple chirplet samples per clock cycle. 
Using undersampled parallel chirplet generators is a design 
choice inspired by [6] and [7], which provides information on 
how to increase the sample rate of data conversion when 
working with limitations in the data converters themselves. 
Although this research does not directly use data converters in 
the FPGA design, the undersampled parallel architecture is 
similar to what this paper describes. 

In Section II the Fast Chirplet Decomposition (FCD) 
algorithm is introduced, which will describe the process by 
which a signal may be decomposed to constituent chirplets. 
Section III describes the chirplet transform and details of the 
different transform parameters. Section IV provides an FPGA 
implementation to accelerate a key component of the algorithm, 
chirplet generation. Section V will evaluate the performance of 
the FPGA implementation against a software-based approach 
using a Teensy 4.0 microcontroller and Raspberry Pi 4.0 single-
board computer, and characterize the improvements that are 
made by using this hardware accelerator. Section VI will 
conclude the paper by explaining how the hardware accelerator 
can be used for the FCD algorithm and how it may be used for 
other applications. 

II. FAST CHIRPLET DECOMPOSITION 

The chirplet decomposition algorithm decomposes a signal 
containing multiple overlapping chirplets into its constituent 
parts. Each chirplet may be represented by a set of six 
parameters to be used for later analysis of an ultrasonic signal 
channel (see Equations (1) and (2)). Fig. 1 shows the flowchart 
for the fast chirplet decomposition algorithm. The algorithm 
steps are: 

1. Find the maximum location of �(�) in the time domain 

and use it as the initial guess of time-of-arrival and the 

starting point of iteration. 

2. Estimate the center frequency, which maximizes the 

chirplet transform, given the initial guess of time-of-

arrival. 

3. Estimate the time-of-arrival, which maximizes the 

chirplet transform, given the estimated center frequency 

from the previous step. 



4. Estimate the center frequency, which maximizes the 

chirplet transform, given the new estimated time-of-

arrival from Step 3. 

5. Check convergence: If Δ� < � and Δ� < ���� (here, ���� 

and ���� are predefined convergence conditions), then 

go to Step 6; otherwise, go to Step 3. 

6. Estimate the amplitude � and the remaining parameters 

	2, 
, and 	1 successively. 

7. Obtain the residual signal by subtracting the estimated 

echo from the signal.  

8. Calculate the energy of the residual signal (��) and 

check convergence (���
 is predefined convergence 

condition): If �� < ���
, the algorithm is completed; 

otherwise, go to Step 1. 

 

Fig. 1. Fast Chirplet Decomposition Flowchart [2]. 

In each step besides step 1, where a parameter estimation is 
made, the chirplet transform is invoked with specific parameter 
estimates and a measured reference signal. The chirplet 
transform is a computationally complex problem performed 
iteratively throughout the algorithm. The number of chirplets 
transformed needed to complete the algorithm depends on the 
resolution of the parameter sweep, the number of embedded 

chirplets in the input signal, and the amount of acceptable 
residual energy after chirplet decomposition. It is common to 
perform a very large number of chirplet transforms throughout 
this algorithm. Therefore, if the chirplet generation may be 
accelerated via a digital hardware implementation, significant 
progress can be made in reducing the amount of time needed to 
execute the algorithm. This paper provides an FPGA module 
that may be used with the FCD algorithm as a means of 
hardware acceleration to reduce the time needed to execute the 
FCD algorithm. 

III. CHIRPLET TRANSFORM OPTIMIZATION 

To find the appropriate chirplet parameters to best model a 
reference signal, the chirplet transform is used to iteratively find 
the best-fitting parameters [1, 2]. The chirplet transform of a 

given estimated parameter set �� is defined [8]: 

������ = � �����Ψ��
∗���

�

��
�� �1� 

The chirplet transform takes two functions as its input: ����� 

and Ψ��
∗���.  Both of these functions are chirplets whose form 

follows:

���� = � !"�#�$�%&'()*+&,-�#�$�&!%�#�$�%. �2� 

As shown in Equation (2), there are six main components to 
a chirplet. � is the amplitude scaler; � is the time of arrival; 	1 
is the Gaussian envelope scaler; 
 is the phase of the chirplet; 
�0 is the center frequency and 	2 is the frequency sweep 
parameter. 

For this research, �����  represents a measured signal and 
will be referred to as the reference signal. And Ψ��

∗��� represents 

the estimated signal generated from the estimated parameters. In 
[2] the maximum location of the chirplet transform is used to 
facilitate a peak search algorithm; the current maximum value is 
compared against the previous maximum value, and this 
difference is what determines if the estimated parameter is 
within a sufficiently appropriate range. This research found that 
the same effect may be reproduced by cross-correlating the two 
function inputs to the chirplet transform and only analyzing the 
center point of the cross-correlation between these two functions 
instead of a full cross-correlation followed by finding the 
maximum value of that cross-correlation as defined in [2]. So 
long as the initial time of arrival estimate is reasonable, the series 
of center cross-correlation points created by iterative parameter 
search is still conducive to a peak search algorithm. Then, the 
chirplet transform is divided into two separate tasks: estimated 
chirplet generation and a center point cross-correlation. In the 
following sections, the two tasks and their computation 
complexity are discussed. 

A. Chirplet Generation Estimation 

The chirplet generator is used to estimate a chirplet whose output 
is fed into a cross-correlator module. A chirplet is a signal 
containing the properties of both a chirp and a wavelet. A chirp 
is a single-component signal with a varying frequency. A 
wavelet is a time-limited signal and is generated by multiplying 
a window function with a signal in the time domain. Fig. 2 shows 



a chirplet example, note that the window of choice for this 
chirplet transform is a Gaussian envelope (see Equation (2)). 

Chirplet generation is an expensive task due to its multiple 
exponential functions, both Gaussian and sinusoidal. 
Calculating these exponentials in software either requires using 
math libraries or look-up tables for sinusoidal and exponential 
approximations. Even when using look-up tables in software, 
each portion of the chirplet equation is estimated individually 
and cannot be made parallel like with the FPGA 
implementation. And because the size of the chirplet is usually 
large at least 512 samples, the calculation of this array becomes 
time-consuming.  Although the calculation of the chirplet signal 
is O(n), the large size of the array and the exponential functions 
that comprise the chirplet signal makes it a logical target for 
optimization. 

 

Fig. 2. Chirplet Parameters Related to the Shape of Chirplet Signal. 

IV. FPGA IMPLEMENTATION 

The FPGA implementation of the FCD is shown in Fig. 3. 
The top-level algorithm is executed on the FPGA Programmable 
System (PS), which uses software running on an ARM core, and 
the Chirplet Transform is implemented on the Programmable 
Logic (PL), the traditional FPGA logic gate array that hardware 
description languages target. 

 

Fig. 3. System-on-Chip Design Diagram for the FCD Algorithm. 

The exponential portion of Equation (2) may be broken into 
subsections which will be generated in parallel to improve the 

generation speed. First, Equation (2) is broken into two sections, 
one for the Gaussian envelope and one for the chirp generation: 

2��� =  � 23���2(��� �3� 

 

23��� =  56�	3�� −  ��(� �4� 

 

2(��� =  56�29:�
 + �<�� −  �� + 	(�� −  ��(�� 

=  0=��29�
 + �<�� − �� + 	(�� −  ��(�� 

+:��
�29�
 + �<�� − �� + 	(�� −  ��(�� �5� 

 

In each case, for 23���  and 2(��� , the argument for the 
exponential functions is generated before using a LUT to 
approximate the exponential function. For 2(��� , the 
exponential function is split into real and imaginary components 
using Euler's identity, and a sine LUT is used to approximate the 
output. 

For a chirplet generator that outputs one sample per clock 
cycle, the chirplet output sample is represented as a complex-
valued number, with 16 bits used to represent the real 
component and 16 bits used to represent the imaginary 
component. In addition to the six defining parameters of a 
chirplet, there is an additional parameter called the time step, 
which is equivalent to the sample period. This parameter is a 
constant value and is not one of the parameters that go through 
parameter estimation. The input parameters to the chirplet 
generator are represented by 32-bit floating point values. This 
allows the PS to interface with the chirplet generator intuitively 
without needing additional parameter scaling to fit a fixed-point 
format. 

Because the input parameters use a floating-point format, the 
math used in the chirplet generator uses floating-point addition 
and floating-point multiplication. While the floating-point 
format allows for more seamless integration of the chirplet 
generator between the PS and PL, there is a limitation to how 
many samples the chirplet generator may output before the 
floating-point resolution becomes inadequate and the output 
signal becomes corrupted by quantization noise. 

To optimize the number of clock cycles needed for 
parameter estimation, multiple chirplet generators are 
instantiated in parallel to generate a bus of signals which 
represent a single chirplet signal, as shown in Fig. 4. Each 
chirplet generator that is instantiated produces an undersampled 
chirplet below the necessary Nyquist sampling rate required to 
reconstruct the chirplet signal. By having each generator delay 
its output, the resulting output is a reconstructed chirplet where 
multiple samples are generated in a single clock cycle. Fig. 5 
shows an example of how parallel generators work together to 
generate a signal. Each parallel generator sample is represented 
by a different marker color. Note that for an individual marker 
color, the sample rate is too low to reconstruct the original signal 
properly, while using time-delayed samples in parallel, all of the 
necessary information is produced to reconstruct the original 
signal. 



 

Fig. 5. Undersampled Parallel Output Example 

V. EVALUATIONS 

To evaluate the FPGA implementation, the two components 
of the chirplet transform are evaluated: chirplet generation and 
cross-correlation. Because each chirplet generator is pipelined 
to achieve a throughput of one sample per clock cycle, the 
limiting factor to the generation speed becomes a combination 
of the chirplet generator latency and the number of parallel 
generators. The FPGA used to evaluate the parallel chirplet 
generator is the “Zynq UltraScale+ XCZU9EG-2FFVB1156 
MPSoC”. LUT lengths of 65536 are used, and eight parallel 
generators are instantiated. A simulation of a chirplet with 512 
samples is carried out. The implemented design uses a 
187.5MHz clock, which is the clock frequency used in this 
simulation to show accurate timing statistics. The parallel 
generator generates 512 samples in 415.74 ns or 78 clock cycles 
in the simulation. Simulations also show that the latency 
between the valid input pulse and the first valid output is 14 
clock cycles. This is due to the longest delay path required in an 
individual chirplet generator to close timing at 187.5MHz. 
Therefore, increasing the number of parallel generators has 
diminishing returns due to the fixed latency between the valid 
input pulse and the first output valid. This implementation was 
designed to push the chirplet generator to its limit and therefore 
closes timing with a worst negative slack of 0.008ns, which 
leaves very little margin for error if the FPGA speed is unknown 
or known to be slow. For other implementations, it will be 
necessary to use a slower clock speed to account for an FPGA 

that comes off the manufacturing line with slower 
characteristics. Table I shows the utilization report for the 
parallel chirplet generator. Due to the large FPGA size used, the 
LUTs, LUTRAMs, FFs, and DSPs used are all in tolerable 
ranges, allowing for many other modules to be included in the 
FPGA design along with the chirplet generator. The most used 
resources are BRAMs, this is due to the large LUTs used in the 
generators, using smaller LUTs will significantly reduce the 
BRAM used at the cost of the accuracy of the chirplet generator. 
Both the timing analysis and implementation report were 
generated using the full SoC architecture provided for the Zynq 
UltraScale+ XCZU9EG-2FFVB1156 MPSoC. Therefore, these 
numbers are accurate to what a full system would experience 
rather than the isolated chirplet generator. 

TABLE I. RESOURCE UTILIZATION REPORT FOR THE PARALLEL CHIRPLET 

GENERATOR 

Resource Available Utilization Utilization % 

LUT 274080 38079 13.89 

LUTRAM 144000 179 0.12 

FF 548160 17210 3.14 

BRAM 912 612 67.11 

DSP 2520 160 6.35 

BUFG 404 5 1.24 

A large size of 65536 is used for the LUT lengths to 
minimize the estimation error from using LUTs as an 
approximation to a function. To evaluate this output, a 
simulation output is compared to a Matlab output. The 
parameter values for the chirplet in this simulation are shown in 
Table II. 

Fig. 6 shows the result of the parallel chirplet generator 
simulation. The top subplot shows both the simulation output 
and Matlab output. Note that they are essentially 
indistinguishable from each other when only using qualitative 
inspection. The bottom subplot shows the calculated error 
between the FPGA simulation and the Matlab output, the bottom 
subplot demonstrates that for this parameter set, the maximum 

Fig. 4. Parallel Chirplet Generators 



error of 6*10-5 is recorded. This minuscule error is low enough 
to only contribute a negligible amount of noise power to the 
chirplet output, thus making this implementation of the parallel 
chirplet generator adequate for cross-correlation against 
measured signals without causing false correlation peaks or 
burying true peaks in noise. 

TABLE II. PARAMETER VALUES FOR THE CHIRPLET GENERATION 

Parameters Values 

Sample Rate 100 MHz 

Time of arrival � 2.56x10-6 s 

Bandwidth Factor 	1 1012 

Center Frequency �<  5 MHz 

Chirplet Rate 	2 1012 

Phase Shift 
 0.75 rads 

Amplitude � 0.25 

 
Fig. 6. A Single Chirplet generated from the Parallel Chirplet Generator 

To compare the FPGA hardware implementation against a 
software approach, the chirplet generator code is written in C 
code for a Teensy 4.0 microcontroller running on a 600MHz 
clock, and for a Raspberry Pi 4.0 running on a 1500MHz clock. 
The reason for selecting these devices is to provide a speed 
comparison against popular embedded DSP software 
processors. Sine, cosine, and exponential functions are 
approximated via software LUTs with 2048 values, and all 
multiplications are done as integer multiplications (as opposed 
to floating points). The smaller LUT and integer multiplication 
is done to provide a best-case scenario for the software approach 
when calculating chirplet samples. The calculation time itself is 
measured by toggling a GPIO high, calculating 512 samples, and 
then toggling the pin low. In addition, the switching time of the 

pin itself is accounted for and subtracted from the final time to 
provide an accurate measurement of the processing time needed 
to output 512 chirplet samples. 

The final results are shown in Table III. The calculation time 
for the Teensy 4.0 and Raspberry Pi 4.0 is 15.41us and 60.8us, 
respectively. Compared to the 415.74ns needed to generate the 
same information, the parallel chirplet generator improves the 
calculation time by 37 times compared to the Teensy 4.0 and 
146 times compared to the Raspberry Pi 4.0. 

TABLE III. DEVICE SPEED COMPARISON FOR CHIRPLET GENERATION 

Device 
Time to Calculate 

Chirplet (us) 

FPGA Implementation 0.416 

Teensy 4.0 15.4 

Raspberry Pi 4.0 60.8 

This metric is specific to the FPGA implementation used for 
the “Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC”, 
tighter pipelining to allow for increased clock speed, reduction 
in LUT size to increase the clock speed, and increasing the 
number of parallel chirplet generators are all options that 
improve the calculation time taken by the FPGA hardware 
implementation. The process of generating a chirplet is vital for 
generating a reference to cross-correlate against and is 
performed many times in the FCD algorithm, hence why it is 
important to use hardware acceleration to generate this chirplet 
as quickly as possible. 

 While the cross-correlation cost function is not the 
bottleneck for this system, keeping its performance in mind is 
important.  This part of the implementation shares the same 
FPGA, and was evaluated using a 187.5 MHz clock.  Using a 
length of 512 samples, similar to the one used for the chirplet 
generation, this module completes a center-point cross-
correlation in 23 clock cycles, or 122.667 ns, after the signal is 
loaded.  Both the timing analysis and implementation report was 
generated using the full SoC architecture provided for the Zynq 
UltraScale+ XCZU9EG-2FFVB1156 MPSoC, and are included 
in Table IV.  Similar to the chirplet generator, the LUTs, FFs, 
BRAMs, DSPs, and BUFGs used are all in tolerable ranges (see 
Table IV). The most used resources are DSPs, due to a large 
number of parallel processing blocks. 

TABLE IV. RESOURCE UTILIZATION REPORT FOR CROSS-CORRELATION 

MODULE 

Resource Available Utilization Utilization % 

LUT 274080 11562 4.22% 

FF 548160 8198 1.50% 

BRAM 912 28.5 3.13% 

DSP 2520 256 10.16% 

BUFG 404 4 0.99% 

 To compare the FPGA hardware implementation against a 
software approach, the chirplet generator code is written in C 



code for a Teensy 4.0 microcontroller running on a 600MHz 
clock, and for a Raspberry Pi 4.0 running on a 1500MHz clock 
with 512 samples. The final results are shown in Table V. The 
calculation times for the Teensy 4.0 and Raspberry Pi 4.0 are 
6.84 us and 32.41us, respectively. Compared to the 122.7ns 
needed to generate the same information, the cross-correlation 
module improves the calculation time by a factor of 56 
compared to the Teensy 4.0, and a factor of 264 compared to the 
Raspberry Pi 4.0. 

TABLE V. DEVICE SPEED COMPARISON FOR CROSS-CORRELATION 

MODULE 

Device 
Time to Calculate Cross-

Correlation (us) 

FPGA Implementation 0.1227 

Teensy 4.0 6.84 

Raspberry Pi 4.0 32.41 

VI. CONCLUSION 

This paper has provided an architecture for hardware 
acceleration of chirplet generation intended for use with the fast 
chirplet decomposition (FCD) algorithm. The point of 
generating a chirplet is to use the generated chirplet as a signal 
to correlate against to characterize the component chirps within 
a measured signal. By using this hardware-accelerated 
architecture, chirplet data may be sent back to software within 
the system on chip for cross-correlation, or the chirplet data may 
be sent to another hardware block for correlation. In either case, 
a large parallel data bus may be used to communicate between 
the chirplet generator module and any other module (software or 
hardware) that it will interface with. Using a large data bus 
allows for data to be transferred quickly and lets the user take 
advantage of the parallel nature of the hardware acceleration. 
When interfacing back to the software, Xilinx supports AXI 
DMA bus widths of up to 1024 bits, more than the required 
amount for this hardware implementation. If desirable, this 
design may be modified to increase the number of parallel 
generators to take full advantage of the high DMA bus width. 

Although this module has been designed as a hardware 
acceleration tool for the FCD algorithm, other uses for chirplets 

may find this module (or sections of this module) useful. For 
example, the LoRa radio communication protocol has proven 
that a chirp spread spectrum is useful for wireless 
communication [9,10].  The chirplet generator presented in this 
paper may be used to generate chirps for the transmission of the 
chirp spread spectrum, or it may be implemented in the receiver 
of a chirp spread-spectrum device. Because there is potential to 
generate chirplets so quickly with this module, it would be 
possible for the receiver to correlate against several different 
chirplets in parallel as a type of rake receiver intended to be 
ready to receive from several unique chirp spread sequences. 
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