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Abstract—Although the surveillance industry is growing due to 
increased concerns for public safety, traditional surveillance 
systems can be ineffective due to fixed positions, limited coverage, 
and the need for human operation. This paper proposes an edge 
computing surveillance system that can detect, track, and identify 
human presence using AI software. The system includes a video 
camera integrated into a structure that allows pan and tilt 
movements and a processing unit that performs all computations 
locally. The system can operate in two different modes, manual 
and automatic, and it can be controlled from a user-friendly web 
application. The manual mode allows the user to control the 
camera remotely, adjusting the position with buttons and handling 
additional functionalities like zoom. On the other hand, in 
automatic mode, the system detects people and identifies if they 
are an unknown subject or not. Identifications are recorded in an 
online log and the system takes pictures of unknown people to 
recognize recurrent intruders. 
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I. INTRODUCTION 
Security cameras are vital for public safety, however, 

traditional models have limitations like fixed positions, blind 
spots, and the requirement for human intervention. This paper 
introduces an advanced edge computing surveillance system 
equipped with pan and tilt capabilities, that addresses those 
limitations using AI software for smart human detection, 
tracking, and identification, all processed locally for real-time 
efficiency. This approach aligns with recent advancements in 
person tracking and recognition at a distance, emphasizing the 
importance of edge computing in real-time analytics [1][2]. This 
paper specifically focuses on home security applications, a 
market currently valued at USD 7.4 billion and projected to 
reach USD 30 billion by 2030 [3]. Our system targets this 
expanding niche surpassing traditional closed-circuit television 
(CCTV) and exploiting the shift towards IoT and smart camera 
technology.  

With Edge Computing, our system allows for real-time 
tracking and face recognition without the computational and 
latency challenges that affect similar technologies. By 
integrating AI with IoT connectivity, our smart security camera 
provides not only remote motion control and live video 
streaming but also maintains a cloud-based log of known and 
unknown detected subjects and their frequency of detection. A 

detailed explanation of the different functionalities is provided 
in the Implementation section. 

II. TECHNICAL DESCRIPTION 
This paper proposes a smart camera that uses AI resources 

to detect people in the frame and zoom in on their faces to 
perform facial recognition. The computations are performed 
locally on an edge computing platform. The camera is part of a 
larger structure that can move with two degrees of freedom, 
allowing the camera to track the movement of the person in the 
frame. The system also includes a web application that can be 
used as the HMI of the system. From the app, the user will be 
able to watch the surveillance video and input commands. Users 
can also view a log of the detected subjects over time. The 
system has two modes of operation: manual and automatic 
modes. Their functionalities will be explained later. 

A. System Architecture 
We can differentiate four main nodes in the system: the HMI, 

the main processing module, the log of detections, and the smart 
camera including the set of sensors and actuators. An overview 
is given in Fig.1. As HMI we designed a web application where 
the user can input motion, zoom, and focus commands while 
viewing the live video footage. The main processing module is 
the single-board computer in charge of processing video. This is 
one main difference concerning other products in the market, as 
most of them process the video footage on a server. Our choice 
of a localized processing unit over cloud-based processing 
models is supported by recent research advocating for the 
efficiency of edge computing in surveillance applications, 
particularly in face recognition and control of PTZ (Pan-Tilt-
Zoom) cameras [4] [5]. The processing module also translates 
the user commands received from the web application into 
PWM signals for controlling the pan, tilt, and zoom micro-
stepper motors that are part of the smart camera. Meanwhile, the 
video is received from the camera and streamed into the web 
application in real time. Additionally, the computing platform 
stores the log data in the cloud database. 

Overall, user commands flow from the web application to 
the camera actuators. On the other hand, the information 
captured with the camera lens flows backward to the processing 
module until finally reaching the web application.  



 

B. Manual Mode 
In this mode, accessible through a user-friendly web 

application interface with intuitive buttons, users can watch the 
video feed and control the operation of the system remotely. 
This mode allows users to control pan and tilt movements via 
two servo motors, adjusting the camera's angle for expanded 
surveillance coverage. Additionally, users can use analog zoom 
controlled by another servo motor for closer examination of any 
area under surveillance. The focus feature enables manual 
adjustment of the lens focus to enhance image quality if it 
appears blurry. An IR-cut filter can also be leveraged to facilitate 
infrared light passage through the lens, improving vision in low-
light conditions; this requires an infrared light source. Moreover, 
users have the option to activate the automatic mode, enabling 
the system to operate independently, thus freeing them to focus 
on other tasks. 

C. Automatic Mode 
In automatic mode, the system runs the detection, tracking, 

and face recognition algorithms while logging detected subjects. 
The camera no longer responds to manual input commands from 
the user. Instead, the motion and zoom commands are computed 
automatically to track the detected people. The tracking 
algorithm runs in parallel for both detection and face 
recognition, computing the necessary motion commands so that 
the detected subject always remains centered on the frame (by 
calculating the distance between the center of the subject's face 
and the frame's center). Two detection algorithms run 
concurrently, one detects bodies to generate the annotations for 
tracking and the other detects frontal faces to trigger the face 
recognition mode. 

By default, the system starts running detection and tracking 
and when it finds a stable face during several consecutive video 
frames, the camera uses optical and digital zoom to get a closer 
image of the face and switches to face recognition and tracking. 
The subject is classified as either authorized or unauthorized. 
During this mode, the results of the identification are shown in 
the video in real time. The footage displayed on the web 
application is the processed video including bounding boxes and 
labels around objects and faces.  

Additionally, the system logs detected subjects, including 
their labels and detection timestamps, in a cloud database 
accessible through the web application. For recurrent unknown 
subjects, the camera captures their faces and stores them in a 
local database to identify repeated intruders. Lastly, users also 
have the flexibility to switch back to manual mode at any time. 

III. IMPLEMENTATION 

A. Hardware Implementation 
The Arducam camera is the main sensor used in this paper, 

as it contains the image sensor, the servo motors (for pan and 
tilt, zoom, and focus), the optical zoom-in capabilities, and the 
structure in a single component. Specifically, we are using the 
Arducam IMX477 12MP PTZ Camera, which has a 12.3MP 
sensor with a pan and tilt range of 0° to 180°. 

 During the writing of our paper, we evaluated two 
processing units, the Jetson Nano and the Jetson Orin Nano, to 
assess their performance. According to the manufacturer, the 
Jetson Orin Nano demonstrates considerable improvements over 
the Jetson Nano, especially in AI performance, computation 
capabilities, and CPU efficiency, facilitating the execution of 
advanced AI models with greater performance and energy 
efficiency. These enhancements include a 6.6-fold increase in 
CPU performance and better performance per watt, indicating a 
leap in computational power and energy efficiency. Fig. 2 
summarizes the performance comparison metrics. 

In terms of communication protocols, between the user 
device and the Jetson board, which hosts the web application, 
the communication is based on the HTTP protocol. Meanwhile, 
between the Jetson board and the Arducam PTZ controller, to 
send the necessary commands to move the camera, the I2C 
protocol is used.  The PTZ controller is connected to the Jetson 
Nano through 4 wires. There is a 5V and ground connection to 
power the camera, and SDA and SCL cables for serial 
communication using the I2C protocol. The power supply used 
provides 5V with up to 4A, and the motors are connected 
through a breakout cable to two jumper wires. The connections 
of the Arducam with the Jetson Nano are described in Fig. 3. 

 

Fig. 2. Jetson Nano vs. Jetson Orin Nano performance metrics [6]. 

Fig. 1. Overview of the System Architecture. 



 
Fig. 3. Hardware Schematic of the System [7].  

B. Camera Software 
 The Arducam is programmed using functions provided by 
the developers. The codes for the IMX477 PTZ model are found 
in [8]. This code is written in Python 3 and is based on the 
OpenCV library. The GitHub repository [8] includes several 
Python functions and scripts that can be used to control the 
Arducam in different ways. The most relevant are “Focuser.py” 
and “JetsonCamera.py”. The JetsonCamera class handles the 
video connection between the Arducam and the Jetson Nano 
using GStreamer.  

C. Cloud Log Software  
 For cloud logging, we have developed a database based on 
SQL hosted in AWS RDS. Amazon Web Services Relational 
Database Service simplifies the setup and operation of online 
databases and it also provides cloud storage. In addition, we 
have used another service from AWS called Quicksight that 
allows users to create interactive dashboards to visualize data 
from an existing AWS database. Finally, we have used the 
mysql.connector Python package to link our code to the online 
database and send the log data for storage. This log includes a 
timestamp and an identification label. 

D. AI Software Implementation 
 The most important part of the system is the automatic mode. 
For this mode of operation, we have developed a Python 
program capable of detecting people, tracking their movement, 
and performing facial recognition. The methodologies 
employed here draw upon principles from [9] [10], which have 
shown the effectiveness of deep learning algorithms in 
enhancing surveillance systems' accuracy in people detection 
and tracking. 

 For detection, we have used two sets of algorithms, one for 
person detection and one for frontal face detection. The first one 
provides the annotations for tracking and the second one is used 
to trigger the face recognition mode. For person detection, we 
have studied two different models YOLOv5 and MediaPipe’s 
pose landmarks. YOLOv5 [11], a single-stage object detector, 
consists of a backbone, neck, and head. The backbone utilizes a 
Cross Stage Partial (CSP) Network for feature extraction, while 
the neck employs a Path Aggregation Network (PANet) for 
creating feature pyramids to manage objects of various sizes. 

The head produces final outputs, including class probabilities, 
objectness scores, and bounding box coordinates, with the 
model pre-trained on the COCO dataset [12]. For real-time 
performance, we opted for YOLOv5n (nano), filtering for 
people detections despite its ability to recognize over 80 classes. 
MediaPipe's Pose Landmark model [13] integrates a detector-
tracker system based on the BlazePose model with a 
MobileNetv2-like backbone and GHUM for pose landmark 
prediction. Initially, a lightweight detector identifies human 
figures in an image, and then a tracker refines and tracks body 
landmarks. This setup leverages MobileNetV2, optimized for 
mobile devices with depthwise separable convolutions for 
efficiency and accuracy. Additionally, GHUM enhances 3D 
body pose estimation by providing depth and spatial details in 
images or videos. For face detection, the program uses the 
OpenCV library. More precisely, it employs a pre-trained Haar 
Cascade classifier that is included in this library [14]. This 
classifier uses a special type of kernel to extract Haar-like 
features for training. The result is tens of thousands of features 
that are reduced to the most useful by using the optimizer 
AdaBoost. Then, the algorithm applies a cascade classifier that 
divides the remaining features into stages. For a face to be 
detected in an image, this image has to fulfill all the stages 
because, if one of the stages fails the image is discarded. 

 For face recognition, the system uses the face recognition 
package [15] from the Dlib library of Python. This algorithm 
creates a histogram of gradients (HOG) in an image and applies 
a Support Vector Machine (SVM) to detect faces. These 
detected faces are encoded using a version of ResNet-10 and 
compared to the images in a dataset computing the Euclidean 
distance. The dataset stores images of the authorized users, so if 
there is a match the code shows the confidence percentage of the 
identification and the name of the subject. The implementation 
of real-time face detection and recognition resonates with 
findings from [16] [17]. 

 For tracking, the program computes the pixel difference 
between the center of the reference point and the center of the 
frame. The reference point varies depending on the person 
detection algorithm used, but it is roughly located on the face of 
the detection to ensure a seamless transition from detection to 
face recognition mode. When using MediaPipe’s pose 
landmarks the reference point corresponds to the subject’s nose 
landmark. When using YOLOv5 the reference point is located 
on the upper-middle region of the bounding box. The difference 
between the reference point and the center of the frame is the 
input of a simple proportional controller that outputs the new 
angle of the camera after every frame. Then, the motors are set 
to the new position using the functions from the Focuser.py class 
of Arducam. 

 The code operates in an infinite loop, capturing and 
processing frames with two modes dictated by a "mode" flag (0 
or 1). In mode 0, person and face detection run in parallel using 
YOLO or MediaPipe for person tracking and a pre-trained Haar 
Cascade classifier for face detection. If a face is consistently 
detected, the system zooms in, activates optical zoom, and 
switches to mode 1 for face recognition using Dlib, marking 
unknown faces as intruders and storing them in a database. 
Mode 1 still carries out tracking, enhances face recognition with 
maximum optical zoom for better accuracy, up to a distance of 



20 feet, and reverts to mode 0 for broader surveillance when no 
face is detected. This dynamic tracking and recognition process, 
detailed in Fig. 4, ensures efficient monitoring and 
identification. 

 
Fig. 4. System flowchart. 

E. Night Vision Implementation 
The Arducam features an IR-cut filter for accurate color 

capture during daylight and includes functionality to remove 
the filter via software for potential night vision use, aligning 
with our security camera paper's goals. We have tested the AI 
software's performance with the IR-cut disabled and an infrared 
light source, which is necessary to fully utilize this night vision 
capability. 

F. Web Application Implementation 
 The Human-Machine Interface (HMI) of the system is a web 
able to stream live video locally extracted from the camera 
connected to the Jetson Nano. This code uses the HTTP modules 
Python library, a package that assembles multiple modules to 
ease the development of software that uses the HTTP protocol. 
This library is based on Python. For the web app structure of the 
human-machine interface, the program uses HTML. In addition, 
the code includes the Bootstrap package to shape the design of 
the buttons. Bootstrap is a front-end toolkit that contains prebuilt 
grid systems and components to use in HTML pages. For the 
logging database feature, the web application includes a button 
in automatic mode that redirects users to a Quicksight page, 
displaying logged subjects and timestamps. Fig. 4 shows the 
detailed system flowchart. 

IV. RESULTS 
 This report presents an edge computing Smart Security 
Camera that can be interfaced remotely through a web 
application and used in manual and automatic modes. Our 
system allows users to view the real-time video footage 

remotely, control the camera's point of view and angles, and let 
the system perform automatic people detection and face 
recognition up to 20 feet while tracking the subjects to be in the 
frame. Fig. 5 shows the hardware setup for the system. The 
Jetson Nano is the main processing module, which is connected 
to the Arducam. 

 

 
Fig. 5. Smart security camera prototype hardware. 

A. Web Application Results 
 Figures 6 and 7 show a view of the web application user 
interface in both manual and automatic modes. As you can see 
in manual mode the user sees the raw video footage and can 
make use of the buttons to: move the camera angle, use the 
optical zoom, change the focus of the lens, take off the IR-cut 
filter, and activate the automatic mode. On the other hand, in 
automatic mode, the user sees the processed video footage with 
bounding boxes and subject labels around detected faces. In Fig. 
7 you can see the body landmarks drawn over the subject, which 
is the result of MediaPipe’s detector. In Fig. 8 there is a labeled 
bounding box that identifies the subject according to the 
authorized people dataset. The AI software manages to 
recognize people with over 90% confidence at a distance of up 
to 20 feet without false positives. The automatic mode website 
also includes a button to open the security log in the Quicksight 
website. The appearance of this log is shown in Fig. 9. 
 

 
Fig. 6.Web application in manual mode. 



 
Fig. 7. Web application in automatic mode 

 
Fig. 8. Result of face recognition. 

 
Fig. 9. Security log. 

B. Night Vision Results 
The user can command the IR-cut filter, which prompted us 

to conduct tests under low-lighting conditions to evaluate its 
functionality. An infrared light was flashed while disabling the 
filter, leading to a remarkable enhancement in the captured 
image quality compared to when the filter was enabled. This 
effectively produced a night vision image. It's essential to note 
that the IR-cut filter alone does not yield any significant 
improvements without the complementary use of an infrared 
light source. The images presented to the right depict the 
outcomes obtained from applying the detection and face 
recognition algorithms to night vision images. For reference, at 
the top of Fig. 10, we show the normal image taken by the 

Arducam in a dark environment. The rest of the pictures show 
the images that the Arducam can capture without the IR-cut filter 
when the infrared light illuminates the surroundings.  

 
Fig. 10. Night vision image results. 

As the images show, MediaPipe’s landmark detector and 
YOLOv5 object detection are quite robust and work very well 
in this situation. However, face recognition does not work as 
well, because it needs more details than the previous algorithms. 
The night vision images are blurrier than daylight images, so for 
face recognition to work it needs to see a very clear face like in 
the first example.  

C. Performance Comparison 
In the course of writing this paper, we have worked with the 

Jetson Nano and the Orin Nano as alternative processing units. 
In addition, we have used 2 alternatives for person detection, 
YOLOv5 and MediaPipe. So, we have taken note of several 
metrics to compare the performance of the different algorithms 
in the two single-board computers. The results using the Jetson 
Nano are shown in Table 1. Dlib works very smoothly while 
Mediapipe and YOLO CPU are very slow, because these 
algorithms are more demanding at the time of inference. 
However, it is important to note that the face recognition AI 



solution only processes one out of every two frames. While the 
other solutions process every frame, this also affects the results. 
We can also clearly see an improvement when YOLO uses the 
GPU instead of the CPU because the prior is more suitable to 
run AI software. The results using the Orin Nano are shown in 
Table 2.  

TABLE I.  JETSON NANO PERFORMANCE RESULTS.  

Jetson Nano FPS CPU/GPU Inference 
time 

Total 
Power 

Dlib 20 70%/10% N/A 5600 mW 

Mediapipe 2 80%/20% N/A 5500 mW 

YOLO CPU 3 90%/30% 280 ms 6900 mW 

YOLO GPU 5.5 25%/90% 138 ms 6650 mW 
 

TABLE II.  JETSON ORIN NANO PERFORMANCE RESULTS 

Jetson Orin Nano FPS CPU/GPU Inference 
time 

Total 
Power 

Mediapipe + Dlib 13 25%/25% N/A 4600 mW 

YOLO CPU 1 99%/0% 750 ms 7075 mW 

YOLO GPU 22 25%/75% 28 ms 8300 mW 

 

 The MediaPipe library is still in development, and they still 
do not include GPU support for their AI solutions. Therefore, 
the performance of the pose landmark detector is not as good as 
it could be, but it is still way better than in the Jetson Nano due 
to the improved CPU capabilities in the Orin Nano. The YOLO 
CPU in the Jetson and the Orin are both slower than their GPU 
counterparts. Especially, in the Orin Nano the improvement in 
using the GPU to run YOLO is great, due to the increased 
capabilities of the Orin. The YOLO GPU in the Jetson Nano and 
the Orin Nano use the same code so it is very clear how the Orin 
Nano is immensely superior to the Jetson in FPS and inference 
time, while using a smaller percentage of their respective GPUs. 
However, this improvement also brings a higher power 
consumption. 

V. CONCLUSIONS 
This work presents an edge computing Smart Camera for 

surveillance capable of detecting, tracking, and identifying 
human presence through face recognition in real time. The 
system can be controlled remotely through a web application 
and used in manual and automatic modes. The web application 
allows users to view the real-time video footage remotely, and 
control the camera's point of view and angles. It also makes the 
system perform automatic people detection and face recognition 
up to 20 feet while tracking the subjects to be in the frame. The 
system is based on an ArduCam IMX477 12MP PTZ camera 
and uses a Jetson Nano single-board computer as the main 
processing module to control the servomotors for the camera, 
run the computer vision algorithms, stream video to the web 
application and respond to remote user commands. We 

conducted tests with night vision images, yielding satisfactory 
results and demonstrating the system's adaptability to various 
lighting conditions.  

Finally, this paper examines the feasibility of deploying the 
system on different boards, comparing the performance of the 
Jetson Nano against the Jetson Orin Nano. The findings 
highlight the importance of utilizing software instructions to 
effectively leverage the hardware's computational power and 
GPU for optimal model inference.  
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