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Abstract—Safety in train platforms is a common concern in 

railway systems around the world. There are grave risks 
associated with the tracks and the crowds that often end up in 
injuries or deaths. Traditional approaches for ensuring safety in 
train transport networks rely on passive closed-circuit television 
(CCTV) monitorization that needs constant human attention. This 
paper proposes an AI-based alternative for detecting anomalies in 
surveillance videos, that is more efficient and cost-effective than 
traditional methods. Through Video Instance Segmentation (VIS), 
this work detects common risks such as overcrowding on the 
platform, people or objects standing on the edge of the platform, 
individuals or objects falling onto the tracks, the presence of 
firearms, and the presence of unattended baggage. The proposed 
algorithm combines state-of-the-art models like YOLOv8, 
ByteTrack, and Segment Anything Model (SAM) to classify, track, 
and segment object detections respectively. Additionally, this 
paper presents a custom-trained YOLOv8 model for gun 
detection. The results show that the system can successfully 
analyze video, create surveillance annotations, detect hazardous 
situations to alert authorities, and help prevent accidents and 
incidents on train platforms. 
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I. INTRODUCTION 
User safety and security on train station platforms present 

significant challenges globally, with risks including slips, 
negligence, and assaults leading to accidents and fatalities  [1] 
[2]. Despite the deployment of closed-circuit television (CCTV) 
for monitoring, their effectiveness is limited by the passive 
nature of surveillance and the overwhelming volume of video 
data for human operators to analyze, highlighting the 
inefficiency of current systems [3]. This necessitates the 
development of more efficient, automated surveillance solutions 
that leverage artificial intelligence (AI) techniques to enhance 
safety by detecting anomalies quickly and accurately. The paper 
aims to introduce an AI-based video processing algorithm 
focusing on video instance segmentation (VIS) to extract 
actionable insights for real-time response, aiming to mitigate 
common hazards and improve overall safety on train platforms. 

II. OBJECTIVES 
The paper aims to develop software for extracting key 

information from train platform surveillance footage to enhance 
safety by identifying risks such as overcrowding, individuals or 
objects near edges, falls onto tracks, firearm possession, and 
unattended baggage. It seeks to provide actionable insights for 
integration into an advanced AI-based surveillance system, 
improving station personnel's response to incidents. 
Additionally, the paper focuses on achieving VIS including 
object classification, segmentation, and tracking, thus 
facilitating comprehensive video analysis. 

III. VIDEO INSTANCE SEGMENTATION APPROACH 
Video Instance Segmentation (VIS) extends the problem of 

instance segmentation from still images to videos, incorporating 
simultaneous classification, segmentation, and tracking of 
objects within video frames. This introduces the added 
complexity of associating data across frames. VIS offers the 
advantage of a more detailed scene understanding, allowing for 
precise object localization and improved management of object 
occlusion [4]. Building upon foundational work such as [5], 
which achieved breakthroughs in instance segmentation for still 
images, various methodologies have been developed to bridge 
the gap for video [6][7]. However, the approach of this paper 
distinguishes itself from others. This paper's strategy merges the 
capabilities of leading pre-trained models: You Only Look Once 
version 8 (YOLOv8) [8] for object detection, Segment Anything 
Model (SAM) [9] for instance segmentation, and ByteTrack 
[10] for instance tracking. As depicted in Fig 1, the process 
involves analyzing the video on a frame-by-frame basis, 
utilizing YOLOv8 to identify objects and their bounding boxes. 
These boxes then serve as inputs for ByteTrack to assign 
tracking identifiers, and for SAM to create pixel-level masks, 
thereby addressing the three core tasks of VIS. 

 

 
Fig 1. Video Instance Segmentation (VIS) Model Approach 



IV. MODEL DESCRIPTION 
This chapter focuses on describing the models that make up 

the video instance segmentation algorithm proposed in this 
paper. 

A. YOLOv8 
YOLOv8, created by Ultralytics, is the eighth iteration of the 

popular YOLO single-stage object detector architecture. It 
introduces numerous improvements compared to the earlier 
versions and despite not having a published paper yet, it is 
considered the new state-of-the-art object detector [8]. YOLOv8 
will be in charge of generating bounding boxes around objects 
of interest to pass them to further stages of the model and 
complete the video instance segmentation task. The choice of 
this particular model resides under the assumption that, given its 
results, it would provide the best performance in the task. This 
version is based on its predecessors, similar to YOLOv5 [8], it 
keeps the backbone, neck, and head structure. However, it 
introduces modifications that significantly improve efficiency 
and performance [8]. Changes in the backbone include the 
substitution of the Cross Stage Partial (CSP) layers by a new 
type of module named C2f. This module is a cross-stage partial 
bottleneck with two convolutions [8] that combine high-level 
features with contextual information. Another significant 
change takes place in the head, which is now decoupled so each 
branch (bounding box, class probabilities, and confidence 
scores) can focus on its specific task. Additionally, the model no 
longer uses fixed-size anchor boxes. This anchor-free detection 
speeds up the following non-maxima suppression (NMS) stage 
[11].  

B. ByteTrack 
ByteTrack is a state-of-the-art multi-object tracker that 

proposes a new association method that achieves better 
performance than older techniques for estimating bounding 
boxes and identities of objects in videos [10]. It receives the 
bounding box detections from YOLOv8 and uses them to 
generate consistent tracker IDs for objects throughout all video 
frames.  Most Multi-Object Tracking (MOT) methods only use 
detection boxes with high-confidence scores as the input for data 
association. Those methods filter out low-confidence detection 
boxes because they consider they are not accurate enough and 
contain too much background, which can harm the overall 
performance. Nevertheless, the ByteTrack algorithm chooses to 
use almost every detection box, including low-confidence score 
ones, as they often represent occluded objects whose trajectories 
would otherwise get lost [10]. The process followed by the 
“Byte” association method is the following. After a previous 
detection stage, the bounding box detections are arranged using 
fixed threshold values. High-confidence score detections and 
low-confidence score detections are kept for future steps while 
backgrounds are discarded at that very moment. The algorithm 
then predicts new locations of tracks using a Kalman filter. Next 
comes the association process, which takes place in two steps. 
In the first step, the high-confidence detections are associated 
with the current tracks using IoU and cosine similarity between 
the detections and the track predictions. After this step, the high-
confidence detections and the tracks that remain unassociated 
are left for the second association step. In the second association 
step, the low-confidence detections are associated with the 

remaining tracks, this time attending only to IoU criteria. 
Finally, the unmatched tracks are deleted and new tracks are 
initialized using the unmatched remaining detections. 

C. Segment Anything Model (SAM) 
The Segment Anything Model (SAM), created by Meta AI, 

is a promptable image segmentation model that can generate 
pixel-level masks for virtually any object contained in an image 
[9]. SAM is one of the three components of the Segment 
Anything (SA) project, a new initiative that aims to create a 
foundation for image segmentation that entails a segmentation 
model, a large dataset for image segmentation, and a data 
engine. In the context of this work, SAM is responsible for 
generating the segmentation masks given the detections from 
YOLOv8 to achieve the complete video instance segmentation 
goals. The rationale behind the choice of this model relies on the 
fact that traditional approaches require a lot of effort for training 
data collection and manual annotation. Other segmentation 
models must be trained extensively on specific data to only do 
one task and they require re-training when changing the dataset. 
SAM can be divided into three main components: the image 
encoder, the prompt encoder, and the mask decoder. 

The image encoder is the first stage of the model. It is a 
version of the MAE pre-trained Vision Transformer [12], which 
has been adapted for high-resolution inputs. This choice is 
motivated by scalability and accessibility to pre-training. The 
image encoder gets fed the input image and generates an image 
embedding that is used as the basic element necessary for later 
segmentation. The next part is the prompt encoder which allows 
users to specify the locations for the desired segmentation using 
sparse (points, boxes, text) and dense (rough masks) prompts. 
Point and box prompts are represented by positional encodings 
and summed with the image embeddings, text prompts are 
encoded with CLIP [13], and mask prompts are embedded using 
convolutions and summed with the image embeddings.  

Finally, the last stage of SAM is the mask decoder, which 
outputs the final segmented image. It maps the image 
embeddings from the image encoder with the prompt 
embeddings from the prompt encoder. The architecture of the 
mask decoder is based on a Transformer decoder block followed 
by a prediction head that uses self-attention mechanisms to 
update the embeddings. The final computation of the mask is 
done by a dynamic linear classifier. 

V. SURVEILLANCE AND HAZARD DETECTION SYSTEM 

A. Custom-trained YOLOv8 for Firearm Detection 
This project aimed to enhance surveillance through firearm 

detection using a custom-trained YOLOv8 model. Due to the 
absence of firearm classification in the COCO dataset’s pre-
trained YOLOv8 model, we compiled a custom dataset of 2228 
images, combining original and augmented images to enhance 
robustness and minimize false positives.  

Focused on gun detection, the dataset underwent 
preprocessing and augmentation (horizontal flips, ±15° shears, 
and resizing), resulting in diverse training, validation, and 
testing splits (Table I). The model, trained over 100 epochs with 
Stochastic Gradient Descent, applied regularization techniques 
(Blur, Median Blur, Grayscale, CLAHE) to reduce noise 



sensitivity and improve accuracy. The training process showed 
a consistent reduction in loss and stabilization in precision, 
recall, and mean average precision metrics (Fig 2).  

The confusion matrix revealed an 86% accuracy in gun 
predictions. The noted 100% false positive rate stems not from 
a deficiency in the model but from the automatic inclusion of a 
background class in the matrix generation, despite the model's 
design does not predict a “background” label in the absence of 
other class detections (Fig 3). The evaluation demonstrated high 
precision for low to moderate recall values and a consistent F1 
score for a wide range of confidence thresholds (Fig 4), 
indicating the model's effectiveness in firearm detection. The 
final model exhibited a mean average precision of 0.928 for IoU 
thresholds above 50% (Table II). 

TABLE I.  DATA SPLITS  IN FIREARM DATASET 

 Training Validation Testing 

Before Augmentation 70 % 20 % 10 % 

After Augmentation 87 % 8 % 5 % 

 

 
Fig 2. Custom YOLOv8 Training Graphs 

TABLE II.  CUSTOM YOLOV8 MODEL RESULTS 

Metric Value 

Layers 268 

Parameters 68,124,531 

Gradients 0 

GFLOPs 257.4 

Class All 

Images 170 

Instances 167 

Precision 0.909 

Recall 0.874 

mAP50 0.928 

mAP50-95 0.556 

 
Fig 3. Custom YOLOv8 Confusion Matrix 

 
Fig 4. Custom YOLOv8 Precision-Recall (left) and F1 Score (right) Curves 

B. Utility Functions 
This section describes the utility functions developed to 

manage processes in the VIS algorithm. 

The integration of ByteTrack with YOLOv8 for object 
tracking requires manual matching of detections to track objects 
due to model incompatibilities. This process involves three main 
steps: converting YOLOv8 detections to a format compatible 
with ByteTrack, preparing ByteTrack's output for subsequent 
matching, and then pairing detections with tracks based on the 
highest Intersection over Union (IoU) to ensure precise tracking. 
These steps use NumPy arrays for efficient data handling, with 
methodologies grounded in resources [14], [15] and [16]. 

Counting objects within predefined zones is vital for hazard 
detection. This involves assessing whether the midpoint of a 
detection falls within a zone, using Shapely [17] for spatial 
analysis, and updating object counts within these zones. A 
binary mask is employed to track whether detections are inside 
the zone, facilitating accurate monitoring and response to 
potential hazards. 

The segmentation utility applies segmentation masks to 
video frames, enhancing visual outputs. It adjusts mask colors 
and transparency to blend segmentation overlays with video 
frames seamlessly. This function's process upon techniques 
discussed in [18]. 



Hazard detection utilities leverage the outputs from the VIS 
algorithm to identify potential safety threats within the 
monitored environment. These utilities encompass a series of 
processes designed to monitor critical aspects such as 
overcrowding in specific zones (like platforms), the presence of 
individuals or objects in critical or restricted areas (such as 
platform edges or tracks), the detection of firearms, and the 
identification of unattended baggage. For overcrowding, the 
system compares the current occupancy against a predefined 
maximum capacity, generating alerts if exceeded. In critical 
zones, it checks for the presence of persons or items that 
shouldn't be there, prioritizing alerts for human presence. The 
firearm detection process links detected weapons with nearby 
individuals, calculating spatial overlaps to identify potential 
suspects. Lastly, for unattended baggage, it assesses the 
proximity of people to bags, flagging any items without nearby 
owners. 

C. VIS Surveillance and Hazard Detection Algorithm 
The VIS algorithm for surveillance and hazard detection 

utilizes a combination of models and utility functions to monitor 
train platforms, identifying hazardous situations as illustrated in 
Fig 5. Initially, the algorithm sets up video input and output 
through OpenCV, capturing essential details like frame 
dimensions and rate, and prepares for video creation with an 
MP4 codec. Annotation tools for zones and detections are then 
prepared. Zones—train tracks, the platform, and its edge—are 
defined with polygons to count and annotate people's presence. 
Bounding box annotators for people, weapons, and baggage are 
established, along with a dictionary mapping class names to 
detections for clear labeling. Model loading follows, with pre-
trained and custom-trained YOLOv8x models for detecting 
people, baggage, and guns. ByteTrack is utilized for tracking 
people, optimized for precision, while the SAM model is 
employed for segmentation, enhancing visual output on a GPU 
configuration. In the video analysis phase, the algorithm 
processes frames to detect, track, and segment objects. 
YOLOv8x models identify and sort people, baggage, and 
weapons, filtering by confidence. ByteTrack updates tracking 
IDs for people detections, and SAM generates segmentation 
masks, adding depth to the analysis. Finally, segmentation 
masks are overlaid, and detections are annotated with labels 
including class names, confidence levels, and tracking IDs. The 
algorithm assesses hazards like overcrowding, unauthorized 
entries, firearm presence, and unattended baggage, applying 
alert messages on frames as necessary. Each frame, once 
analyzed and annotated, contributes to the output video. 

VI. RESULTS AND DISCUSSION 

A. Results 
This section shows the results obtained by the VIS 

surveillance and hazard detection system demonstrating how it 
analyzes and detects risks when posed with common safety and 
security hazardous situations that can occur on a train platform. 
The system consists of a combination of state-of-the-art pre-
trained models and a custom-trained model whose performances 
are well-known or have been discussed in previous sections. 

  
Fig 5. VIS Surveillance and Hazard Detection Algorithm Flowchart 

Therefore, the delivery of results focuses on demonstrating real-
case scenarios through demos. The first demo handles a video of 
a train platform during normal operation. The video captures the 
moment a train arrives at the station and the passengers get in 
and out of the train. As seen in the frame sequence shown in Fig 
6, the system achieves the object detection, segmentation, and 
tracking objectives described for the VIS problem, focusing on 
people detections. Each detected individual receives a very 
precise segmentation mask and a tracker ID that sticks with them 
throughout the whole video. There are occasional frames in 
which one detection loses the tracker ID, but it is recovered 
shortly after.  Moving on to the video analysis capabilities, the 
system correctly filters and counts the person detections for the 
platform, platform edge, and train tracks. Different alert 
messages pop up when the system identifies risks. For instance, 
the overcrowding alert is triggered when more than 5 people 
stand on the platform. The system also alerts when someone 
steps on the edge. On the other hand, people detections in the 
tracks zone are not considered because the train is at the station. 
Another demo, Fig 7, recreates the situation of a person pacing 
on the edge of the platform for an extended period. In this case, 
the system alerts of that critical detection, specifying the tracker 
ID of the subject. Receiving frequent alerts of this nature all 



referred to the same tracker ID is valuable information that can 
be leveraged by the authorities to intervene.  To put the system's 
capabilities to the test, the demo in Fig 8 simulates the situation 
where an individual leaves an unattended backpack behind. The 
sequence shows that while the backpack is being held by the 
individual, there is no alert message. It is when the individual 
steps away from the backpack that the alarm is triggered. 

Finally, to try out the custom-trained YOLOv8x model for 
gun detection, the demo in Fig 9 recreates the event of a suspect 
drawing a gun. The results show that the system is capable of 
detecting the presence of a gun and sending an alert message 
with the tracker ID of the suspects involved (in this case only 
one). Unfortunately, this demo could not be carried out at a real 
train station for safety reasons and lack of authorization. 
Similarly, the event of objects or people falling onto the tracks 
could not be recreated either. However, the detection of those 
situations uses the same functions (although with different 
parameters) as in Fig 7, which was tested correctly. 

B. Discussion 
The demonstration results present a functional system that 

accurately detects, tracks, and segments person detections while 
analyzing potential risks and alerting when a hazard is identified. 
However, during the development of the system, there have been 
challenges that are worth commenting on in this section. 

The first comment is regarding the decision to display alert 
messages on the processed frame when an event is triggered. To 
deliver the results, this option was more visual than, for 
example, printing a message on the terminal. Besides, this paper 
focuses on extracting insights that can later be fed downstream 
to a more complex system. Hence, showing the messages on the 
frame is sufficient to test that the system works as intended. 
Needless to say, in the scope of a more complex application, the 
surveillance system could interact with a database log and send 
messages to the authorities, who can receive them on their 
devices. Having cleared that out, let us focus on the challenges 
that the system may encounter, and that can undermine its 
performance. One crucial factor is the camera's location and 
orientation. It needs to be positioned at a height with the correct 
tilt angle to provide a top-down view that allows seeing the 
extent of the platform and tracks. It is key to consider the 
alignment of the camera's axis with the direction of the tracks. 
Rather than having a complete alignment, the projection of the 
camera's axis onto the ground plane (where people stand) shall 
be slightly tilted. This avoids occlusion between the people 
standing on the platform and helps with weapon and unattended 
baggage detection. Of course, occlusion can also happen in the 
direction perpendicular to the tracks, but since the width of the 
platform is significantly shorter than its length, occlusion in this 
direction is less aggravating. Additionally, experience has 
shown that the framing of the area under surveillance shall show 
the whole body of the detections. The detection filtering by zone 
is done by assessing the top or bottom middle point of the 
detection's bounding box. Given the top-down angle of the 
camera, it would be best to use the top middle point as in Fig 6. 
However, with tilted camera angles that show the extension of 
the platform horizontally like in Fig 7 or Fig 8, it is better to use 
the bottom middle point to asses where the people are stepping. 
Therefore, it is recommended to use the top middle point only 

when the camera is aligned with the tracks or at very zenith 
angles. Considering the above, the best camera location would 
be at an almost zenith angle and slightly tilted to show the 
horizontal extension of the tracks and platform. Moreover, if the 
resources allow it, it would be ideal to have two cameras, one 
with a zenith-side view of the platform and one with a front view 
of the platform. The first would focus on supervising the zones 
and the second on detecting unattended packages and weapons. 
Another worth noting aspect is the performance of the gun 
detection model. While the validation results denote a fairly 
good model, the testing demos show excessive false negatives 
that prevent a good tracking of the firearm. After analysis, it was 
concluded that most false positives happen when the gun is held 
at odd angles and not pointed. This suggests a bias in the training 
and validation datasets, that do not include enough sample 
images with atypical gun positions and orientations. 

Finally, one big issue of the system is its feasibility of use in 
real-time. The limiting factor is the approach toward 
segmentation. SAM creates very detailed segmentation masks 
of virtually any object without the need for a custom-trained 
segmentation model. That and its ease of use with sparse 
prompts made it an attractive choice when thinking about the 
VIS task. However, according to this work's experience, the 
issue with SAM is the time spent encoding the image frames and 
generating the embeddings. That process is the most time-
consuming of the whole algorithm and it needs to be repeated in 
every frame for the model to work correctly. That translates into 
having to wait around 15 minutes to process a 15 seconds long 
video. Of course, this depends on the hardware, but it is too 
much time and inefficiency regardless. SAM is still a very recent 
model and its feasibility to run in real-time is being discussed 
currently in the issues tab of the Segment Anything project 
GitHub [19]. Having said that, if we exclude the segmentation 
part, the video processing times match the duration of the video, 
hence real-time processing would be feasible. Further 
supporting this, our related research using Nvidia Jetson Orin 
Nano achieved a framerate of 22 FPS. This configuration, which 
utilized 75% of GPU capacity and 25% of CPU, had an 
inference time of 28 ms and a total power consumption of 8300 
mW [20]. These results highlight the potential for real-time 
operation with appropriate hardware and more efficient 
segmentation models. 

 
Fig 6. System Demo: Normal Platform Operation 



 

Fig 7. System Demo: Person Pacing on Platform Edge 

 

Fig 8. System Demo: Unattended baggage 

 
 
Fig 9. System Demo: Gun Detection 
 

VII. CONCLUSIONS 
This work presents a Video Instance Segmentation (VIS) 

algorithm for surveillance and hazard detection in train 
platforms. The algorithm combines three state-of-the-art models 
(YOLOv8x, ByteTrack, and SAM) to achieve classification, 
segmentation, and tracking of detected objects. The system 
focuses on detecting common risks that take place in train 
stations such as overcrowding on the platform, standing people 
or objects on the edge of the platform, fallen people or objects 
on the tracks, the presence of firearms, and the presence of 
unattended baggage. The results show that the system can 
successfully analyze video, create surveillance annotations and 
detect those hazardous situations to alert authorities and help in 
preventing accidents and incidents in train platforms. The 

algorithm in this work aims to collect insights that can then be 
fed downstream into a more complicated system. The station 
employees, including monitoring operators, security officials, 
and train drivers, may react to incidents and take the appropriate 
actions to respond to safety and security hazards using the 
analyzed video data. As a result, this paper can be viewed as part 
of a larger attempt to realize a more complicated AI-based 
surveillance system for railway station safety. 
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