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Abstract— Ultrasonic Nondestructive Evaluation (NDE) has 

been extensively used to characterize the microstructure of metallic 

structures for early exposure of materials integrity. However, 

industrial NDE requires the processing, storage, and real-time 

transmission of large volumes of ultrasonic data. Therefore, it is 

indispensable to compress ultrasonic data with high fidelity. In this 

study, we explore the development of Unsupervised Learning (UL) 

based Neural Network (NN) models for massive ultrasonic data 

compression and an innovative multilayer perceptron residual 

autoencoder: Ultrasonic Residual Compressive Autoencoder 

(URCA), is introduced to compress ultrasonic data with high 

compression performance. This URCA can be fast-trained and 

utilizes the sparsity penalty with residual connection to optimize 

compression performance. UL-based NNs allow for memory-

efficient training and rapid online augmentation of the model. To 

examine the results, a high-performance ultrasonic signal 

acquisition system was assembled to automatically collect 

ultrasonic data from heat-treated 1,018 steel blocks for 

microstructure characterization. Compression performance is 

analyzed based on compression ratio, reconstruction accuracy and 

model training time. The reconstruction accuracy was measured 

using the Structural Similarity Index Measure (SSIM) and Peak 

Signal-to-Noise Ratio (PSNR). By training the URCA NN for a high 

reconstruction performance of 0.96 SSIM, we obtained 91.25% 

memory space-saving. For a higher compression performance of 

0.80 SSIM, we obtained 96.04% memory space-saving. 
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I. INTRODUCTION 

       Steel material microstructure characterization using ultrasonic 

nondestructive evaluation (NDE) has been broadly used for early 

exposure of structural and physical material integrity [1]. The 

ultrasonic microstructure scattering signals and signal attenuation 

can be used to estimate the grain size [2]. Because of the statistical 

variation in the scattered energy as a function of depth [2], the 

ultrasonic scattering signal is characterized for grain size estimation.  

However, industrial NDE requires high-performance processing and 

real-time transmission of massive ultrasonic data. Therefore, 

ultrasonic data compression with high fidelity is indispensable. In 

traditional algorithms for ultrasonic data compression, such as 

Discrete Wavelet Transform, Walsh-Hadamard Transform, and 

Discrete Cosine Transform, these methods can compress ultrasonic 

data with high accuracy [3]-[7]. Recently, machine learning 

methods are emerging in various ultrasonic applications to automate 

NDE inspection, such as material microstructure characterization, 

flaw detection, and data compression [8]-[11]. In machine learning, 

unsupervised learning (UL) learns principal latent information in 

unlabelled data with minimal human supervision [12]. Advanced 

UL methods include Principal Component Analysis (PCA), 

Independent Component Analysis (ICA), and Sparse Dictionary 

Learning (SDL) [13][14]. UL methods can compress ultrasonic data 

with high performance and allow for memory-efficient training and 

rapid online augmentation of the models by using stochastic training 

such as the incremental learning mechanism [14].  In this study, we 

explore the development of UL-based NNs for massive ultrasonic 

data compression and propose an innovative multilayer perceptron 

residual autoencoder: Ultrasonic Residual Compressive 

Autoencoder (URCA), to compress ultrasonic data with high 

performance. This URCA NN can be fast-trained and utilizes the 

sparsity penalty with residual connection to optimize compression 

performance. For performance comparison, we trained several UL 

models using the incremental learning method and analyzed the 

overall compression performance with this URCA NN. The 

compression performance is analyzed and compared based on 

memory space-saving, reconstruction accuracy, and training time. 

Memory space-saving indicates the reduction in memory storage 

size relative to the observed ultrasonic data and is measured as the 

difference between 1 and the reciprocal of the compression ratio. 

The compression ratio is calculated as the size of the measured 

ultrasonic data divided by the size of the compressed data. The 

reconstruction accuracy is measured by using the SSIM [15] and 

PSNR. The subsequent SSIM index is between 0 and 1, and a higher 

SSIM index represents better reconstruction. To examine the results, 

a high-performance ultrasonic NDE signal acquisition system was 

assembled to automatically collect data from heat-treated 1,018 steel 

blocks for microstructure characterization. 

      In this paper, Section II presents the intelligent ultrasonic NDE 

 

the system used to acquire ultrasonic microstructure scattering 

signals for data compression. Section III presents the URCA NN and 

UL models for ultrasonic data compression. The compression 

performance of the UL algorithms is analyzed and compared. 

Section IV concludes this paper. 

 

 

II. ULTRASONIC TESTING PLATFORM 

     The high-performance ultrasonic NDE signal acquisition system 

we built to obtain the ultrasonic data is shown in Figure 1. This data 

acquisition platform consists of a water tank for testing specimens. 

This water tank is mounted with two stepper motors to automate the 

ultrasonic data acquisition procedure. To guarantee good ultrasonic 

energy propagation, the specimen was immersed underwater to 

experiment. The broadband piezoelectric ultrasonic transducer with 

5MHz central frequency was used to acquire ultrasonic signals. In 
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addition, an ultrasonic pulser/receiver, Panametrics Model 5052PR, 

was used as the signal generator and echo receiver. To monitor the 

data acquisition procedure, an oscilloscope, Keysight MSOX2024A, 

was used for high-frequency signal synchronization from the 

pulser/receiver. In this study, we acquired a volumetric data cube 

with the size of 200×200×2400 from one heat-treated 1,018 steel 

block. This observed data cube was converted into a 2D data matrix 

for compression using the URCA NN and UL models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Ultrasonic NDE System for Data Acquisition 

 

 
 

 
 

III. ULTRASONIC DATA COMPRESSION USING UNSUPERVISED 

NEURAL NETWORKS 
 

       The volumetric ultrasonic data from one heat-treated 1,018 steel 

block was acquired for microstructure characterization. The data 

contains the microstructure scatting features of the specimen and is 

used to train the URCA NN and UL models for data compression. 

In the following three subsections, the URCA NN and UL models 

are introduced for ultrasonic data compression. For compression 

performance comparison, we have two compression targets: 1. high 

compression ratio with an SSIM of 0.8, which includes most 

ultrasonic microstructure scatting features; 2. high reconstruction 

accuracy with an SSIM of 0.96. The reconstruction accuracy is 

measured by using the SSIM and PSNR. The training was 

implemented on the Google Colab 26GB RAM Tesla T4 GPU.  
 

 

a)  Ultrasonic Residual Compressive Autoencoder (URCA) 
 

       URCA is a lightweight multilayer perceptron autoencoder [16] 

and can be fast-trained for memory-efficient learning and rapid 

online augmentation of the model. UL-based NNs such as URCA 

learn principal latent patterns of unlabeled data from an encoder to 

a decoder to reconstruct training data based on the compressed latent 

patterns. This URCA utilizes the sparsity penalty with residual 

connection [17] to optimize compression performance.  

 

      

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2. Ultrasonic Residual Compressive Autoencoder  
 

       Figure 2 shows the schematics of the URCA architecture. This 

NN is fully connected and consists of a 4-layer dense encoder 

followed by a 4-layer dense decoder architecture. To enhance 

compression performance, the LeakyReLu [17] activation and 

residual connection [17] are used to optimize this NN. The residual 

connection improves the reconstruction accuracy to accelerate the 

training implementation. In addition, the Adam [17] algorithm is 

applied to optimize the training procedure and requires little 

memory space for computationally efficient training. In this study, 

we trained URCA NN using 500 epochs with a batch size of 256. 

The objective function is measured by using the mean squared error.  

 
 

 
b)  Principal Component Analysis (PCA) 
 

     The PCA method aims to find principal latent patterns in high-

dimensional data and represent the data with fewer principal 

components (PC’s). These PC’s are trained by minimizing the mean 

squared error between the observed data and reconstructed data and 

maximizing the data variance in training. The first PC contains the 

maximal data variance and each succeeding PC has an incremental 

decreasing contribution to the total data variance. Every PC is 

orthogonal to each other. In this study, PCA is used to compress 

ultrasonic data by reducing redundant data information.  

     To further optimize computation and memory efficiency in 

training, we trained the Incremental-PCA to compress ultrasonic 

data using a mini-batch fashion. The Singular Value Decomposition 

(SVD) algorithm was applied to implement this training to find PC’s 

in ultrasonic data. Compared with PCA, the SVD is less prone to 

numerical noise because the covariance matrix does not need to be 

calculated. In addition,  

 
c)  Sparse Dictionary Learning (SDL) 
 

     The SDL method is used to find sparse latent patterns in 

ultrasonic data by training optimized base vectors. These base 

vectors form a dictionary which is learned in training. Compared 

with PCA, SDL allows more flexibility for learning sparse 

representations of ultrasonic data as the learned dictionary is not 

required to be orthogonal. In addition, to achieve efficient 
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compression on large datasets, we trained the SDL by dividing the 

ultrasonic data into small batches using the incremental learning 

mechanism. This stochastic training scales up well for large datasets 

and allows the model to dynamically adapt to compress new data for 

in-service ultrasonic NDE. In this study, we trained the SDL and 

Incremental-SDL to compress ultrasonic data into a few sparse 

components.  

        TABLE 1. PERFORMANCE COMPARISON FOR HIGH COMPRESSION RATIO 

                                                                    SSIM: 0.8 

 

 

TABLE 2. PERFORMANCE COMPARISON FOR HIGH RECONSTRUCTION 

ACCURACY 
SSIM: 0.96 

 

      Table I and Table II show the performance comparison by 

using UL models and the URCA NN to compress data for 

ultrasonic microstructure scattering signals. In Table I, for a 

higher compression performance of 0.80 SSIM, we obtained the 

highest 96.04% and the average 94.30% memory space saving by 

training the URCA NN and UL models respectively. In Table II, 

for a higher reconstruction performance of 0.96 SSIM, we 

obtained the highest 91.25% and the average 87.81% memory 

space saving by training the URCA NN and UL models 

respectively. The PCA outperforms other UL models in training 

time. The URCA NN achieves the highest compression ratio and 

reconstruction accuracy. Although URCA NN takes the longest 

time to train compared with other UL models, the training time is 

much faster compared with most state-of-art NNs, such as deep-

CNNs [17], and LSTM-autoencoder [16]. The training time 

includes the time to train the models and is measured in seconds.  

 
 

IV. CONCLUSION 
 

In this study, we explore the development of UL-based models 

and NNs with incremental learning for massive ultrasonic data 

compression. Several state-of-art UL models are trained and 

compared based on compression ratio (memory space saving), 

reconstruction accuracy, and training time. An innovative multilayer 

perceptron residual autoencoder: URCA, is introduced to compress 

ultrasonic data with high compression performance. This URCA can 

be fast-trained and utilizes the sparsity penalty with residual 

connection to optimize compression performance. UL-based NNs 

allow for memory-efficient training and rapid online augmentation 

of the model.  To examine the results, a high-performance ultrasonic 

signal acquisition system was assembled to automatically collect 

ultrasonic data from heat-treated 1,018 steel blocks for 

microstructure characterization. Compression performance is 

analyzed based on compression ratio, reconstruction accuracy, and 

model training time. The reconstruction accuracy was measured 

using the Structural Similarity Index Measure (SSIM) and Peak 

Signal-to-Noise Ratio (PSNR). By training the URCA NN for a high 

reconstruction performance of 0.96 SSIM, we obtained the highest 

91.25% memory space-saving. For a higher compression 

performance of 0.80 SSIM, we obtained the highest 96.04% 

memory space-saving. 
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