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Abstract— Flaw detection using the ultrasonic imaging technique 
has been widely used for Structural Health Monitoring (SHM). 
Ultrasonic testing has the advantages of one-sided measurement, 
high penetration depth, and inspection accuracy. Artificial 
intelligence (AI) such as Deep Learning (DL) methods can 
automate the inspection process with high reliability for imaging 
and SHM. Neural Networks (NNs) and DL methods can detect 
flaws using ultrasonic images with high accuracy but suffer 
extensive computational costs for training and deployment. In this 
study, we propose a lightweight transformer NN, UFDCTNet: 
Ultrasonic Flaw Detection Convolutional Transformer Neural 
Network (TNN),  optimized with data-efficient Convolutional NN 
(CNN) for flaw detection using ultrasonic imaging. TNN utilizes 
the self-attention network architecture that learns global 
representations and allows high parallelism in computation 
resulting in reduced training time. CNNs learn local 
representations with fewer parameters because of inherent spatial 
inductive bias. This UFDCTNet utilizes the advantages of CNNs to 
learn spatially local representations resulting in fewer model 
parameters for fast training. For performance analysis, we 
trained data-efficient TNN and CNN using ultrasonic images to 
detect flaws. To examine training results, NNs are trained with the 
USimgAIST dataset consisting of 7000 experimental B-scan 
images representing without-flaw and with-flaw cases. A pulsed 
laser ultrasonic scanning system was used to collect these B-scan 
images from 17 stainless steel specimen plates with various types 
of flaws and some plates without any damage. 

Keywords— Flaw Detection, Convolutional Optimization, Light-
weight Transformer Neural Networks, Data-Efficient Neural 
Networks, Ultrasonic Imaging, In-situation SHM 

 

I. INTRODUCTION 
 

Ultrasonic imaging for flaw detection has been extensively 
used for the Non-destructive Evaluation (NDE) of materials [1]. 
However, the high interfering noise associated with the flaw’s 
environment hampers the flaw detection performance [2]. 
Advanced ultrasonic signal processing methods have been applied 
to improve the flaw-to-clutter ratio [3][4]. Artificial intelligence 
(AI) such as DL methods are emerging in various industrial NDE 
applications and can automate the inspection process with high 
reliability for imaging and SHM [5]-[8]. 

In DL methods, NNs have been applied for ultrasonic NDE 
applications, such as material microstructure characterization, data 
compression, and flaw detection [9]-[12]. However, training and 

deploying NNs, such as deep-CNNs, with high accuracy require 
extensive computational resources and efforts to obtain efficient 
NN architecture [13]. Therefore, in this study, we introduce the 
utilization of data-efficient convolutional architectures, such as 
depthwise separable convolution, pointwise group convolution, and 
inverted residuals, to optimize this TNN training to find the 
optimal solution [13]. TNN utilizes the self-attention network 
architecture that learns global representations and allows high 
parallelism in computation resulting in reduced training time 
[14][15]. CNNs learn local representations with fewer parameters 
because of inherent spatial inductive bias [13]. Hence, we propose 
a lightweight TNN: UFDCTNet, which utilizes the advantages of 
CNNs to learn spatially local representations using ultrasonic 
images resulting in fewer model parameters for fast training. For 
performance analysis, we introduced the UFDTNet: Ultrasonic 
Flaw Detection TNN and the UFDCNN: Ultrasonic Flaw Detection 
CNN. The flaw detection performance is compared by training the 
UFDCTNet, UFDTNet, and UFDCNN for a similar number of 
model parameters to detect flaws using ultrasonic images. To 
examine training results, we trained NNs using the USimgAIST 
dataset [16] which includes 7000 experimental ultrasonic images of 
with-flaw and without-flaw cases. A pulsed laser ultrasonic 
scanning system was used to collect these ultrasonic images from 
17 stainless steel specimen plates with various types of flaws and 
some plates without any damage.  
      In this paper, Section II includes the USimgAIST dataset for 
training NNs to detect flaws. Section III includes the UFDCTNet, 
UFDTNet, and UFDCNN for flaw detection. The flaw detection 
performance is analyzed by training the NNs for a similar number 
of model parameters using ultrasonic images. Section IV concludes 
this paper.  
 
 

II.   ULTRASONIC USIMGAIST DATASET  
 
      Figure 1 presents the USimgAIST dataset which includes 7000 
experimental ultrasonic images (B-scan) of with-flaw and without-
flaw cases [16]. A pulsed laser ultrasonic scanning system was 
used to collect these ultrasonic images from 17 stainless steel 
specimen plates with various types of flaws and some plates 
without any damage. These stainless-steel plates are 3mm thick 
and include two types of defects. The slit defects have lengths l = 
3mm, 5mm, and 10mm. The drill hole defects have diameters φ = 
1mm, 3mm, and 5mm. In data acquisition, a pulsed laser is applied 
to the specimens from the ultrasonic NDE scanning system to 
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generate ultrasonic signals, and a contact transducer is attached to 
the specimens to acquire data for flaw detection [16]. A central 
area with the size of 100mm-by-100mm was created on the 
front/back sides of specimen plates for ultrasonic laser scanning. 
Ultrasonic B-scan images were collected in laser scanning and 
used to train NNs to learn features in ultrasonic signals to detect 
flaws. To enhance training performance, the acquired ultrasonic 
images were normalized with an image resolution of 224 by 224 to 
train NNs.      
 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1. USimgAIST Ultrasonic Images (a) Defective Cases,  
(b) Non-defective Cases 

 
III. FLAW DETECTION USING NEURAL NETWORKS 

 
      The following sections introduce the NNs: UFDCTNet, 
UFDTNet, and UFDCNN for flaw detection using ultrasonic B-
scan images from the USimgAIST dataset. The ultrasonic images 
were labeled as defective cases and non-defective cases to train 
NNs and we used 20 percent for the NNs’ testing. The flaw 
detection performance is compared by training the NNs for a 
similar number of model parameters based on training accuracy 
and testing accuracy. The NNs were trained with 100 epochs 
without any pre-training. The training was experimented on 
Google Colab 26GB RAM Tesla T4 GPU.   

 
 
A. Flaw Detection using UFDCTNet  
 

       In this study, we introduce a lightweight transformer NN, 
UFDCTNet, optimized with data-efficient convolutional NN for 
flaw detection using ultrasonic imaging. TNN utilizes the self-
attention network architecture that learns global representations 
and allows high parallelism in computation resulting in reduced 
training time. CNNs learn local representations with fewer 
parameters because of inherent spatial inductive bias. This 
UFDCTNet utilizes the advantages of CNNs to learn spatially 
local representations resulting in fewer model parameters for fast 
training. In addition, various data-efficient convolutional 
architectures, such as depthwise separable convolution, pointwise 
group convolution, and inverted residuals, were trained to 
optimize this lightweight TNN to find the optimal solution. 
       The architecture of the UFDCTNet is shown in Figure 2. This 
NN consists of optimized combinations of spatial convolution, 
inverted residual bottleneck, and convolutional transformer 

encoder to learn features in ultrasonic images followed by 
pointwise convolution and global average pooling [17] to detect 
flaws. The pointwise convolution uses the 1x1 convolution to 
reduce computational cost and the global average pooling to reduce 
feature dimensions to enhance training performance.  
 
 
 
 
 
 
 
 

                    
 
                       

Figure 2. UFDCTNet Architecture 
 
        The convolutional transformer layers were built using the 
transformer encoders [14] optimized with 3x3 spatial and 
pointwise convolutional layers to enhance training performance. In 
addition, the inverted residual blocks work as normal convolutional 
layers but include much fewer parameters [17]. Thus, this reduces 
the computational cost and the proneness of overfitting. In this 
study, this optimized convolutional TNN: UFDCTNet, was trained 
using ultrasonic images and achieved 98.96% training accuracy 
and 97.27% testing accuracy to detect flaws. 
 
 
B. Flaw Detection using UFDTNet 

 

       The TNN utilizes the self-attention network architecture that 
learns global representations and allows high parallelism in 
computation resulting in reduced training time. The UFDTNet 
consists of patch and position embeddings and five transformer 
encoder blocks to extract features in ultrasonic images. Next, the 
features are processed by pointwise convolution and global average 
pooling to detect flaws. In each transformer encoder, the multi-
head attention mechanism is used to reduce the computational cost 
to train NN in a data-efficient method. By applying this attention 
mechanism, the sequential operations and complexity per layer are 
reduced. In addition, the transformer encoder is optimized with 
layer normalization and position-wise fully connected feed-forward 
network to enhance training performance [14]. In this study, we 
trained the UFDTNet using ultrasonic images and achieved 94.26% 
training accuracy and 93.14% testing accuracy to detect flaws. 
 

 
 

C. Flaw Detection using UFDCNN 
 

       CNN can learn local representations with fewer parameters 
because of inherent spatial inductive bias. The UFDCNN is 
optimized with inverted residual blocks which use the depthwise 
separable convolution architecture as the MobileNet [18]. The 
depthwise separable convolution largely reduces the computational 
cost by minimizing the multiplication operations. And this data-
efficient architecture is achieved by dividing one full convolution 
into depthwise convolution and pointwise convolution [18]. In this 
study, the UFDCNN consists of four inverted residual blocks to 
extract features in ultrasonic images, then the features are 
processed by pointwise convolution and global average pooling to 
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detect flaws. By training the UFDCNN, we achieved 95.82% 
training accuracy and 94.27% testing accuracy to detect flaws.  
 

 
 
 
 
 
 
 
 
 
 
 

      
       Table 1 shows the performance analysis of using NNs to 
detect flaws with ultrasonic images from the USimgAIST dataset. 
By training NNs, we obtained the average accuracy of 96.35% and 
94.89% for training and testing respectively, to detect flaws using 
experimental B-scan images. We achieved the highest detection 
accuracy of 98.96% and 97.27% for training and testing using this 
convolutional optimized UFDCTNet to detect flaws. These NNs 
can be fast-trained and deployed with high accuracy for low 
latency and high-performance ultrasonic flaw detection imaging 
applications. 
 
 

IV. CONCLUSION 
 

 
 In this study, we developed convolutional optimized TNN for 

high-performance flaw detection using ultrasonic NDE imaging. 
TNN utilizes the self-attention network architecture that learns 
global representations and allows high parallelism in computation 
resulting in reduced training and execution time. CNNs learn local 
representations with fewer parameters because of inherent spatial 
inductive bias. This optimized TNN: UFDCTNet,  utilizes the 
advantages of CNNs to learn spatially local representations 
resulting in fewer model parameters for fast training and 
deployment. In addition, data-efficient convolutional architectures, 
such as depthwise separable convolution, pointwise group 
convolution, and inverted residuals, are trained to optimize this 
lightweight TNN to find the optimal solution. For performance 
comparison, several data-efficient NNs, UFDTNet and UFDCNN, 
are trained for a similar number of model parameters to detect 
flaws using ultrasonic images. To validate results, NNs are trained 
with the USimgAIST dataset consisting of 7000 real B-scan 
images representing without-flaw and with-flaw cases. By training 
these NNs, we obtained the average flaws detection accuracy of 
96.35% and 94.89% for training and testing respectively, and the 
highest detection accuracy of 98.96% and 97.27% for training and 
testing using this convolutional optimized UFDCTNet to detect 
flaws. Future works involve further optimizing this convolutional 
TNN to enhance the overall NDE performance. 
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TABLE 1. NNS PERFORMANCE COMPARISON USING ULTRASONIC 
USIMGAIST DATASET FOR FLAW DETECTION  

 

 
 

 
 

Model Training Accuracy Testing Accuracy

UFDTNet 94.26% 93.14%

UFDCNN 95.82% 94.27%

UFDCTNet 98.96% 97.27%
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