

AI Smart Security Camera for Person Detection, Face
Recognition, Tracking and Logging

Diego Rodriguez Garcia, Alvaro Aparicio Serna, David Sancho Crespo, Xinrui Yu and Jafar Saniie
Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu/)

Department of Electrical and Computer Engineering
Illinois Institute of Technology, Chicago IL, U.S.A

Abstract—Although the surveillance industry is growing due to
increased concerns for public safety, traditional surveillance
systems can be ineffective due to fixed positions, limited coverage,
and the need for human operation. This paper proposes an edge
computing surveillance system that can detect, track, and identify
human presence using AI software. The system includes a video
camera integrated into a structure that allows pan and tilt
movements and a processing unit that performs all computations
locally. The system can operate in two different modes, manual
and automatic, and it can be controlled from a user-friendly web
application. The manual mode allows the user to control the
camera remotely, adjusting the position with buttons and handling
additional functionalities like zoom. On the other hand, in
automatic mode, the system detects people and identifies if they
are an unknown subject or not. Identifications are recorded in an
online log and the system takes pictures of unknown people to
recognize recurrent intruders.

Keywords—Edge Computing, IoT, Smart Security Camera,
Tracking, Detection, Face Recognition, Computer Vision

I. INTRODUCTION
Security cameras are vital for public safety, however,

traditional models have limitations like fixed positions, blind
spots, and the requirement for human intervention. This paper
introduces an advanced edge computing surveillance system
equipped with pan and tilt capabilities, that addresses those
limitations using AI software for smart human detection,
tracking, and identification, all processed locally for real-time
efficiency. This approach aligns with recent advancements in
person tracking and recognition at a distance, emphasizing the
importance of edge computing in real-time analytics [1][2]. This
paper specifically focuses on home security applications, a
market currently valued at USD 7.4 billion and projected to
reach USD 30 billion by 2030 [3]. Our system targets this
expanding niche surpassing traditional closed-circuit television
(CCTV) and exploiting the shift towards IoT and smart camera
technology.

With Edge Computing, our system allows for real-time
tracking and face recognition without the computational and
latency challenges that affect similar technologies. By
integrating AI with IoT connectivity, our smart security camera
provides not only remote motion control and live video
streaming but also maintains a cloud-based log of known and
unknown detected subjects and their frequency of detection. A

detailed explanation of the different functionalities is provided
in the Implementation section.

II. TECHNICAL DESCRIPTION
This paper proposes a smart camera that uses AI resources

to detect people in the frame and zoom in on their faces to
perform facial recognition. The computations are performed
locally on an edge computing platform. The camera is part of a
larger structure that can move with two degrees of freedom,
allowing the camera to track the movement of the person in the
frame. The system also includes a web application that can be
used as the HMI of the system. From the app, the user will be
able to watch the surveillance video and input commands. Users
can also view a log of the detected subjects over time. The
system has two modes of operation: manual and automatic
modes. Their functionalities will be explained later.

A. System Architecture
We can differentiate four main nodes in the system: the HMI,

the main processing module, the log of detections, and the smart
camera including the set of sensors and actuators. An overview
is given in Fig.1. As HMI we designed a web application where
the user can input motion, zoom, and focus commands while
viewing the live video footage. The main processing module is
the single-board computer in charge of processing video. This is
one main difference concerning other products in the market, as
most of them process the video footage on a server. Our choice
of a localized processing unit over cloud-based processing
models is supported by recent research advocating for the
efficiency of edge computing in surveillance applications,
particularly in face recognition and control of PTZ (Pan-Tilt-
Zoom) cameras [4] [5]. The processing module also translates
the user commands received from the web application into
PWM signals for controlling the pan, tilt, and zoom micro-
stepper motors that are part of the smart camera. Meanwhile, the
video is received from the camera and streamed into the web
application in real time. Additionally, the computing platform
stores the log data in the cloud database.

Overall, user commands flow from the web application to
the camera actuators. On the other hand, the information
captured with the camera lens flows backward to the processing
module until finally reaching the web application.

B. Manual Mode
In this mode, accessible through a user-friendly web

application interface with intuitive buttons, users can watch the
video feed and control the operation of the system remotely.
This mode allows users to control pan and tilt movements via
two servo motors, adjusting the camera's angle for expanded
surveillance coverage. Additionally, users can use analog zoom
controlled by another servo motor for closer examination of any
area under surveillance. The focus feature enables manual
adjustment of the lens focus to enhance image quality if it
appears blurry. An IR-cut filter can also be leveraged to facilitate
infrared light passage through the lens, improving vision in low-
light conditions; this requires an infrared light source. Moreover,
users have the option to activate the automatic mode, enabling
the system to operate independently, thus freeing them to focus
on other tasks.

C. Automatic Mode
In automatic mode, the system runs the detection, tracking,

and face recognition algorithms while logging detected subjects.
The camera no longer responds to manual input commands from
the user. Instead, the motion and zoom commands are computed
automatically to track the detected people. The tracking
algorithm runs in parallel for both detection and face
recognition, computing the necessary motion commands so that
the detected subject always remains centered on the frame (by
calculating the distance between the center of the subject's face
and the frame's center). Two detection algorithms run
concurrently, one detects bodies to generate the annotations for
tracking and the other detects frontal faces to trigger the face
recognition mode.

By default, the system starts running detection and tracking
and when it finds a stable face during several consecutive video
frames, the camera uses optical and digital zoom to get a closer
image of the face and switches to face recognition and tracking.
The subject is classified as either authorized or unauthorized.
During this mode, the results of the identification are shown in
the video in real time. The footage displayed on the web
application is the processed video including bounding boxes and
labels around objects and faces.

Additionally, the system logs detected subjects, including
their labels and detection timestamps, in a cloud database
accessible through the web application. For recurrent unknown
subjects, the camera captures their faces and stores them in a
local database to identify repeated intruders. Lastly, users also
have the flexibility to switch back to manual mode at any time.

III. IMPLEMENTATION

A. Hardware Implementation
The Arducam camera is the main sensor used in this paper,

as it contains the image sensor, the servo motors (for pan and
tilt, zoom, and focus), the optical zoom-in capabilities, and the
structure in a single component. Specifically, we are using the
Arducam IMX477 12MP PTZ Camera, which has a 12.3MP
sensor with a pan and tilt range of 0° to 180°.

 During the writing of our paper, we evaluated two
processing units, the Jetson Nano and the Jetson Orin Nano, to
assess their performance. According to the manufacturer, the
Jetson Orin Nano demonstrates considerable improvements over
the Jetson Nano, especially in AI performance, computation
capabilities, and CPU efficiency, facilitating the execution of
advanced AI models with greater performance and energy
efficiency. These enhancements include a 6.6-fold increase in
CPU performance and better performance per watt, indicating a
leap in computational power and energy efficiency. Fig. 2
summarizes the performance comparison metrics.

In terms of communication protocols, between the user
device and the Jetson board, which hosts the web application,
the communication is based on the HTTP protocol. Meanwhile,
between the Jetson board and the Arducam PTZ controller, to
send the necessary commands to move the camera, the I2C
protocol is used. The PTZ controller is connected to the Jetson
Nano through 4 wires. There is a 5V and ground connection to
power the camera, and SDA and SCL cables for serial
communication using the I2C protocol. The power supply used
provides 5V with up to 4A, and the motors are connected
through a breakout cable to two jumper wires. The connections
of the Arducam with the Jetson Nano are described in Fig. 3.

Fig. 2. Jetson Nano vs. Jetson Orin Nano performance metrics [6].

Fig. 1. Overview of the System Architecture.

Fig. 3. Hardware Schematic of the System [7].

B. Camera Software
 The Arducam is programmed using functions provided by
the developers. The codes for the IMX477 PTZ model are found
in [8]. This code is written in Python 3 and is based on the
OpenCV library. The GitHub repository [8] includes several
Python functions and scripts that can be used to control the
Arducam in different ways. The most relevant are “Focuser.py”
and “JetsonCamera.py”. The JetsonCamera class handles the
video connection between the Arducam and the Jetson Nano
using GStreamer.

C. Cloud Log Software
 For cloud logging, we have developed a database based on
SQL hosted in AWS RDS. Amazon Web Services Relational
Database Service simplifies the setup and operation of online
databases and it also provides cloud storage. In addition, we
have used another service from AWS called Quicksight that
allows users to create interactive dashboards to visualize data
from an existing AWS database. Finally, we have used the
mysql.connector Python package to link our code to the online
database and send the log data for storage. This log includes a
timestamp and an identification label.

D. AI Software Implementation
 The most important part of the system is the automatic mode.
For this mode of operation, we have developed a Python
program capable of detecting people, tracking their movement,
and performing facial recognition. The methodologies
employed here draw upon principles from [9] [10], which have
shown the effectiveness of deep learning algorithms in
enhancing surveillance systems' accuracy in people detection
and tracking.

 For detection, we have used two sets of algorithms, one for
person detection and one for frontal face detection. The first one
provides the annotations for tracking and the second one is used
to trigger the face recognition mode. For person detection, we
have studied two different models YOLOv5 and MediaPipe’s
pose landmarks. YOLOv5 [11], a single-stage object detector,
consists of a backbone, neck, and head. The backbone utilizes a
Cross Stage Partial (CSP) Network for feature extraction, while
the neck employs a Path Aggregation Network (PANet) for
creating feature pyramids to manage objects of various sizes.

The head produces final outputs, including class probabilities,
objectness scores, and bounding box coordinates, with the
model pre-trained on the COCO dataset [12]. For real-time
performance, we opted for YOLOv5n (nano), filtering for
people detections despite its ability to recognize over 80 classes.
MediaPipe's Pose Landmark model [13] integrates a detector-
tracker system based on the BlazePose model with a
MobileNetv2-like backbone and GHUM for pose landmark
prediction. Initially, a lightweight detector identifies human
figures in an image, and then a tracker refines and tracks body
landmarks. This setup leverages MobileNetV2, optimized for
mobile devices with depthwise separable convolutions for
efficiency and accuracy. Additionally, GHUM enhances 3D
body pose estimation by providing depth and spatial details in
images or videos. For face detection, the program uses the
OpenCV library. More precisely, it employs a pre-trained Haar
Cascade classifier that is included in this library [14]. This
classifier uses a special type of kernel to extract Haar-like
features for training. The result is tens of thousands of features
that are reduced to the most useful by using the optimizer
AdaBoost. Then, the algorithm applies a cascade classifier that
divides the remaining features into stages. For a face to be
detected in an image, this image has to fulfill all the stages
because, if one of the stages fails the image is discarded.

 For face recognition, the system uses the face recognition
package [15] from the Dlib library of Python. This algorithm
creates a histogram of gradients (HOG) in an image and applies
a Support Vector Machine (SVM) to detect faces. These
detected faces are encoded using a version of ResNet-10 and
compared to the images in a dataset computing the Euclidean
distance. The dataset stores images of the authorized users, so if
there is a match the code shows the confidence percentage of the
identification and the name of the subject. The implementation
of real-time face detection and recognition resonates with
findings from [16] [17].

 For tracking, the program computes the pixel difference
between the center of the reference point and the center of the
frame. The reference point varies depending on the person
detection algorithm used, but it is roughly located on the face of
the detection to ensure a seamless transition from detection to
face recognition mode. When using MediaPipe’s pose
landmarks the reference point corresponds to the subject’s nose
landmark. When using YOLOv5 the reference point is located
on the upper-middle region of the bounding box. The difference
between the reference point and the center of the frame is the
input of a simple proportional controller that outputs the new
angle of the camera after every frame. Then, the motors are set
to the new position using the functions from the Focuser.py class
of Arducam.

 The code operates in an infinite loop, capturing and
processing frames with two modes dictated by a "mode" flag (0
or 1). In mode 0, person and face detection run in parallel using
YOLO or MediaPipe for person tracking and a pre-trained Haar
Cascade classifier for face detection. If a face is consistently
detected, the system zooms in, activates optical zoom, and
switches to mode 1 for face recognition using Dlib, marking
unknown faces as intruders and storing them in a database.
Mode 1 still carries out tracking, enhances face recognition with
maximum optical zoom for better accuracy, up to a distance of

20 feet, and reverts to mode 0 for broader surveillance when no
face is detected. This dynamic tracking and recognition process,
detailed in Fig. 4, ensures efficient monitoring and
identification.

Fig. 4. System flowchart.

E. Night Vision Implementation
The Arducam features an IR-cut filter for accurate color

capture during daylight and includes functionality to remove
the filter via software for potential night vision use, aligning
with our security camera paper's goals. We have tested the AI
software's performance with the IR-cut disabled and an infrared
light source, which is necessary to fully utilize this night vision
capability.

F. Web Application Implementation
 The Human-Machine Interface (HMI) of the system is a web
able to stream live video locally extracted from the camera
connected to the Jetson Nano. This code uses the HTTP modules
Python library, a package that assembles multiple modules to
ease the development of software that uses the HTTP protocol.
This library is based on Python. For the web app structure of the
human-machine interface, the program uses HTML. In addition,
the code includes the Bootstrap package to shape the design of
the buttons. Bootstrap is a front-end toolkit that contains prebuilt
grid systems and components to use in HTML pages. For the
logging database feature, the web application includes a button
in automatic mode that redirects users to a Quicksight page,
displaying logged subjects and timestamps. Fig. 4 shows the
detailed system flowchart.

IV. RESULTS
 This report presents an edge computing Smart Security
Camera that can be interfaced remotely through a web
application and used in manual and automatic modes. Our
system allows users to view the real-time video footage

remotely, control the camera's point of view and angles, and let
the system perform automatic people detection and face
recognition up to 20 feet while tracking the subjects to be in the
frame. Fig. 5 shows the hardware setup for the system. The
Jetson Nano is the main processing module, which is connected
to the Arducam.

Fig. 5. Smart security camera prototype hardware.

A. Web Application Results
 Figures 6 and 7 show a view of the web application user
interface in both manual and automatic modes. As you can see
in manual mode the user sees the raw video footage and can
make use of the buttons to: move the camera angle, use the
optical zoom, change the focus of the lens, take off the IR-cut
filter, and activate the automatic mode. On the other hand, in
automatic mode, the user sees the processed video footage with
bounding boxes and subject labels around detected faces. In Fig.
7 you can see the body landmarks drawn over the subject, which
is the result of MediaPipe’s detector. In Fig. 8 there is a labeled
bounding box that identifies the subject according to the
authorized people dataset. The AI software manages to
recognize people with over 90% confidence at a distance of up
to 20 feet without false positives. The automatic mode website
also includes a button to open the security log in the Quicksight
website. The appearance of this log is shown in Fig. 9.

Fig. 6.Web application in manual mode.

Fig. 7. Web application in automatic mode

Fig. 8. Result of face recognition.

Fig. 9. Security log.

B. Night Vision Results
The user can command the IR-cut filter, which prompted us

to conduct tests under low-lighting conditions to evaluate its
functionality. An infrared light was flashed while disabling the
filter, leading to a remarkable enhancement in the captured
image quality compared to when the filter was enabled. This
effectively produced a night vision image. It's essential to note
that the IR-cut filter alone does not yield any significant
improvements without the complementary use of an infrared
light source. The images presented to the right depict the
outcomes obtained from applying the detection and face
recognition algorithms to night vision images. For reference, at
the top of Fig. 10, we show the normal image taken by the

Arducam in a dark environment. The rest of the pictures show
the images that the Arducam can capture without the IR-cut filter
when the infrared light illuminates the surroundings.

Fig. 10. Night vision image results.

As the images show, MediaPipe’s landmark detector and
YOLOv5 object detection are quite robust and work very well
in this situation. However, face recognition does not work as
well, because it needs more details than the previous algorithms.
The night vision images are blurrier than daylight images, so for
face recognition to work it needs to see a very clear face like in
the first example.

C. Performance Comparison
In the course of writing this paper, we have worked with the

Jetson Nano and the Orin Nano as alternative processing units.
In addition, we have used 2 alternatives for person detection,
YOLOv5 and MediaPipe. So, we have taken note of several
metrics to compare the performance of the different algorithms
in the two single-board computers. The results using the Jetson
Nano are shown in Table 1. Dlib works very smoothly while
Mediapipe and YOLO CPU are very slow, because these
algorithms are more demanding at the time of inference.
However, it is important to note that the face recognition AI

solution only processes one out of every two frames. While the
other solutions process every frame, this also affects the results.
We can also clearly see an improvement when YOLO uses the
GPU instead of the CPU because the prior is more suitable to
run AI software. The results using the Orin Nano are shown in
Table 2.

TABLE I. JETSON NANO PERFORMANCE RESULTS.

Jetson Nano FPS CPU/GPU Inference
time

Total
Power

Dlib 20 70%/10% N/A 5600 mW

Mediapipe 2 80%/20% N/A 5500 mW

YOLO CPU 3 90%/30% 280 ms 6900 mW

YOLO GPU 5.5 25%/90% 138 ms 6650 mW

TABLE II. JETSON ORIN NANO PERFORMANCE RESULTS

Jetson Orin Nano FPS CPU/GPU Inference
time

Total
Power

Mediapipe + Dlib 13 25%/25% N/A 4600 mW

YOLO CPU 1 99%/0% 750 ms 7075 mW

YOLO GPU 22 25%/75% 28 ms 8300 mW

 The MediaPipe library is still in development, and they still
do not include GPU support for their AI solutions. Therefore,
the performance of the pose landmark detector is not as good as
it could be, but it is still way better than in the Jetson Nano due
to the improved CPU capabilities in the Orin Nano. The YOLO
CPU in the Jetson and the Orin are both slower than their GPU
counterparts. Especially, in the Orin Nano the improvement in
using the GPU to run YOLO is great, due to the increased
capabilities of the Orin. The YOLO GPU in the Jetson Nano and
the Orin Nano use the same code so it is very clear how the Orin
Nano is immensely superior to the Jetson in FPS and inference
time, while using a smaller percentage of their respective GPUs.
However, this improvement also brings a higher power
consumption.

V. CONCLUSIONS
This work presents an edge computing Smart Camera for

surveillance capable of detecting, tracking, and identifying
human presence through face recognition in real time. The
system can be controlled remotely through a web application
and used in manual and automatic modes. The web application
allows users to view the real-time video footage remotely, and
control the camera's point of view and angles. It also makes the
system perform automatic people detection and face recognition
up to 20 feet while tracking the subjects to be in the frame. The
system is based on an ArduCam IMX477 12MP PTZ camera
and uses a Jetson Nano single-board computer as the main
processing module to control the servomotors for the camera,
run the computer vision algorithms, stream video to the web
application and respond to remote user commands. We

conducted tests with night vision images, yielding satisfactory
results and demonstrating the system's adaptability to various
lighting conditions.

Finally, this paper examines the feasibility of deploying the
system on different boards, comparing the performance of the
Jetson Nano against the Jetson Orin Nano. The findings
highlight the importance of utilizing software instructions to
effectively leverage the hardware's computational power and
GPU for optimal model inference.

REFERENCES

[1] U. Park, H.-C. Choi, A. K. Jain, and S.-W. Lee, “Face Tracking and
Recognition at a Distance: A Coaxial and Concentric PTZ Camera
System,” IEEE Transactions on Information Forensics and Security, vol.
8, no. 10, pp. 1665–1677, Oct. 2013.

[2] Vassilis Tsakanikas and Tasos Dagiuklas, “Enabling Real-Time AI Edge
Video Analytics,” Research Open (London South Bank University), Jun.
2021.

[3] Grand View Research “Smart Home Security Camera Market [2023
global report],” GVR. [Online]. Available:
https://www.grandviewresearch.com/industry-analysis/smart-home-
security-camera-market. [Accessed: 30-Apr-2023].

[4] V.-A. Dao, D.-H. Nguyen, V.-B. Nguyen, Thom Tran Thi, and Hoang-
Anh Nguyen The, “Face Recognition System for Unconstrained
Condition,” Oct. 2023.

[5] M. S. Al-Hadrusi and N. J. Sarhan, “Efficient Control of PTZ Cameras in
Automated Video Surveillance Systems,” Dec. 2012.

[6] “Develop AI-Powered Robots, Smart Vision Systems, and More with
NVIDIA Jetson Orin Nano Developer Kit”, NVIDIA Technical Blog,
https://developer.nvidia.com/blog/develop-ai-powered-robots-smart-
vision-systems-and-more-with-nvidia-jetson-orin-nano-developer-kit/
[accessed Jun. 22, 2023]

[7] “Arducam Quick start,” Quick Start - Arducam Wiki,
https://docs.arducam.com/Nvidia-Jetson-Camera/Pan-Tilt-Zoom-
Camera/quick-start/ [accessed Jun. 22, 2023].

[8] ArduCAM, “ArduCAM/MIPI_CAMERA,” GitHub,
https://github.com/ArduCAM/MIPI_Camera [accessed Jun. 22, 2023].

[9] Y. Zhou, “Deep Learning Based People Detection, Tracking and Re-
identification in Intelligent Video Surveillance System,” Aug. 2020.

[10] J. Chen, K. Li, Q. Deng, K. Li, and P. S. Yu, “Distributed Deep Learning
Model for Intelligent Video Surveillance Systems with Edge Computing,”
IEEE Transactions on Industrial Informatics, pp. 1–1, 2019.

[11] Ultralytics, “Ultralytics/yolov5: Yolov5,” GitHub,
https://github.com/ultralytics/yolov5 [accessed Jun. 22, 2023].

[12] T.-Y. Lin et al., “Microsoft COCO: Common Objects in Context,” arXiv
(Cornell University), May 2014.

[13] Google, “Mediapipe/docs/solutions/pose.md at master ·
google/mediapipe,” GitHub,
https://github.com/google/mediapipe/blob/master/docs/solutions/pose.m
d [accessed Jun. 22, 2023].

[14] “Face detection using Haar Cascades,” OpenCV,
https://docs.opencv.org/3.4/d2/d99/tutorial_js_face_detection.html
[accessed Jun. 22, 2023].

[15] A. Geitgey, “Face-recognition,” PyPI, https://pypi.org/project/face-
recognition/ [accessed Jun. 22, 2023].

[16] X. Zhang, W.-J. Yi, and Jafar Saniie, “Home Surveillance System using
Computer Vision and Convolutional Neural Network,” May 2019.

[17] X. Zhang, T. Gonnot, and J. Saniie, “Real-Time Face Detection and
Recognition in Complex Background,” Journal of Signal and Information
Processing, vol. 8, no. 2, pp. 99–112, May 2017.

