
Speed-Optimized Implementation of Fast Chirplet

Decomposition Algorithm on FPGA-SoC

Austin Fite, Mikhail Gromov, Tianyang Fang and Jafar Saniie

 ECASP Research Laboratory (http://ecasp.ece.iit.edu)

 Department of Electrical and Computer Engineering

 Illinois Institute of Technology, Chicago, IL, U.S.A.

Abstract— In ultrasonic nondestructive evaluation (NDE) of

materials an essential step in characterizing an ultrasonic signal is

decomposing the patterns of multiple interfering echoes. The

Chirplet Transform (CT) is a powerful method to analyze the

echoes in an ultrasonic signal. However, CT analysis is

computationally heavy and impractical. Motivated by achieving

real-time execution of the CT this research presents a speed-

optimized implementation of the chirplet functions on FPGA.

Chirplet echo generation used in Fast Chirplet Decomposition

(FCD) Algorithm for ultrasonic signal analysis necessitates the

frequent generation of chirplet functions with a 6-degree of

freedom associated with chirplet parameters including the

amplitude scaler; the time of arrival; the Gaussian envelope

scaler; the phase of the chirplet; the center frequency and the

frequency sweep. By minimizing the processing time of the

chirplet generation, the FCD algorithm can be implemented

efficiently on FPGA System-on-Chip (SoC). This study presents

the hardware realization of the chirplet function on FPGA which

is 37 times faster compared to using a Teensy 4.0 microcontroller,

and 146 times faster than a highly popular Raspberry Pi 4.0 single

board computer.

Keywords—FPGA, Signal Processing, Ultrasonic, Optimization.

I. INTRODUCTION

In the NDE of materials using ultrasound, determining echo
patterns in an ultrasonic signal provides useful information
about any deformities and multipath interference [1-3]. This
information is important for ultrasonic medical imaging and
industrial nondestructive testing. The chirplet signal
decomposition algorithm is an effective method for echo
characterization of a channel and provides useful information
about the ultrasonic propagation path through materials [1].
Motivated by this problem, this research presents speed-
optimized hardware solutions for Fast Chirplet Decomposition
(FCD) intended for use on an FPGA System-on-Chip. The
foundation for exploring FCD algorithm improvement is
presented in [2]. This algorithm demands frequent generation of
chirplet functions with 6 degrees of freedom.

To achieve better execution time for chirplet generation, our
research provides a scheme to implement the multiplications and
LUT in hardware. The hardware multiplications and additions
will use floating-point arithmetic for a large portion of the
calculations using principles from [4] and [5]. A major
motivation for using floating points is to take advantage of the
large dynamic range that the floating point format provides
while maintaining 24 significant bits [6]. Additionally, multiple
multiplications and LUTs will be performed in parallel on the

FPGA. For the chirplet generation, multiple chirplet generators
will be undersampled and run in parallel to generate a data bus
capable of generating multiple chirplet samples per clock cycle.
Using undersampled parallel chirplet generators is a design
choice inspired by [6] and [7], which provides information on
how to increase the sample rate of data conversion when
working with limitations in the data converters themselves.
Although this research does not directly use data converters in
the FPGA design, the undersampled parallel architecture is
similar to what this paper describes.

In Section II the Fast Chirplet Decomposition (FCD)
algorithm is introduced, which will describe the process by
which a signal may be decomposed to constituent chirplets.
Section III describes the chirplet transform and details of the
different transform parameters. Section IV provides an FPGA
implementation to accelerate a key component of the algorithm,
chirplet generation. Section V will evaluate the performance of
the FPGA implementation against a software-based approach
using a Teensy 4.0 microcontroller and Raspberry Pi 4.0 single-
board computer, and characterize the improvements that are
made by using this hardware accelerator. Section VI will
conclude the paper by explaining how the hardware accelerator
can be used for the FCD algorithm and how it may be used for
other applications.

II. FAST CHIRPLET DECOMPOSITION

The chirplet decomposition algorithm decomposes a signal
containing multiple overlapping chirplets into its constituent
parts. Each chirplet may be represented by a set of six
parameters to be used for later analysis of an ultrasonic signal
channel (see Equations (1) and (2)). Fig. 1 shows the flowchart
for the fast chirplet decomposition algorithm. The algorithm
steps are:

1. Find the maximum location of �(�) in the time domain

and use it as the initial guess of time-of-arrival and the

starting point of iteration.

2. Estimate the center frequency, which maximizes the

chirplet transform, given the initial guess of time-of-

arrival.

3. Estimate the time-of-arrival, which maximizes the

chirplet transform, given the estimated center frequency

from the previous step.

4. Estimate the center frequency, which maximizes the

chirplet transform, given the new estimated time-of-

arrival from Step 3.

5. Check convergence: If Δ� < � and Δ� < ���� (here, ����

and ���� are predefined convergence conditions), then

go to Step 6; otherwise, go to Step 3.

6. Estimate the amplitude � and the remaining parameters

	2,
, and 	1 successively.

7. Obtain the residual signal by subtracting the estimated

echo from the signal.

8. Calculate the energy of the residual signal (��) and

check convergence (���
 is predefined convergence

condition): If �� < ���
, the algorithm is completed;

otherwise, go to Step 1.

Fig. 1. Fast Chirplet Decomposition Flowchart [2].

In each step besides step 1, where a parameter estimation is
made, the chirplet transform is invoked with specific parameter
estimates and a measured reference signal. The chirplet
transform is a computationally complex problem performed
iteratively throughout the algorithm. The number of chirplets
transformed needed to complete the algorithm depends on the
resolution of the parameter sweep, the number of embedded

chirplets in the input signal, and the amount of acceptable
residual energy after chirplet decomposition. It is common to
perform a very large number of chirplet transforms throughout
this algorithm. Therefore, if the chirplet generation may be
accelerated via a digital hardware implementation, significant
progress can be made in reducing the amount of time needed to
execute the algorithm. This paper provides an FPGA module
that may be used with the FCD algorithm as a means of
hardware acceleration to reduce the time needed to execute the
FCD algorithm.

III. CHIRPLET TRANSFORM OPTIMIZATION

To find the appropriate chirplet parameters to best model a
reference signal, the chirplet transform is used to iteratively find
the best-fitting parameters [1, 2]. The chirplet transform of a

given estimated parameter set �� is defined [8]:

������ = � �����Ψ��
∗���

�

��
�� �1�

The chirplet transform takes two functions as its input: �����

and Ψ��
∗���. Both of these functions are chirplets whose form

follows:

���� = � !"�#�$�%&'()*+&,-�#�$�&!%�#�$�%. �2�

As shown in Equation (2), there are six main components to
a chirplet. � is the amplitude scaler; � is the time of arrival; 	1
is the Gaussian envelope scaler;
 is the phase of the chirplet;
�0 is the center frequency and 	2 is the frequency sweep
parameter.

For this research, ����� represents a measured signal and
will be referred to as the reference signal. And Ψ��

∗��� represents

the estimated signal generated from the estimated parameters. In
[2] the maximum location of the chirplet transform is used to
facilitate a peak search algorithm; the current maximum value is
compared against the previous maximum value, and this
difference is what determines if the estimated parameter is
within a sufficiently appropriate range. This research found that
the same effect may be reproduced by cross-correlating the two
function inputs to the chirplet transform and only analyzing the
center point of the cross-correlation between these two functions
instead of a full cross-correlation followed by finding the
maximum value of that cross-correlation as defined in [2]. So
long as the initial time of arrival estimate is reasonable, the series
of center cross-correlation points created by iterative parameter
search is still conducive to a peak search algorithm. Then, the
chirplet transform is divided into two separate tasks: estimated
chirplet generation and a center point cross-correlation. In the
following sections, the two tasks and their computation
complexity are discussed.

A. Chirplet Generation Estimation

The chirplet generator is used to estimate a chirplet whose output
is fed into a cross-correlator module. A chirplet is a signal
containing the properties of both a chirp and a wavelet. A chirp
is a single-component signal with a varying frequency. A
wavelet is a time-limited signal and is generated by multiplying
a window function with a signal in the time domain. Fig. 2 shows

a chirplet example, note that the window of choice for this
chirplet transform is a Gaussian envelope (see Equation (2)).

Chirplet generation is an expensive task due to its multiple
exponential functions, both Gaussian and sinusoidal.
Calculating these exponentials in software either requires using
math libraries or look-up tables for sinusoidal and exponential
approximations. Even when using look-up tables in software,
each portion of the chirplet equation is estimated individually
and cannot be made parallel like with the FPGA
implementation. And because the size of the chirplet is usually
large at least 512 samples, the calculation of this array becomes
time-consuming. Although the calculation of the chirplet signal
is O(n), the large size of the array and the exponential functions
that comprise the chirplet signal makes it a logical target for
optimization.

Fig. 2. Chirplet Parameters Related to the Shape of Chirplet Signal.

IV. FPGA IMPLEMENTATION

The FPGA implementation of the FCD is shown in Fig. 3.
The top-level algorithm is executed on the FPGA Programmable
System (PS), which uses software running on an ARM core, and
the Chirplet Transform is implemented on the Programmable
Logic (PL), the traditional FPGA logic gate array that hardware
description languages target.

Fig. 3. System-on-Chip Design Diagram for the FCD Algorithm.

The exponential portion of Equation (2) may be broken into
subsections which will be generated in parallel to improve the

generation speed. First, Equation (2) is broken into two sections,
one for the Gaussian envelope and one for the chirp generation:

2��� = � 23���2(��� �3�

23��� = 56�	3�� − ��(� �4�

2(��� = 56�29:�
 + �<�� − �� + 	(�� − ��(��

= 0=��29�
 + �<�� − �� + 	(�� − ��(��

+:��
�29�
 + �<�� − �� + 	(�� − ��(�� �5�

In each case, for 23��� and 2(��� , the argument for the
exponential functions is generated before using a LUT to
approximate the exponential function. For 2(��� , the
exponential function is split into real and imaginary components
using Euler's identity, and a sine LUT is used to approximate the
output.

For a chirplet generator that outputs one sample per clock
cycle, the chirplet output sample is represented as a complex-
valued number, with 16 bits used to represent the real
component and 16 bits used to represent the imaginary
component. In addition to the six defining parameters of a
chirplet, there is an additional parameter called the time step,
which is equivalent to the sample period. This parameter is a
constant value and is not one of the parameters that go through
parameter estimation. The input parameters to the chirplet
generator are represented by 32-bit floating point values. This
allows the PS to interface with the chirplet generator intuitively
without needing additional parameter scaling to fit a fixed-point
format.

Because the input parameters use a floating-point format, the
math used in the chirplet generator uses floating-point addition
and floating-point multiplication. While the floating-point
format allows for more seamless integration of the chirplet
generator between the PS and PL, there is a limitation to how
many samples the chirplet generator may output before the
floating-point resolution becomes inadequate and the output
signal becomes corrupted by quantization noise.

To optimize the number of clock cycles needed for
parameter estimation, multiple chirplet generators are
instantiated in parallel to generate a bus of signals which
represent a single chirplet signal, as shown in Fig. 4. Each
chirplet generator that is instantiated produces an undersampled
chirplet below the necessary Nyquist sampling rate required to
reconstruct the chirplet signal. By having each generator delay
its output, the resulting output is a reconstructed chirplet where
multiple samples are generated in a single clock cycle. Fig. 5
shows an example of how parallel generators work together to
generate a signal. Each parallel generator sample is represented
by a different marker color. Note that for an individual marker
color, the sample rate is too low to reconstruct the original signal
properly, while using time-delayed samples in parallel, all of the
necessary information is produced to reconstruct the original
signal.

Fig. 5. Undersampled Parallel Output Example

V. EVALUATIONS

To evaluate the FPGA implementation, the two components
of the chirplet transform are evaluated: chirplet generation and
cross-correlation. Because each chirplet generator is pipelined
to achieve a throughput of one sample per clock cycle, the
limiting factor to the generation speed becomes a combination
of the chirplet generator latency and the number of parallel
generators. The FPGA used to evaluate the parallel chirplet
generator is the “Zynq UltraScale+ XCZU9EG-2FFVB1156
MPSoC”. LUT lengths of 65536 are used, and eight parallel
generators are instantiated. A simulation of a chirplet with 512
samples is carried out. The implemented design uses a
187.5MHz clock, which is the clock frequency used in this
simulation to show accurate timing statistics. The parallel
generator generates 512 samples in 415.74 ns or 78 clock cycles
in the simulation. Simulations also show that the latency
between the valid input pulse and the first valid output is 14
clock cycles. This is due to the longest delay path required in an
individual chirplet generator to close timing at 187.5MHz.
Therefore, increasing the number of parallel generators has
diminishing returns due to the fixed latency between the valid
input pulse and the first output valid. This implementation was
designed to push the chirplet generator to its limit and therefore
closes timing with a worst negative slack of 0.008ns, which
leaves very little margin for error if the FPGA speed is unknown
or known to be slow. For other implementations, it will be
necessary to use a slower clock speed to account for an FPGA

that comes off the manufacturing line with slower
characteristics. Table I shows the utilization report for the
parallel chirplet generator. Due to the large FPGA size used, the
LUTs, LUTRAMs, FFs, and DSPs used are all in tolerable
ranges, allowing for many other modules to be included in the
FPGA design along with the chirplet generator. The most used
resources are BRAMs, this is due to the large LUTs used in the
generators, using smaller LUTs will significantly reduce the
BRAM used at the cost of the accuracy of the chirplet generator.
Both the timing analysis and implementation report were
generated using the full SoC architecture provided for the Zynq
UltraScale+ XCZU9EG-2FFVB1156 MPSoC. Therefore, these
numbers are accurate to what a full system would experience
rather than the isolated chirplet generator.

TABLE I. RESOURCE UTILIZATION REPORT FOR THE PARALLEL CHIRPLET

GENERATOR

Resource Available Utilization Utilization %

LUT 274080 38079 13.89

LUTRAM 144000 179 0.12

FF 548160 17210 3.14

BRAM 912 612 67.11

DSP 2520 160 6.35

BUFG 404 5 1.24

A large size of 65536 is used for the LUT lengths to
minimize the estimation error from using LUTs as an
approximation to a function. To evaluate this output, a
simulation output is compared to a Matlab output. The
parameter values for the chirplet in this simulation are shown in
Table II.

Fig. 6 shows the result of the parallel chirplet generator
simulation. The top subplot shows both the simulation output
and Matlab output. Note that they are essentially
indistinguishable from each other when only using qualitative
inspection. The bottom subplot shows the calculated error
between the FPGA simulation and the Matlab output, the bottom
subplot demonstrates that for this parameter set, the maximum

Fig. 4. Parallel Chirplet Generators

error of 6*10-5 is recorded. This minuscule error is low enough
to only contribute a negligible amount of noise power to the
chirplet output, thus making this implementation of the parallel
chirplet generator adequate for cross-correlation against
measured signals without causing false correlation peaks or
burying true peaks in noise.

TABLE II. PARAMETER VALUES FOR THE CHIRPLET GENERATION

Parameters Values

Sample Rate 100 MHz

Time of arrival � 2.56x10-6 s

Bandwidth Factor 	1 1012

Center Frequency �< 5 MHz

Chirplet Rate 	2 1012

Phase Shift
 0.75 rads

Amplitude � 0.25

Fig. 6. A Single Chirplet generated from the Parallel Chirplet Generator

To compare the FPGA hardware implementation against a
software approach, the chirplet generator code is written in C
code for a Teensy 4.0 microcontroller running on a 600MHz
clock, and for a Raspberry Pi 4.0 running on a 1500MHz clock.
The reason for selecting these devices is to provide a speed
comparison against popular embedded DSP software
processors. Sine, cosine, and exponential functions are
approximated via software LUTs with 2048 values, and all
multiplications are done as integer multiplications (as opposed
to floating points). The smaller LUT and integer multiplication
is done to provide a best-case scenario for the software approach
when calculating chirplet samples. The calculation time itself is
measured by toggling a GPIO high, calculating 512 samples, and
then toggling the pin low. In addition, the switching time of the

pin itself is accounted for and subtracted from the final time to
provide an accurate measurement of the processing time needed
to output 512 chirplet samples.

The final results are shown in Table III. The calculation time
for the Teensy 4.0 and Raspberry Pi 4.0 is 15.41us and 60.8us,
respectively. Compared to the 415.74ns needed to generate the
same information, the parallel chirplet generator improves the
calculation time by 37 times compared to the Teensy 4.0 and
146 times compared to the Raspberry Pi 4.0.

TABLE III. DEVICE SPEED COMPARISON FOR CHIRPLET GENERATION

Device
Time to Calculate

Chirplet (us)

FPGA Implementation 0.416

Teensy 4.0 15.4

Raspberry Pi 4.0 60.8

This metric is specific to the FPGA implementation used for
the “Zynq UltraScale+ XCZU9EG-2FFVB1156 MPSoC”,
tighter pipelining to allow for increased clock speed, reduction
in LUT size to increase the clock speed, and increasing the
number of parallel chirplet generators are all options that
improve the calculation time taken by the FPGA hardware
implementation. The process of generating a chirplet is vital for
generating a reference to cross-correlate against and is
performed many times in the FCD algorithm, hence why it is
important to use hardware acceleration to generate this chirplet
as quickly as possible.

 While the cross-correlation cost function is not the
bottleneck for this system, keeping its performance in mind is
important. This part of the implementation shares the same
FPGA, and was evaluated using a 187.5 MHz clock. Using a
length of 512 samples, similar to the one used for the chirplet
generation, this module completes a center-point cross-
correlation in 23 clock cycles, or 122.667 ns, after the signal is
loaded. Both the timing analysis and implementation report was
generated using the full SoC architecture provided for the Zynq
UltraScale+ XCZU9EG-2FFVB1156 MPSoC, and are included
in Table IV. Similar to the chirplet generator, the LUTs, FFs,
BRAMs, DSPs, and BUFGs used are all in tolerable ranges (see
Table IV). The most used resources are DSPs, due to a large
number of parallel processing blocks.

TABLE IV. RESOURCE UTILIZATION REPORT FOR CROSS-CORRELATION

MODULE

Resource Available Utilization Utilization %

LUT 274080 11562 4.22%

FF 548160 8198 1.50%

BRAM 912 28.5 3.13%

DSP 2520 256 10.16%

BUFG 404 4 0.99%

 To compare the FPGA hardware implementation against a
software approach, the chirplet generator code is written in C

code for a Teensy 4.0 microcontroller running on a 600MHz
clock, and for a Raspberry Pi 4.0 running on a 1500MHz clock
with 512 samples. The final results are shown in Table V. The
calculation times for the Teensy 4.0 and Raspberry Pi 4.0 are
6.84 us and 32.41us, respectively. Compared to the 122.7ns
needed to generate the same information, the cross-correlation
module improves the calculation time by a factor of 56
compared to the Teensy 4.0, and a factor of 264 compared to the
Raspberry Pi 4.0.

TABLE V. DEVICE SPEED COMPARISON FOR CROSS-CORRELATION

MODULE

Device
Time to Calculate Cross-

Correlation (us)

FPGA Implementation 0.1227

Teensy 4.0 6.84

Raspberry Pi 4.0 32.41

VI. CONCLUSION

This paper has provided an architecture for hardware
acceleration of chirplet generation intended for use with the fast
chirplet decomposition (FCD) algorithm. The point of
generating a chirplet is to use the generated chirplet as a signal
to correlate against to characterize the component chirps within
a measured signal. By using this hardware-accelerated
architecture, chirplet data may be sent back to software within
the system on chip for cross-correlation, or the chirplet data may
be sent to another hardware block for correlation. In either case,
a large parallel data bus may be used to communicate between
the chirplet generator module and any other module (software or
hardware) that it will interface with. Using a large data bus
allows for data to be transferred quickly and lets the user take
advantage of the parallel nature of the hardware acceleration.
When interfacing back to the software, Xilinx supports AXI
DMA bus widths of up to 1024 bits, more than the required
amount for this hardware implementation. If desirable, this
design may be modified to increase the number of parallel
generators to take full advantage of the high DMA bus width.

Although this module has been designed as a hardware
acceleration tool for the FCD algorithm, other uses for chirplets

may find this module (or sections of this module) useful. For
example, the LoRa radio communication protocol has proven
that a chirp spread spectrum is useful for wireless
communication [9,10]. The chirplet generator presented in this
paper may be used to generate chirps for the transmission of the
chirp spread spectrum, or it may be implemented in the receiver
of a chirp spread-spectrum device. Because there is potential to
generate chirplets so quickly with this module, it would be
possible for the receiver to correlate against several different
chirplets in parallel as a type of rake receiver intended to be
ready to receive from several unique chirp spread sequences.

REFERENCES

[1] Y. Lu, R. Demirli, G. Cardoso and J. Saniie, "A successive parameter
estimation algorithm for chirplet signal decomposition," in IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol.
53, no. 11, pp. 2121-2131, November 2006, doi:
10.1109/TUFFC.2006.152.

[2] Y. Lu, E. Oruklu and J. Saniie, "Fast Chirplet Transform With FPGA-
Based Implementation," in IEEE Signal Processing Letters, vol. 15, pp.
577-580, 2008, doi: 10.1109/LSP.2008.2001816.

[3] P. M. Djuric and S. M. Kay, "Parameter estimation of chirp signals," in
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 38,
no. 12, pp. 2118-2126, Dec. 1990, doi: 10.1109/29.61538.

[4] Kralev, J. (2019). Design of floating-point arithmetic unit for FPGA with
Simulink®. IEEE EUROCON 2019 -18th International Conference on
Smart Technologies. https://doi.org/10.1109/eurocon.2019.8861860

[5] IEEE, “IEEE Standard 754-1985 for Binary Floating-Point Arithmetic”.
IEEE, 1987. Reprinted in SIGPLAN 22, 2, 9-25.

[6] Mixed-Signal and DSP Design Techniques, Engineering Staff of Analog
Devices Inc., printed by Analog Devices, 2000.

[7] Analog Devices. (2001, March 1). Multiply your sampling rate with time-
interleaved data converters. Multiply Your Sampling Rate with Time-
Interleaved Data Converters. Retrieved March 21, 2023, from
https://www-dev.cldnet.analog.com/cn/technical-articles/multiply-your-
sampling-rate-with-timeinterleaved-data-converters.html

[8] Mann, Steve & Haykin, Simon. (2002). The Chirplet Transform: A
Generalization of Gabor's Logon Transform. Vision Interface.

[9] P. D. Prasetyo Adi, Y. Wahyu and A. Kitagawa, "Analyzes of Chirps
Spread Spectrum of ES920LR LoRa 920 MHz," 2022 11th Electrical
Power, Electronics, Communications, Controls and Informatics Seminar
(EECCIS), Malang, Indonesia, 2022, pp. 139-144, doi:
10.1109/EECCIS54468.2022.9902922.

[10] A. A. Kherani and K. M. P. Maurya, "Improved Packet Detection in
LoRa-like Chirp Spread Spectrum Systems," 2019 IEEE International
Conference on Advanced Networks and Telecommunications Systems
(ANTS), Goa, India, 2019, pp. 1-4, doi:
10.1109/ANTS47819.2019.9118076.

