

AI-Based Eye Tracking for
Human-Computer Interaction

David Sancho Crespo1,2, Xinrui Yu1 and Jafar Saniie1

1 Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu/)
Department of Electrical and Computer Engineering Illinois Institute of Technology, Chicago IL, U.S.A

2 E.T.S.I Industriales, Universidad Politécnica de Madrid, Madrid, Spain

Abstract— Human-computer interaction (HCI) is a field that has
grown enormously in importance in recent times, with the spread
of the personal computer. However, HCI devices have had little
evolution since their first designs. Prolonged use of the mouse can
cause injury or permanent damage to the hands and wrists. So,
this paper proposes an alternative to the conventional mouse that
does not require the use of hands and works only with a webcam.
A program has been developed that performs all the functions of
the mouse based on the image of the user's face captured by the
camera. The cursor moves to the position of the screen where the
user is looking at in real time, while the rest of the functionalities
such as clicks and scrolling are controlled with facial commands,
such as winking or tilting the head. To implement these functions,
several tools based on artificial intelligence have been used, such
as a facial landmark detector, a gaze vector estimator, and a fully
connected multilayer neural network.

Keywords—human-computer interaction, eye tracker, gaze
vector, artificial intelligence, MediaPipe, computer mouse

Introduction

Human-Computer Interaction (HCI) is the field of study that
focuses on optimizing the way users interact with computers. To
this end, interactive interfaces are designed for computers that
meet the diverse needs of users. The most important types of
HCI devices are the monitor, keyboard, touchpad, and mouse.
The mouse is a handheld device that detects a two-dimensional
movement. This movement results in the motion of a cursor or
pointer on a screen. Generally, the mouse also includes three
buttons, one of which is a scroll wheel.

In recent decades the use of the computer has spread hugely,
with the arrival of the personal computer. In the United States,
74% of adults owned a computer in 2019 [1]. The mouse is one
of the most important peripherals to control a computer, so they
are almost inseparable.

This massive use of the computer mouse has brought to light
some serious health problems that can be generated by its use
over time. Repetitive and prolonged postures caused by the
mouse can lead to musculoskeletal injuries to the arm. Mouse
use for more than 20 hours a week can cause hand and wrist
injuries while use extended to more than 30 hours a week can
lead to carpal tunnel syndrome [2].

This paper analyzes and proposes an alternative that parts
ways with conventional HCI methods, since it aims to use a
system based on eye tracking technology that does not require
the use of hands to perform mouse functions. The system
follows the movement of the eye to identify where on the screen
the user is looking at, and moves the pointer to that position. In
addition, the system uses facial gestures, such as winking,
opening the mouth, or tilting the head to perform the rest of the
mouse functions such as scrolling or clicking.

This alternative has advantages for users beyond improving
comfort or ergonomics for the arm. The ability to control
traditional mouse functions hands-free improves accessibility
for people with disabilities, injuries, or illnesses that affect their
motor abilities in the arms in general. For example, people with
arthritis.

Some examples of companies that market eye-trackers are
Tobii or Gazepoint [3]. But these products have several
disadvantages. The first problem is the cost of the software and
the specialized hardware. Second, these devices only perform
the function of eye tracking. To implement an HCI system,
additional software is needed to act as an intermediary between
the eye tracker and the computer, to perform all the
functionalities of the conventional mouse.

This paper proposes a system that solves these problems. For
this, a single computer program is developed that performs all
the functions of a conventional mouse by means of facial
instructions and an eye tracker. The user's face is captured only
by a normal webcam. In this way, the system aims to be cheaper
and more flexible than commercial applications using
specialized hardware. Using a webcam also increases the
accessibility of the program since most computers today include
their own camera.

However, webcam-based eye trackers are the least accurate.
Therefore, different image processing methods will be analyzed
to evaluate which one provides greater accuracy. In this analysis,
traditional methods and more innovative methods based on
artificial intelligence are included.

I. IMPLEMENTATION

A. Analysis of Traditional Methods
To implement an eye tracker, it is necessary to detect the

center of the user's eye. A common practice in object detection
is to move from large objects to small ones. This saves a lot of
computational power and makes the process much faster. In
addition, it helps to avoid possible false detections. For this
reason, the implementation of the eye tracker is divided into
several steps: detecting the face in the full frame of the image,
then detecting the eyes inside the sub-image of the face, and
finally detecting the iris and center of the eye inside the sub-
image of the eye region.

Several techniques were tested for these tasks. Two methods
have been studied for face detection: template matching [4] and
Haar Cascade classifiers [5].

The previous methods can also be used for eye detection.
However, in this paper, another method has been studied, which
uses a detector of facial key points to distinguish the different
elements of a face. This method is explained in [6]. The Dlib
library of Python includes an algorithm that can detect 68 key
points, including the 6 key points in the outline of the eyes. The
Dlib library implements the method developed by Kazemi and
Sullivan in 2014 in [7].

Finally, two image processing methods were tested to find
the center of the iris or pupil, blob detection and contouring.
With image processing tools found in OpenCV, the region of the
eye can be turned into a black blob [8] on a white background.
Then, the blob can be approximated to a circle to find the center.
An example can be seen in Fig. 1.

Fig. 1. Blob detection process to find the center of the eye

For contouring, first, the eye key points obtained with Dlib
can be used to isolate the area between the eyelids. A binary
threshold can then be applied to this area to differentiate the iris
from the white part of the eye. Once the iris stands out from the
rest of the eye the outline of the iris can be found with the
OpenCV function findContours(). The center of the contour is
then calculated using the moments() function. This process is
explained in more detail in [9].

B. Advanced Tools Based on Artificial Intelligence
The previous methods and algorithms are based on image

processing techniques or machine learning models that were
developed years ago. After studying and testing some of them,
it can be said that the facial and eye detection methods work
correctly. But, iris detection methods present many problems.
These methods require the user to stay still and be close to the
camera. In addition, you have to keep your eyes wide open in an
unnatural position. On the other hand, these methods are very
dependent on lighting. Finally, the precision when positioning
the center of the iris was insufficient.

Getting the pupil positioned accurately is essential to create
an eye tracker so the previous methods were discarded. Then,

two more advanced and recent methods that are based on more
complex machine learning models were studied to track the
eyes.

a) MediaPipe
MediaPipe is an open-source platform developed by Google

that provides a wide range of tools and components for real-time
video processing tasks using AI, that are designed to consume
as little computational power as possible. Specifically, this paper
uses one of MediaPipe's AI solutions, which is a facial landmark
detector.

The detector uses machine learning models that can work
with both individual images and videos. The detector generates
478 three-dimensional key points of the face to infer facial
surfaces in real time [10]. To perform this task, MediaPipe
combines the use of two models, a face detector and a facial
mesh model.

The face detector is a variant of the BlazeFace model.
BlazeFace is a lightweight and accurate detector optimized for
GPU inference [11]. This model is so lightweight because it uses
a mobile feature extraction network, similar to MobileNet [12].
BlazeFace is optimized for images of people from a smartphone
camera or webcam, where the subject's face is at a short distance.
So, this solution works especially well in the environment of this
paper, for the application of HCI.

The facial mesh model analyzes the result of the BlazeFace
model and performs a complete mapping of the face to estimate
the 478 facial key points. The specifications of this model can
be found in [13].

Therefore, the result of using this MediaPipe detector is a
series of facial key points, that include points for both the iris
perimeter and the pupil center. Then, this detector performs the
three steps of an eye tracker that were discussed in the section
on traditional methods: facial detection, eye detection, and pupil
detection. In this way, the center of the eyes can be detected in a
more precise way than with the traditional methods.

b) Eye tracker prototype
Using MediaPipe's facial point detector, a prototype eye

tracker was made to move the computer pointer. This prototype
relied solely on the movement of the user's pupils to move the
cursor. The position of the pupils could be known thanks to
MediaPipe’s detector.

For this program to work, a previous calibration was carried
out, which consisted of calculating the coordinates of the user's
pupils when looking at 9 fixed points on the computer screen.
These points are the center, the 4 corners, and the midpoints of
each edge of the screen. Knowing the coordinates of the eyes
looking at each of these points, the position of the pointer at the
rest of the points on the screen was calculated based on a linear
interpolation between the coordinates of the eyes looking at the
reference points and the coordinates in real time.

c) L2CS-Net
The prototype had a serious lack of precision. The movement

of the cursor was only based on the change of position of the
pupils, but the distance that the pupil travels when looking from
one side of the screen to the other is very small. So, it was hard
to get the cursor to point to an exact place. Therefore, to improve

precision, We looked for more reliable options for representing
eye movement than simple pupil position. The chosen method is
the gaze vector.

The gaze vector is a three-dimensional vector that indicates
the orientation or line of sight of the person's eyes with respect
to their head or the surrounding environment. Gaze tracking is a
3D problem, so calculating it is very difficult with a single
monocular camera, as the camera only provides a 2D image. It
can be done using a series of algebraic transformations as
explained in [14]. But this method is extremely complex and it
requires knowing a lot of data from the camera's environment or
making estimates that decrease accuracy. Therefore, a second
approach to calculating the gaze vector is machine learning.

Within the broad field of machine learning, convolutional
neural networks have made progress in predicting gaze
direction. In particular, for this paper, a recent model explained
in an article from last year called L2CS-Net [15] has been
studied. The researchers and authors of this article developed a
state-of-the-art model to perform the estimation of the gaze
vector and published it as open source to be used by other
researchers.

L2CS-Net takes facial images as input and feeds them to a
CNN with ResNet-50 base architecture to extract spatial
features. It then uses two independent fully connected layers to
predict the two exit angles of the gaze vector independently.
These outputs are the yaw and pitch angles of the spherical
coordinates.

Therefore, in this paper, the L2CS-Net model is used to
process each frame captured by the camera and it estimates two
angles, pitch and yaw, which indicate the direction of the user's
gaze. These angles can be used to track where the user looks
instead of the coordinates of the pupils.

d) Neural Network
The previous section explained the operation of the L2CS-

Net model, which can be used to achieve the user's gaze vector
for each frame captured by the webcam. This vector can be used
to track the user's vision, but to implement an HCI program that
performs the same functions as the mouse, it is necessary to
translate the angles of the gaze vector to the position of the
screen to which the user is looking at in each moment.

In the prototype, this task is achieved with a previous
calibration step that finds the coordinates of the pupils when the
user looks at 9 predetermined points on the screen. The rest of
the screen positions are calculated by interpolating the known
points. This causes the problem that the user has to remain
stationary in the same position where the calibration was carried
out.

However, for the final version of the program, this paper
proposes to perform this task using a neural network, a
multilayer perceptron. The network’s inputs are numerical
features obtained from each frame of the webcam such as pitch
angle, yaw angle, coordinates of some facial points, and depth
distance between the camera and user. While the output will be
the x-coordinate and y-coordinate of the pointer on the screen
on the computer.

This neural network performs a very specific task, so the
database to train the model had to be created from scratch. Each
entry of the database has 11 values:

• Yaw and pitch angle of the gaze vector estimated with
L2CS-Net (2 values).

• X and y coordinates of the following facial points: nose,
right ear, and left ear. Estimated with MediaPipe (6
values).

• Depth distance between camera and user, estimated
with MediaPipe (1 value).

• X and y coordinates of the mouse pointer (2 values).

Each entry of the database was taken with a program that
captures a frame of the webcam’s footage when the user is
looking directly at the pointer. This program then estimates the
mentioned input features using the AI tools. These input features
correspond to the position of the screen indicated by the pointer.
In total, about 9000 samples have been taken during the writing
of the paper to train the neural network.

This type of data is called labeled since, for each group of
network input data or features, the corresponding outputs are
also saved. The labeled data is used to train a type of machine
learning algorithm that is called supervised. Supervised
algorithms are trained by minimizing an error function that
compares the output of the network in its present training state
with the labels of the known data. To minimize error, different
optimization methods based on the gradient of the error function
can be used, for example, the stochastic gradient descent
method. But to train the network of this paper we have used the
Adam optimizer.

For the training process of the neural network, of the 9000
samples collected, 8000 have been destined for training data, of
which 10% have been used as validation data. The remaining
1000 samples have been destined to test data.

To carry out the entire process of design and training of the
neural network, Google Colab has been used, an online platform
for Python programming. TensorFlow is the framework that has
been chosen to develop the network model.

e) Depth distance measurement
It was mentioned that the depth distance was used as an input

feature for the neural network. It is the distance between the
camera and the head of the user. This is an important feature
because it provides information about the position of the user’s
head in relation to the camera and the screen, but this distance is
not easy to estimate with a single monocular camera, which is
the only available resource of the paper. However, thanks to the
good accuracy of MediaPipe's face key points detector, distance
estimation can be made as explained in [16].

The depth estimate is based on the fact that the horizontal
diameter of the iris of the vast majority of the world's population
has a constant measurement of 11.7±0.5 mm. This is coupled
with the fact that MediaPipe's facial point detector includes dots
that mark the ends of the horizontal diameter of the iris. Then,
using the pinhole camera model approximation as can be seen in
Fig. 2, the distance d between the subject and the camera can be
calculated if three values are known: the actual diameter of the
iris (11.7 mm), the diameter in pixels of the iris captured by the
camera (calculated with MediaPipe) and the focal length of the

camera f. The distance can be calculated with (1), following the
triangle similarity theorem.

𝑑𝑑 =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑑𝑑𝑤𝑤ℎ
𝑝𝑝𝑖𝑖𝑝𝑝𝑟𝑟𝑟𝑟 𝑖𝑖𝑟𝑟𝑖𝑖𝑖𝑖 𝑤𝑤𝑖𝑖𝑑𝑑𝑤𝑤ℎ

 × 𝑓𝑓 (1)

The f was calculated experimentally, clearing the focal
length from the previous formula and calculating the distance d
with a measuring tape in several positions. This method
calculates the distance between the camera and the user with a
relative error of 10% according to [16].

Fig. 2. Pinhole camera model

C. Final HCI Program to Replace Mouse
The code of the final HCI program of the paper was written

using all the models described in B. This program is developed
in Python and performs all the functions of a conventional
mouse, which are:

• Move the cursor.
• Make left and right button clicks.
• Double-click.
• Scroll down and up.
• Press and hold the left click for selection.

To execute these functionalities, the program imports the
PyAutoGUI library, which executes functions that control
mouse functionalities. In addition, the program imports the
Pytorch library, a face detector, and the L2CS model to calculate
the gaze vector. MediaPipe is also imported to calculate the
coordinates of facial points and depth distance. The
keras.models library of TensorFlow is imported to be able to
load the neural network that was trained in Google Colab.

The following two sections explain in more detail how
human-computer interaction works.

a) Pointer Movement
As explained, L2CS-Net and MediaPipe are used to extract

features from the frame. These features then enter two neural
networks that calculate the xy position that the pointer should
take on the screen. This method follows an eye tracker approach,
in which the pointer is placed where the user is looking.
However, eye trackers never have perfect accuracy and it is
rarely better than 2 centimeters. In addition, those that achieve
greater accuracy are those that use specific hardware such as IR
sensors. On the other hand, webcam-based trackers, like the one
in this paper, are the less accurate ones. Finally, the tracker
proposed in this paper achieves about 3-4 cm of accuracy.

This level of precision is not enough to move the computer
cursor, so a method has been devised that performs the
movement of the pointer in two phases. First, the described eye
tracking system is used, this phase is designed to quickly move
the cursor to an approximate point of the screen, close to the
target. Once the pointer approaches the target, the second phase
is activated. In this phase, the eye tracker is deactivated and the
computer pointer mimics the movement of the facial point of the
user's nose.

To choose which method controls the mouse pointer, a facial
command has been chosen, which is to open the mouth. That is,
when the user's mouth is closed, the pointer moves to the
position where the user is looking. When the user opens the
mouth, the eye tracker is deactivated and the pointer moves with
the nose. The program detects whether the mouth is open or not
using the coordinates of two facial points that are calculated with
the MediaPipe’s detector.

b) Other functionalities
This section explains the other functionalities of the HCI

program. These are, left mouse click, right click, double click,
scroll down or up, and hold left click to select. These actions are
executed by different facial commands that the program can
detect due to the relative positions of various facial points that
can be calculated with MediaPipe.

Mouse clicks are achieved by making a quick wink. When
the right eye is winked, a right click is made and if the left eye
is winked, a left click is made. If both eyes are closed at the same
time, the program does nothing because it considers it to be a
normal blink. To detect if one eye is closed or not, MediaPipe's
facial point detector has dots on the edges of each eyelid. By
comparing the y-coordinate of those points you can discern if
the eye is closed or not.

When an eye is reopened after making a wink, if it has been
a quick wink, the program executes the click function of the
PyAutoGUI library. In addition, if the user has winked the left
eye, when the eye is opened a timer is activated. If the user
makes another quick wink of the left eye before a second has
passed, the program executes the double-click instruction
instead of performing a normal left-click. The one-second time
can be adjusted in the program according to the user's
preferences.

Before, there was talk about a quick wink. However, if the
user keeps the left eye closed for longer, instead of making a
click, the program performs the function of holding the left
mouse button down to select. The moment the left eye is
reopened, the button is no longer pressed.

However, to select, you also have to move the cursor while
holding down the click. To achieve good precision during the
selection, a special way of moving the cursor has been
implemented that is activated exclusively when the left eye is
making a long wink. When the program begins to select, the
position of the tip of the nose at that moment is saved as a
reference. The program calculates four different sectors around
the reference, as can be seen to the left of Fig. 3. Then, while the
user keeps his eye winked, when the point of the tip of the nose
enters one of the sectors, the cursor begins to move in that
direction with a constant speed. Therefore, while the cursor is

being selected it can only move in four directions. The speed can
be adjusted from the program code.

The last functionality that remains to be explained is the

scroll. To perform this action, the facial commands that the user
has to do are to tilt the head up to scroll up or down to scroll in
this direction. To know if the user is tilting his head, the program
uses the vertical coordinates of 3 points found with the
MediaPipe’s detector. These points are the tip of the nose, upper
lip, and forehead. Fig. 4 shows the flowchart of the full HCI
program that has been discussed in this section.

II. RESULTS AND DISCUSSION
The paper has been developed and tested on an HP Pavilion

Gaming Laptop 16-a0xxx, with an Intel(R) Core (TM) i5-
10300H processor @2.50 GHz and 32 GB RAM.

A. Results of the Eye Tracker
To design the neural networks, the loss in the validation data

was analyzed to choose the values of several hyperparameters.
Some of the most important hyperparameters are the number of
layers of the network and the number of neurons in each layer.
For the neural network that calculates the x-coordinate of the
pointer, a network of 6 fully connected layers has been used. The
first two layers have 64 neurons, the next two have 128, and the
last two have 256 neurons. Apart from these two layers, there is

the input layer that depends on the number of inputs and the
output layer that only has one neuron, because the network only
calculates one value. All layers use the RELU activation
function. In addition, it is very important to add a normalization
layer at the beginning of the network, because with the
unnormalized data, the networks do not work.

The network to calculate the y-coordinate is simpler since no
significant difference was appreciated when increasing the size
of the network. This network only has 3 fully connected layers
of 64 neurons each. It is also necessary to normalize the data for
this model.

Three other hyperparameters that are also very important are
the error function, the optimizer, and the learning rate. After
testing several options provided by Tensorflow, the best error
function was the mean square error. The optimizer chosen was
Adam, after trying others such as SGD and Adadelta that
provided worse results. The learning rate that performed best in
the tests was 0.0005.

The performance of the neural network has been measured
with the mean absolute error across the test data, comparing the
difference between the expected x and y coordinates with the
real value of the screen position in each test sample. The mean
absolute error for all test data is 103 pixels for the x-coordinate
and 115 pixels for the y-coordinate. The screen used for the
paper has 1920x1080 pixels and measures 35.5x20 cm.
Therefore, the mean absolute error is approximately 1.9 cm for
the x-coordinate and 2.1 cm for the y-coordinate.

Fig. 5 shows the histograms of the errors for individual

samples. For the x-coordinate, it seems that the histogram is
quite centered on zero so there is no pronounced error in one
direction than in another. While in the y-coordinate there is a
greater number of samples with negative error. The coordinate
system used by the program places the origin at the top of the
screen and the coordinates grow downwards. So, this error
means that the network calculates a position for the pointer
lower than it should be, since the value predicted by the network
is greater than the actual value of the sample.

B. Results of the Final Program
The final program brings together the tools described:

MediaPipe’s detector, L2CS-Net, and the neural network. In
addition, the program periodically queries facial commands to
detect when it has to execute a mouse function. Putting together
the execution of so many models and functionalities makes the
operation of the program lower its processing speed.

Fig. 3. Example of the pointer movement system while the selection process is
taking place

Fig. 4. Flowchart of the HCI program to replace the mouse

Fig. 5. Representation of the position error between the network’s predictions
and the real labels for the test data

When the program is using neural networks to move the
cursor it has a stable speed of 3.5 FPS. When the user opens the
mouth, neural networks are not used, as the cursor moves with
the motion of the nose. In this case, the program only processes
the frame with MediaPipe and L2CS-Net, so the program works
at 6 FPS. Clicks are triggered with a quick wink. This is the most
difficult facial command to detect by the program since eyelid
movement is very fast. However, clicks are usually made when
the user has their mouth open because they have more precise
control over the pointer. At that moment the program processes
6 frames per second so it is fast enough to detect most winks.

Sometimes the program fails to detect a wink or detects a
wink erroneously when the user blinks, but based on system tests
these glitches are unusual. The rest of the facial commands to
select or scroll are continuous in time so the program detects
them without errors.

The accuracy of the movement of the pointer when moving
with the nose is good since the MediaPipe facial landmark
detector is very accurate and locates the tip of the nose well.
When the movement of the cursor is made with the gaze using
neural networks, the precision corresponds to that described in
the previous section, which was an error of approximately 2 cm
in both directions. However, this error is not homogeneous
across the screen. Table 1 breaks down the mean absolute error
by screen quadrants in the test samples.

TABLE 1. ABSOLUTE ERROR BY SCREEN QUADRANT

Screen Quarter Error X pixels Error Y pixels
Top right 91 90
Top left 108 88

Bottom right 117 135
Bottom left 99 168

A larger error can be observed in the lower half of the screen.
The webcam is located just above the screen, so this is possibly
because the bottom is farther away from the camera. However,
getting a real measure of pointer accuracy is very difficult as
accuracy varies, not only depending on the quadrant of the
screen being looked at, but also depending on the position in
which the user is in relation to the computer and camera.

III. CONCLUSION
The paper consists of the design and implementation of a

computer program for human-computer interaction or HCI,
which performs all the functions of a traditional mouse without
the need to use hands.

Moving the pointer is the most complex since it is difficult
to create a system fast and comfortable to use and with enough
precision to be able to move the cursor of the computer without
hands. Therefore, a system has been implemented that uses the
eye tracker to quickly move the cursor around the screen without
much effort, while in short distances a secondary system can be
used that moves the pointer mimicking the movement of the
nose. The secondary system is only used to move the cursor
from 2 to 3 cm, so the system achieves pinpoint accuracy
without completely discarding the comfort and speed of the eye
tracker.

In this way, the paper proves that new and improving AI
technologies plus better and more widely available webcam
hardware can be an alternative to the mouse, for numerous users
who suffer from injuries or diseases that affect their motor
abilities in arms or hands. In addition, it can also prevent the
damage derived by the continued use of a computer mouse, for
any computer user.

REFERENCES
[1] T. Alsop, “Desktop/laptop ownership among U.S. adults 2008-2019,”

Statista, https://www.statista.com/statistics/756054/united-states-adults-
desktop-laptop-
ownership/#:~:text=As%20of%20February%202019%2C%2074,a%20d
esktop%20or%20laptop%20computer. (accessed Jul. 11, 2023).

[2] N. Dehghan, “Designing a new computer mouse and evaluating some of
its functional parameters,” researchgate,
https://www.researchgate.net/publication/261609866_Designing_a_new
_computer_mouse_and_evaluating_some_of_its_functional_parameters
(accessed Jul. 11, 2023).

[3] “Eye tracking market research,” Explorer Research,
https://explorerresearch.com/eye-tracking-market-research/ (accessed
Jul. 11, 2023).

[4] K. Hashimoto, “Template matching using DSP slices on the FPGA,”
researchgate,
https://www.researchgate.net/publication/262424493_Template_matchin
g_using_DSP_slices_on_the_FPGA (accessed Jul. 11, 2023).

[5] “Face detection using Haar Cascades,” OpenCV, https://opencv24-
python-
tutorials.readthedocs.io/en/latest/py_tutorials/py_objdetect/py_face_dete
ction/py_face_detection.html (accessed Jul. 11, 2023).

[6] A. Rosebrock, “Facial landmarks with dlib, opencv, and python,”
PyImageSearch, https://pyimagesearch.com/2017/04/03/facial-
landmarks-dlib-opencv-python/ (accessed Jul. 11, 2023).

[7] V. Kazemi and J. Sullivan, “One millisecond face alignment with an
ensemble of regression trees,” semanticscholar,
https://ieeexplore.ieee.org/document/6909637 (accessed Jul. 11, 2023).

[8] “Blob detection using opencv,” LearnOpenCV,
https://learnopencv.com/blob-detection-using-opencv-python-c/
(accessed Jul. 11, 2023).

[9] V. Agarwal, “Real-time eye tracking using opencv and dlib,” Medium,
https://towardsdatascience.com/real-time-eye-tracking-using-opencv-
and-dlib-b504ca724ac6 (accessed Jul. 11, 2023).

[10] “Face landmark detection guide | mediapipe,” Google,
https://developers.google.com/mediapipe/solutions/vision/face_landmar
ker (accessed Jul. 11, 2023).

[11] “Face detection guide | mediapipe,” Google,
https://developers.google.com/mediapipe/solutions/vision/face_detector
#blazeface_short-range (accessed Jul. 11, 2023).

[12] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for Mobile Vision Applications,” arXiv.org,
https://arxiv.org/abs/1704.04861 (accessed Jul. 11, 2023).

[13] G. Yan and I. Grishchenko, “MediaPipe Face Mesh,” Google developers,
https://storage.googleapis.com/mediapipe-
assets/Model%20Card%20MediaPipe%20Face%20Mesh%20V2.pdf
(accessed Jul. 11, 2023).

[14] A. Aflalo, “Eye gaze estimation using a webcam,” Medium,
https://medium.com/mlearning-ai/eye-gaze-estimation-using-a-webcam-
in-100-lines-of-code-570d4683fe23 (accessed Jul. 11, 2023).

[15] A. A. Abdelrahman, T. Hempel, A. Khalifa, and A. Al-Hamadi, “L2CS-
net: Fine-grained gaze estimation in unconstrained environments,”
arXiv.org, https://arxiv.org/abs/2203.03339 (accessed Jul. 11, 2023).

[16] A. Vakunov and D. Lagun, “MediaPipe Iris: Real-time Iris Tracking &
depth estimation,” Google Research Blog,
https://ai.googleblog.com/2020/08/mediapipe-iris-real-time-iris-
tracking.html (accessed Jul. 11, 2023).

