

AI-Based Security Surveillance and Hazard Detection
for Train Platform Safety

Alvaro Aparicio Serna, Xinrui Yu and Jafar Saniie
Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu/)

Department of Electrical and Computer Engineering
Illinois Institute of Technology, Chicago IL, U.S.A

Abstract—Safety in train platforms is a common concern in

railway systems around the world. There are grave risks
associated with the tracks and the crowds that often end up in
injuries or deaths. Traditional approaches for ensuring safety in
train transport networks rely on passive closed-circuit television
(CCTV) monitorization that needs constant human attention. This
paper proposes an AI-based alternative for detecting anomalies in
surveillance videos, that is more efficient and cost-effective than
traditional methods. Through Video Instance Segmentation (VIS),
this work detects common risks such as overcrowding on the
platform, people or objects standing on the edge of the platform,
individuals or objects falling onto the tracks, the presence of
firearms, and the presence of unattended baggage. The proposed
algorithm combines state-of-the-art models like YOLOv8,
ByteTrack, and Segment Anything Model (SAM) to classify, track,
and segment object detections respectively. Additionally, this
paper presents a custom-trained YOLOv8 model for gun
detection. The results show that the system can successfully
analyze video, create surveillance annotations, detect hazardous
situations to alert authorities, and help prevent accidents and
incidents on train platforms.

Keywords—Railway Station, Passenger Safety, Surveillance
Monitoring, Computer Vision, Artificial Intelligence

I. INTRODUCTION
User safety and security on train station platforms present

significant challenges globally, with risks including slips,
negligence, and assaults leading to accidents and fatalities [1]
[2]. Despite the deployment of closed-circuit television (CCTV)
for monitoring, their effectiveness is limited by the passive
nature of surveillance and the overwhelming volume of video
data for human operators to analyze, highlighting the
inefficiency of current systems [3]. This necessitates the
development of more efficient, automated surveillance solutions
that leverage artificial intelligence (AI) techniques to enhance
safety by detecting anomalies quickly and accurately. The paper
aims to introduce an AI-based video processing algorithm
focusing on video instance segmentation (VIS) to extract
actionable insights for real-time response, aiming to mitigate
common hazards and improve overall safety on train platforms.

II. OBJECTIVES
The paper aims to develop software for extracting key

information from train platform surveillance footage to enhance
safety by identifying risks such as overcrowding, individuals or
objects near edges, falls onto tracks, firearm possession, and
unattended baggage. It seeks to provide actionable insights for
integration into an advanced AI-based surveillance system,
improving station personnel's response to incidents.
Additionally, the paper focuses on achieving VIS including
object classification, segmentation, and tracking, thus
facilitating comprehensive video analysis.

III. VIDEO INSTANCE SEGMENTATION APPROACH
Video Instance Segmentation (VIS) extends the problem of

instance segmentation from still images to videos, incorporating
simultaneous classification, segmentation, and tracking of
objects within video frames. This introduces the added
complexity of associating data across frames. VIS offers the
advantage of a more detailed scene understanding, allowing for
precise object localization and improved management of object
occlusion [4]. Building upon foundational work such as [5],
which achieved breakthroughs in instance segmentation for still
images, various methodologies have been developed to bridge
the gap for video [6][7]. However, the approach of this paper
distinguishes itself from others. This paper's strategy merges the
capabilities of leading pre-trained models: You Only Look Once
version 8 (YOLOv8) [8] for object detection, Segment Anything
Model (SAM) [9] for instance segmentation, and ByteTrack
[10] for instance tracking. As depicted in Fig 1, the process
involves analyzing the video on a frame-by-frame basis,
utilizing YOLOv8 to identify objects and their bounding boxes.
These boxes then serve as inputs for ByteTrack to assign
tracking identifiers, and for SAM to create pixel-level masks,
thereby addressing the three core tasks of VIS.

Fig 1. Video Instance Segmentation (VIS) Model Approach

IV. MODEL DESCRIPTION
This chapter focuses on describing the models that make up

the video instance segmentation algorithm proposed in this
paper.

A. YOLOv8
YOLOv8, created by Ultralytics, is the eighth iteration of the

popular YOLO single-stage object detector architecture. It
introduces numerous improvements compared to the earlier
versions and despite not having a published paper yet, it is
considered the new state-of-the-art object detector [8]. YOLOv8
will be in charge of generating bounding boxes around objects
of interest to pass them to further stages of the model and
complete the video instance segmentation task. The choice of
this particular model resides under the assumption that, given its
results, it would provide the best performance in the task. This
version is based on its predecessors, similar to YOLOv5 [8], it
keeps the backbone, neck, and head structure. However, it
introduces modifications that significantly improve efficiency
and performance [8]. Changes in the backbone include the
substitution of the Cross Stage Partial (CSP) layers by a new
type of module named C2f. This module is a cross-stage partial
bottleneck with two convolutions [8] that combine high-level
features with contextual information. Another significant
change takes place in the head, which is now decoupled so each
branch (bounding box, class probabilities, and confidence
scores) can focus on its specific task. Additionally, the model no
longer uses fixed-size anchor boxes. This anchor-free detection
speeds up the following non-maxima suppression (NMS) stage
[11].

B. ByteTrack
ByteTrack is a state-of-the-art multi-object tracker that

proposes a new association method that achieves better
performance than older techniques for estimating bounding
boxes and identities of objects in videos [10]. It receives the
bounding box detections from YOLOv8 and uses them to
generate consistent tracker IDs for objects throughout all video
frames. Most Multi-Object Tracking (MOT) methods only use
detection boxes with high-confidence scores as the input for data
association. Those methods filter out low-confidence detection
boxes because they consider they are not accurate enough and
contain too much background, which can harm the overall
performance. Nevertheless, the ByteTrack algorithm chooses to
use almost every detection box, including low-confidence score
ones, as they often represent occluded objects whose trajectories
would otherwise get lost [10]. The process followed by the
“Byte” association method is the following. After a previous
detection stage, the bounding box detections are arranged using
fixed threshold values. High-confidence score detections and
low-confidence score detections are kept for future steps while
backgrounds are discarded at that very moment. The algorithm
then predicts new locations of tracks using a Kalman filter. Next
comes the association process, which takes place in two steps.
In the first step, the high-confidence detections are associated
with the current tracks using IoU and cosine similarity between
the detections and the track predictions. After this step, the high-
confidence detections and the tracks that remain unassociated
are left for the second association step. In the second association
step, the low-confidence detections are associated with the

remaining tracks, this time attending only to IoU criteria.
Finally, the unmatched tracks are deleted and new tracks are
initialized using the unmatched remaining detections.

C. Segment Anything Model (SAM)
The Segment Anything Model (SAM), created by Meta AI,

is a promptable image segmentation model that can generate
pixel-level masks for virtually any object contained in an image
[9]. SAM is one of the three components of the Segment
Anything (SA) project, a new initiative that aims to create a
foundation for image segmentation that entails a segmentation
model, a large dataset for image segmentation, and a data
engine. In the context of this work, SAM is responsible for
generating the segmentation masks given the detections from
YOLOv8 to achieve the complete video instance segmentation
goals. The rationale behind the choice of this model relies on the
fact that traditional approaches require a lot of effort for training
data collection and manual annotation. Other segmentation
models must be trained extensively on specific data to only do
one task and they require re-training when changing the dataset.
SAM can be divided into three main components: the image
encoder, the prompt encoder, and the mask decoder.

The image encoder is the first stage of the model. It is a
version of the MAE pre-trained Vision Transformer [12], which
has been adapted for high-resolution inputs. This choice is
motivated by scalability and accessibility to pre-training. The
image encoder gets fed the input image and generates an image
embedding that is used as the basic element necessary for later
segmentation. The next part is the prompt encoder which allows
users to specify the locations for the desired segmentation using
sparse (points, boxes, text) and dense (rough masks) prompts.
Point and box prompts are represented by positional encodings
and summed with the image embeddings, text prompts are
encoded with CLIP [13], and mask prompts are embedded using
convolutions and summed with the image embeddings.

Finally, the last stage of SAM is the mask decoder, which
outputs the final segmented image. It maps the image
embeddings from the image encoder with the prompt
embeddings from the prompt encoder. The architecture of the
mask decoder is based on a Transformer decoder block followed
by a prediction head that uses self-attention mechanisms to
update the embeddings. The final computation of the mask is
done by a dynamic linear classifier.

V. SURVEILLANCE AND HAZARD DETECTION SYSTEM

A. Custom-trained YOLOv8 for Firearm Detection
This project aimed to enhance surveillance through firearm

detection using a custom-trained YOLOv8 model. Due to the
absence of firearm classification in the COCO dataset’s pre-
trained YOLOv8 model, we compiled a custom dataset of 2228
images, combining original and augmented images to enhance
robustness and minimize false positives.

Focused on gun detection, the dataset underwent
preprocessing and augmentation (horizontal flips, ±15° shears,
and resizing), resulting in diverse training, validation, and
testing splits (Table I). The model, trained over 100 epochs with
Stochastic Gradient Descent, applied regularization techniques
(Blur, Median Blur, Grayscale, CLAHE) to reduce noise

sensitivity and improve accuracy. The training process showed
a consistent reduction in loss and stabilization in precision,
recall, and mean average precision metrics (Fig 2).

The confusion matrix revealed an 86% accuracy in gun
predictions. The noted 100% false positive rate stems not from
a deficiency in the model but from the automatic inclusion of a
background class in the matrix generation, despite the model's
design does not predict a “background” label in the absence of
other class detections (Fig 3). The evaluation demonstrated high
precision for low to moderate recall values and a consistent F1
score for a wide range of confidence thresholds (Fig 4),
indicating the model's effectiveness in firearm detection. The
final model exhibited a mean average precision of 0.928 for IoU
thresholds above 50% (Table II).

TABLE I. DATA SPLITS IN FIREARM DATASET

 Training Validation Testing

Before Augmentation 70 % 20 % 10 %

After Augmentation 87 % 8 % 5 %

Fig 2. Custom YOLOv8 Training Graphs

TABLE II. CUSTOM YOLOV8 MODEL RESULTS

Metric Value

Layers 268

Parameters 68,124,531

Gradients 0

GFLOPs 257.4

Class All

Images 170

Instances 167

Precision 0.909

Recall 0.874

mAP50 0.928

mAP50-95 0.556

Fig 3. Custom YOLOv8 Confusion Matrix

Fig 4. Custom YOLOv8 Precision-Recall (left) and F1 Score (right) Curves

B. Utility Functions
This section describes the utility functions developed to

manage processes in the VIS algorithm.

The integration of ByteTrack with YOLOv8 for object
tracking requires manual matching of detections to track objects
due to model incompatibilities. This process involves three main
steps: converting YOLOv8 detections to a format compatible
with ByteTrack, preparing ByteTrack's output for subsequent
matching, and then pairing detections with tracks based on the
highest Intersection over Union (IoU) to ensure precise tracking.
These steps use NumPy arrays for efficient data handling, with
methodologies grounded in resources [14], [15] and [16].

Counting objects within predefined zones is vital for hazard
detection. This involves assessing whether the midpoint of a
detection falls within a zone, using Shapely [17] for spatial
analysis, and updating object counts within these zones. A
binary mask is employed to track whether detections are inside
the zone, facilitating accurate monitoring and response to
potential hazards.

The segmentation utility applies segmentation masks to
video frames, enhancing visual outputs. It adjusts mask colors
and transparency to blend segmentation overlays with video
frames seamlessly. This function's process upon techniques
discussed in [18].

Hazard detection utilities leverage the outputs from the VIS
algorithm to identify potential safety threats within the
monitored environment. These utilities encompass a series of
processes designed to monitor critical aspects such as
overcrowding in specific zones (like platforms), the presence of
individuals or objects in critical or restricted areas (such as
platform edges or tracks), the detection of firearms, and the
identification of unattended baggage. For overcrowding, the
system compares the current occupancy against a predefined
maximum capacity, generating alerts if exceeded. In critical
zones, it checks for the presence of persons or items that
shouldn't be there, prioritizing alerts for human presence. The
firearm detection process links detected weapons with nearby
individuals, calculating spatial overlaps to identify potential
suspects. Lastly, for unattended baggage, it assesses the
proximity of people to bags, flagging any items without nearby
owners.

C. VIS Surveillance and Hazard Detection Algorithm
The VIS algorithm for surveillance and hazard detection

utilizes a combination of models and utility functions to monitor
train platforms, identifying hazardous situations as illustrated in
Fig 5. Initially, the algorithm sets up video input and output
through OpenCV, capturing essential details like frame
dimensions and rate, and prepares for video creation with an
MP4 codec. Annotation tools for zones and detections are then
prepared. Zones—train tracks, the platform, and its edge—are
defined with polygons to count and annotate people's presence.
Bounding box annotators for people, weapons, and baggage are
established, along with a dictionary mapping class names to
detections for clear labeling. Model loading follows, with pre-
trained and custom-trained YOLOv8x models for detecting
people, baggage, and guns. ByteTrack is utilized for tracking
people, optimized for precision, while the SAM model is
employed for segmentation, enhancing visual output on a GPU
configuration. In the video analysis phase, the algorithm
processes frames to detect, track, and segment objects.
YOLOv8x models identify and sort people, baggage, and
weapons, filtering by confidence. ByteTrack updates tracking
IDs for people detections, and SAM generates segmentation
masks, adding depth to the analysis. Finally, segmentation
masks are overlaid, and detections are annotated with labels
including class names, confidence levels, and tracking IDs. The
algorithm assesses hazards like overcrowding, unauthorized
entries, firearm presence, and unattended baggage, applying
alert messages on frames as necessary. Each frame, once
analyzed and annotated, contributes to the output video.

VI. RESULTS AND DISCUSSION

A. Results
This section shows the results obtained by the VIS

surveillance and hazard detection system demonstrating how it
analyzes and detects risks when posed with common safety and
security hazardous situations that can occur on a train platform.
The system consists of a combination of state-of-the-art pre-
trained models and a custom-trained model whose performances
are well-known or have been discussed in previous sections.

Fig 5. VIS Surveillance and Hazard Detection Algorithm Flowchart

Therefore, the delivery of results focuses on demonstrating real-
case scenarios through demos. The first demo handles a video of
a train platform during normal operation. The video captures the
moment a train arrives at the station and the passengers get in
and out of the train. As seen in the frame sequence shown in Fig
6, the system achieves the object detection, segmentation, and
tracking objectives described for the VIS problem, focusing on
people detections. Each detected individual receives a very
precise segmentation mask and a tracker ID that sticks with them
throughout the whole video. There are occasional frames in
which one detection loses the tracker ID, but it is recovered
shortly after. Moving on to the video analysis capabilities, the
system correctly filters and counts the person detections for the
platform, platform edge, and train tracks. Different alert
messages pop up when the system identifies risks. For instance,
the overcrowding alert is triggered when more than 5 people
stand on the platform. The system also alerts when someone
steps on the edge. On the other hand, people detections in the
tracks zone are not considered because the train is at the station.
Another demo, Fig 7, recreates the situation of a person pacing
on the edge of the platform for an extended period. In this case,
the system alerts of that critical detection, specifying the tracker
ID of the subject. Receiving frequent alerts of this nature all

referred to the same tracker ID is valuable information that can
be leveraged by the authorities to intervene. To put the system's
capabilities to the test, the demo in Fig 8 simulates the situation
where an individual leaves an unattended backpack behind. The
sequence shows that while the backpack is being held by the
individual, there is no alert message. It is when the individual
steps away from the backpack that the alarm is triggered.

Finally, to try out the custom-trained YOLOv8x model for
gun detection, the demo in Fig 9 recreates the event of a suspect
drawing a gun. The results show that the system is capable of
detecting the presence of a gun and sending an alert message
with the tracker ID of the suspects involved (in this case only
one). Unfortunately, this demo could not be carried out at a real
train station for safety reasons and lack of authorization.
Similarly, the event of objects or people falling onto the tracks
could not be recreated either. However, the detection of those
situations uses the same functions (although with different
parameters) as in Fig 7, which was tested correctly.

B. Discussion
The demonstration results present a functional system that

accurately detects, tracks, and segments person detections while
analyzing potential risks and alerting when a hazard is identified.
However, during the development of the system, there have been
challenges that are worth commenting on in this section.

The first comment is regarding the decision to display alert
messages on the processed frame when an event is triggered. To
deliver the results, this option was more visual than, for
example, printing a message on the terminal. Besides, this paper
focuses on extracting insights that can later be fed downstream
to a more complex system. Hence, showing the messages on the
frame is sufficient to test that the system works as intended.
Needless to say, in the scope of a more complex application, the
surveillance system could interact with a database log and send
messages to the authorities, who can receive them on their
devices. Having cleared that out, let us focus on the challenges
that the system may encounter, and that can undermine its
performance. One crucial factor is the camera's location and
orientation. It needs to be positioned at a height with the correct
tilt angle to provide a top-down view that allows seeing the
extent of the platform and tracks. It is key to consider the
alignment of the camera's axis with the direction of the tracks.
Rather than having a complete alignment, the projection of the
camera's axis onto the ground plane (where people stand) shall
be slightly tilted. This avoids occlusion between the people
standing on the platform and helps with weapon and unattended
baggage detection. Of course, occlusion can also happen in the
direction perpendicular to the tracks, but since the width of the
platform is significantly shorter than its length, occlusion in this
direction is less aggravating. Additionally, experience has
shown that the framing of the area under surveillance shall show
the whole body of the detections. The detection filtering by zone
is done by assessing the top or bottom middle point of the
detection's bounding box. Given the top-down angle of the
camera, it would be best to use the top middle point as in Fig 6.
However, with tilted camera angles that show the extension of
the platform horizontally like in Fig 7 or Fig 8, it is better to use
the bottom middle point to asses where the people are stepping.
Therefore, it is recommended to use the top middle point only

when the camera is aligned with the tracks or at very zenith
angles. Considering the above, the best camera location would
be at an almost zenith angle and slightly tilted to show the
horizontal extension of the tracks and platform. Moreover, if the
resources allow it, it would be ideal to have two cameras, one
with a zenith-side view of the platform and one with a front view
of the platform. The first would focus on supervising the zones
and the second on detecting unattended packages and weapons.
Another worth noting aspect is the performance of the gun
detection model. While the validation results denote a fairly
good model, the testing demos show excessive false negatives
that prevent a good tracking of the firearm. After analysis, it was
concluded that most false positives happen when the gun is held
at odd angles and not pointed. This suggests a bias in the training
and validation datasets, that do not include enough sample
images with atypical gun positions and orientations.

Finally, one big issue of the system is its feasibility of use in
real-time. The limiting factor is the approach toward
segmentation. SAM creates very detailed segmentation masks
of virtually any object without the need for a custom-trained
segmentation model. That and its ease of use with sparse
prompts made it an attractive choice when thinking about the
VIS task. However, according to this work's experience, the
issue with SAM is the time spent encoding the image frames and
generating the embeddings. That process is the most time-
consuming of the whole algorithm and it needs to be repeated in
every frame for the model to work correctly. That translates into
having to wait around 15 minutes to process a 15 seconds long
video. Of course, this depends on the hardware, but it is too
much time and inefficiency regardless. SAM is still a very recent
model and its feasibility to run in real-time is being discussed
currently in the issues tab of the Segment Anything project
GitHub [19]. Having said that, if we exclude the segmentation
part, the video processing times match the duration of the video,
hence real-time processing would be feasible. Further
supporting this, our related research using Nvidia Jetson Orin
Nano achieved a framerate of 22 FPS. This configuration, which
utilized 75% of GPU capacity and 25% of CPU, had an
inference time of 28 ms and a total power consumption of 8300
mW [20]. These results highlight the potential for real-time
operation with appropriate hardware and more efficient
segmentation models.

Fig 6. System Demo: Normal Platform Operation

Fig 7. System Demo: Person Pacing on Platform Edge

Fig 8. System Demo: Unattended baggage

Fig 9. System Demo: Gun Detection

VII. CONCLUSIONS
This work presents a Video Instance Segmentation (VIS)

algorithm for surveillance and hazard detection in train
platforms. The algorithm combines three state-of-the-art models
(YOLOv8x, ByteTrack, and SAM) to achieve classification,
segmentation, and tracking of detected objects. The system
focuses on detecting common risks that take place in train
stations such as overcrowding on the platform, standing people
or objects on the edge of the platform, fallen people or objects
on the tracks, the presence of firearms, and the presence of
unattended baggage. The results show that the system can
successfully analyze video, create surveillance annotations and
detect those hazardous situations to alert authorities and help in
preventing accidents and incidents in train platforms. The

algorithm in this work aims to collect insights that can then be
fed downstream into a more complicated system. The station
employees, including monitoring operators, security officials,
and train drivers, may react to incidents and take the appropriate
actions to respond to safety and security hazards using the
analyzed video data. As a result, this paper can be viewed as part
of a larger attempt to realize a more complicated AI-based
surveillance system for railway station safety.

REFERENCES
[1] S. Oh, S. Park, and C. Lee, “A platform surveillance monitoring system

using image processing for passenger safety in railway station,” Jan.
2007.

[2] C. Poirier, S. Adelé, and J.-M. Burkhardt, “Individual accidents at the
interface between platform, train and tracks (PT2I) in the subway: a
literature review,” Cognition, Technology & Work, Feb. 2020.

[3] J. Black, S. Velastin, and B. Boghossian, “A real-time surveillance system
for metropolitan railways,” Jan. 2006.

[4] L. Yang, Y.-C. Fan, and N. Xu, “Video Instance Segmentation,” Oct.
2019.

[5] K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” 2017
IEEE International Conference on Computer Vision (ICCV), Oct. 2017.

[6] H. Lin, R. Wu, S. Liu, J. Lu, and J. Jia, “Video Instance Segmentation
with a Propose-Reduce Paradigm,” 2021 IEEE/CVF International
Conference on Computer Vision (ICCV), Oct. 2021.

[7] Y. Wang et al., “End-to-End Video Instance Segmentation with
Transformers,” arXiv (Cornell University), Jun. 2021.

[8] J. Terven and D. Cordova-Esparza, “A Comprehensive Review of YOLO:
From YOLOv1 to YOLOv8 and Beyond,” arXiv (Cornell University),
Apr. 2023.

[9] A. Kirillov et al., “Segment Anything,” arXiv (Cornell University), Apr.
2023.

[10] Y. Zhang et al., “ByteTrack: Multi-object Tracking by Associating Every
Detection Box,” pp. 1–21, Oct. 2021.

[11] D. Reis, J. Kupec, J. Hong, and A. Daoudi, “Real-Time Flying Object
Detection with YOLOv8,” May 2023.

[12] K. He, X. Chen, S. Xie, Y. Li, Piotr Dollár, and R. Girshick, “Masked
Autoencoders Are Scalable Vision Learners,” Nov. 2021.

[13] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G.
Sastry, A. Askell, P. Mishkin, J. Clark, and others, “Learning transferable
visual models from natural language supervision,” International
Conference on Machine Learning, 2021.

[14] Roboflow, “Supervision,” GitHub, Oct. 27, 2023.
https://github.com/roboflow/supervision

[15] Y. Zhang, “ByteTrack,” GitHub, Nov. 09, 2023.
https://github.com/ifzhang/ByteTrack

[16] “roboflow/notebooks,” GitHub, Apr. 27, 2023.
https://github.com/roboflow/notebooks

[17] “The Shapely User Manual — Shapely 1.6 documentation,”
Readthedocs.io, 2018.
https://shapely.readthedocs.io/en/stable/manual.html

[18] “Ultralytics,” GitHub. https://github.com/ultralytics
[19] “Segment Anything,” GitHub, Apr. 17, 2023.

https://github.com/facebookresearch/segment-anything
[20] D. Rodriguez Garcia, A. Aparicio Serna, D. Sancho Crespo, X. Yu, and

J. Saniie, “AI Smart Security Camera for Person Detection, Face
Recognition, Tracking and Logging,” Apr. 2024.

