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Abstract— InfaSafe emerges as a novel approach to infant 

health monitoring, uniquely positioned at the convergence of 
advanced artificial intelligence and edge computing. This system 
is designed not as a definitive solution but as an advanced platform 
for comprehensive data archiving, offering valuable insights into 
the complex and elusive nature of Sudden Unexpected Infant 
Death (SUID). InfaSafe utilizes AI algorithms for real-time pose 
estimation, breathing surveillance, and cry analysis, all within an 
edge computing framework that facilitates prompt and efficient 
data handling. This paper explores the development and 
capabilities of InfaSafe, underscoring its role in providing crucial, 
real-time insights and alerts for caregivers and its potential to 
contribute significantly to our understanding of neonatal health 
and SUID. The focus is on leveraging technological advancements 
to gather comprehensive data, which can be instrumental in 
shaping future research and interventions in neonatal care. 

Keywords—infant monitoring, SIDS, feature extraction, deep 
learning  

I. INTRODUCTION 
Each year, the United States grapples with the tragic reality 

of approximately 3,400 sudden unexpected infant deaths 
(SUID), a term that encompasses fatalities among infants less 
than one year old where the cause is not immediately apparent. 
The Centers for Disease Control and Prevention (CDC) 
categorizes these deaths into three primary types: Sudden Infant 
Death Syndrome (SIDS), with 1,389 cases; unknown causes, 
accounting for 1,062 cases; and accidental suffocation and 
strangulation in bed (ASSB), contributing to 905 cases in 2020 
alone.[1] This distribution underscores the multifaceted nature 
of SUID and highlights the critical need for comprehensive 
preventive strategies. 

Despite significant advancements in infant care and 
monitoring technologies, the decline in SUID (Sudden 
Unexpected Infant Death) rates, which began in the early 1990s 
following the American Academy of Pediatrics safe sleep 
recommendations and the initiation of the Safe to Sleep® 
campaign, has plateaued since 1999 [1]. The CDC's longitudinal 
data reveals a concerning trend: a shift in classification from 
SIDS to either ASSB or unknown causes, suggesting evolving 
patterns in the risk factors associated with these deaths. This 
shift, coupled with the findings from recent studies, points to the 
complex interplay of factors such as sleep position, ambient 
temperature, and bedding, which can significantly influence 
SUID risk [2-3]. 

The InfaSafe project innovates by introducing a 
comprehensive, non-invasive baby monitoring system. This 
system takes advantage of advances in computing technology, 
including Artificial Intelligence for infant pose analysis, audio 
monitoring, thermal imaging to monitor infant breathing, and 
environmental sensors, all seamlessly integrated into an edge 
computing device, empowering parents and caregivers with 
interactive, real-time insights. Infasafe's comprehensive visual, 
audio and environmental information provides a holistic view of 
the baby's well-being. Infasafe is designed to be scalable with 
multiple infant monitoring for use in hospitals and nurseries.  

The primary objective of InfaSafe is to significantly reduce 
the incidence of SIDS, unknown causes, and ASSB by 
providing caregivers and medical professionals with a 
comprehensive, real-time monitoring and data analysis tool. 
This tool adheres to and advances the American Academy of 
Pediatrics' recommendations for a safe sleeping environment, 
incorporating the latest research findings into its design and 
functionality [4]. 

II. RELATED WORKS 
In recent years, rapid advancements in infant monitoring 

systems have been driven by an increasing demand for reliable, 
non-invasive, and affordable solutions. These systems are 
crucial for reducing risks associated with SUID. Traditionally, 
many of these systems have relied on wearable technologies, 
such as smart clothing, bracelets, or patches. While effective in 
monitoring basic vital signs like heart rate and oxygen 
saturation, these wearables often fall short in comfort and 
convenience and may even pose risks to infant safety. 
Additionally, they do not provide a holistic view of an infant's 
well-being. 

In contrast, computer vision and artificial intelligence (AI) 
present promising alternatives that could overcome the 
limitations of wearables. These technologies utilize advanced 
sensors and sophisticated algorithms to capture and analyze a 
wide array of data concerning the infant's behavior, physiology, 
and environment—all without direct physical contact. 
Implementing these cutting-edge approaches in infant 
monitoring, however, introduces several technical challenges. 
These include managing occlusions, optimizing performance 
under low lighting conditions, reducing the impact of noise and 
motion blur, and ensuring the monitoring systems' accuracy, 
robustness, scalability, and interpretability. 

 



A. Pose Estimation 
Recent advancements in pose estimation have significantly 

impacted infant monitoring technologies. Studies like "Simple 
Baselines for Human Pose Estimation and Tracking" by Bin 
Xiao et al. [5] and "Real-time Multi-Person 2D Pose Estimation 
using Part Affinity Fields" by Zhe Cao et al. [6] have simplified 
the complexity of pose estimation algorithms achieving state-of-
the-art results. These methodologies, particularly deep learning 
models for accurate and real-time pose detection, offer a solid 
foundation for applications in non-invasive infant monitoring 
systems. However, adapting these technologies for the specific 
context of infant monitoring, where accuracy and non-
invasiveness are paramount, presents unique challenges. 
InfaSafe leverages these advancements, tailoring pose 
estimation techniques to accurately monitor infants' movements 
and positions without physical contact, addressing the critical 
need for safe and effective monitoring solutions. 

B. Respiration Rate Monitoring 
Monitoring respiration rates in infants has seen promising 

developments through non-contact methods, notably thermal 
imaging. Research by Lalit Maurya et al. [7] and Carina Barbosa 
Pereira et al. [8] has demonstrated the efficacy of thermal and 
visible imaging in accurately detecting neonatal respiratory 
rates. These studies underscore the potential of thermal imaging 
as a non-invasive technique capable of overcoming the 
limitations posed by traditional contact-based sensors, such as 
skin damage in preterm neonates. Despite these advancements, 
ensuring the accuracy and reliability of respiration rate 
monitoring in various environmental conditions remains a 
challenge. InfaSafe incorporates these non-contact thermal 
imaging techniques, enhancing the system's ability to monitor 
respiration rates accurately and safely, even in challenging 
conditions. 

C. Cry Analysis 
The analysis of infant cries as a means to diagnose and 

understand infants' needs has advanced with the application of 
methodologies from automatic speech recognition. The work of 
Liu et al. [9] in classifying cry signals based on audio features 
has opened new avenues for non-invasive diagnostics. By 
employing techniques such as linear predictive coding and Mel 
frequency cepstral coefficients [9], researchers have developed 
systems capable of interpreting a baby's needs from their cries, 
potentially reducing caregiver stress and aiding in the early 
diagnosis of conditions. However, distinguishing between 
normal and abnormal cries, especially in noisy environments, 
poses significant challenges. InfaSafe aims to build upon these 
cry analysis techniques, integrating advanced audio processing 
algorithms to enhance the system's ability to provide actionable 
insights into infants' well-being based on cry analysis.  

III. SYSTEM DESIGN 

A. System Description 
InfaSafe is architected as a comprehensive IoT device to 

enhance infant care by monitoring critical health parameters in 
real time (see Fig. 1). It integrates advanced hardware and 
software to provide a holistic view of an infant's well-being. 

 
Fig. 1. InfaSafe System Map 

InfaSafe employs known mitigation techniques against 
Sudden Unexpected Infant Death (SUID) by monitoring sleep 
ecology, environment, body temperature, sound, and respiration 
rate, leveraging AI to analyze and interpret complex data 
streams. InfaSafe Research and Data Archiving promotes 
pediatric research by archiving data related to SUID risk factors 
and events that could lead to unexplained infant deaths, offering 
valuable insights for future studies. User Interface and 
Accessibility designed with caregivers in mind, InfaSafe 
features an intuitive UI that delivers real-time information 
processed on the edge. It ensures safety, affordability, and ease 
of use without requiring subscriptions. An encrypted cloud 
infrastructure facilitates secure sharing with healthcare 
professionals for enhanced pediatric care. 

A. Hardware Components 
Jetson Nano serves as the core processing unit, equipped 

with an NVIDIA 128 CUDA core Maxwell GPU for efficient 
parallel computations. The system is designed for AI edge 
applications, capable of handling real-time AI processing tasks. 
The connected WiFi adapter ensures wireless connectivity, 
enabling seamless data transmission and system integration with 
the cloud and mobile devices. 

Webcam/Microphone (Logitech C920X Pro Webcam): 
provides high-resolution video capture with low-light features. 
The webcam's stereo microphone is crucial for the cry analysis 
feature, capturing high-quality audio data for precise sound 
analysis. 

Thermal Imaging Camera Module (FLIR Teledyne Lepton 
3.5) features allow for high-accuracy measurements with 
minimal calibration. It produces frames at nine fps, allowing for 
accurate respiration rate frequency sampling and providing 
accurate real-time data. Its less than 50 millikelvins thermal 
sensitivity enables it to detect minute temperature variations, a 
key aspect for accurately monitoring an infant's thermography. 
This high level of sensitivity is crucial for precise temperature 
measurements and for detecting changes essential in calculating 
infant body temperature variations and respiration rates. 
Breakout Board Thermal Module (PureThermal2 GroupGets): 



This breakout board from GroupGets for the Lepton camera 
module provides onboard image processing. 

The AHT10 temperature and humidity sensor provides 
accurate environmental readings. These measurements are vital 
for maintaining a safe infant sleep environment and calibrating 
the thermal frames. 

B. Software Libraries 
The InfaSafe system's design integrates a carefully curated 

selection of software libraries and frameworks, each chosen for 
its specific capabilities to optimize performance, ensure 
reliability, and enhance user experience. Below, we detail the 
components in the logical order of their roles and interactions 
within the system. 

1)  NVIDIA JetPack (Operating System):  NVIDIA JetPack, 
the foundational operating system, is crucial for managing the 
Jetson Nano's capabilities. It enables hardware acceleration, 
which is essential for the processing-intensive tasks that 
InfaSafe requires, such as real-time pose estimation and 
thermal image analysis. JetPack's comprehensive suite of tools 
and libraries ensures the system can efficiently manage its 
computational resources. 

2)  Jetson Inference: Following the operating system, 
Jetson Inference [10] is a deep learning library that harnesses 
the power of JetPack to provide AI-driven functionalities, 
including human pose estimation through PoseNet. This library 
is instrumental in enabling efficient inference on the Jetson 
Nano, utilizing the hardware acceleration provided by JetPack 
for real-time data processing. 

3)  Python Programming Language:  Python is chosen for 
its readability, simplicity, and extensive ecosystem, which 
includes libraries for scientific computing, machine learning, 
and data visualization. InfaSafe leverages Python for its core 
programming due to these strengths. Specifically, the Jetson 
Utils included in Jetson Inference are utilized for seamless 
hardware communication, facilitating direct interaction with 
the system's AI models and sensor data. 

4)  Sensor Integration Libraries: The Adafruit 
CircuitPython library integrates the AHT10 temperature and 
humidity sensor, showcasing Python's versatility in handling 
hardware communication. CircuitPython offers a user-friendly 
approach to accessing sensor data, which is crucial for 
monitoring the environmental conditions around the infant. The 
GroupGets UVC Library is essential for interfacing with the 
Lepton 3.5 thermal imaging camera, enabling high-precision 
thermal data capture. 

5)  Image and Signal Processing:  OpenCV: For image 
processing tasks, OpenCV is employed to interpolate and align 
IR and RGB frames, a crucial step for accurate thermal 
readings. Its robust functionalities support the system's need for 
precise image manipulation. NumPy and SciPy: These libraries 
are fundamental for manipulating IR frame arrays and 
performing signal processing, especially for calculating the 
respiration rate. NumPy's efficient handling of large, multi-
dimensional arrays and matrices, combined with SciPy's signal 
processing modules, enables real-time sensor data analysis. 

6)  Audio Processing Libraries: Librosa: Utilized for 
detailed audio analysis, Librosa aids in extracting features from 
the baby's sounds, which is vital for identifying different states 
or needs based on audio cues. PyAudio: This library captures 
audio data, facilitating the monitoring of sounds within the 
baby's environment. 

7)  User Interface (UI) Frameworks: Flutter: For the 
mobile application, Flutter is chosen for its ability to create 
natively compiled applications for multiple platforms from a 
single codebase. This cross-platform UI framework allows 
parents to receive real-time data visualization and alerts on their 
devices, enhancing the system's user engagement and 
interaction. Flask: It serves as the foundational framework for 
our web-based user interface, enabling caregivers to monitor 
their infants remotely with ease and security. This lightweight 
yet powerful Python framework is at the heart of our 
application's backend, supporting the development of 
responsive web applications capable of efficiently handling 
Hypertext Transfer Protocol Secure HTTPS requests. A key 
aspect of Flask's utility in our system architecture is its seamless 
integration with Application Programming Interfaces (APIs), 
which facilitate communication between the web interface, the 
application's backend, and external services.  

IV. IMPLEMENTATION 

A. AI-Driven Features 
The section on AI-driven features in the InfaSafe system 

introduces the core technological innovations that underpin its 
monitoring capabilities. InfaSafe incorporates sophisticated 
artificial intelligence to enhance infant safety comprehensively. 
This segment explicitly outlines the integration of two key 
components: pose estimation and audio analysis. 

1)  PoseNet: PoseNet's application within InfaSafe is pivotal 
for assessing the infant's sleeping position. It is precisely 
engineered to detect the positioning of the nose and eye key 
points, enabling the system to evaluate whether an infant is in 
a safe sleeping posture. An 'unsafe sleeping position' event is 
triggered if the nose keypoint is not detected within the camera 
frame, signaling potential risk and alerting caregivers. Our 
implementation leverages the convolutional backbone of 
DenseNet121, selected for its depth and compatibility with 
infrared frame interpolation. This choice balances the need for 
a comprehensive depth of analysis with the requirement for 
maintaining sufficient frames per second (fps) for accurate pose 
estimation and seamless integration with thermal imaging data. 
DenseNet121 and ResNet18 represent two pre-trained models 
available within Jetson Inference for PoseNet deployment. 
These models, distinguished by their unique architectural 
designs—ResNet18's efficient residual learning approach and 
DenseNet121's dense connectivity pattern—offer a spectrum of 
capabilities. ResNet18 is optimized for speed, making it ideal 
for real-time applications with limited computational resources. 
DenseNet121, though requiring more computational power, 
excels in accuracy due to its complex structure and extensive 
layering. The choice between ResNet18 and DenseNet121 for 
PoseNet's deployment hinges on the specific demands of the 



monitoring scenario—balancing between the necessity for real-
time performance and the imperative for precision. In our 
application, DenseNet121's superior depth facilitates a more 
detailed analysis, which is crucial for infant monitoring. 

2)  Cry Analysis:  For the separate aspects of cry analysis for 
baby monitoring, we tackle identifying the presence of a cry 
and the classification of one. To enable this, we require a 
dataset combining infant crying and other ambient sounds 
familiar in a household. We use the Donateacry dataset [11] and 
the ESC-50 audio dataset [12] for this. The Donateacry corpus 
was part of a campaign for users to upload their infant's crying 
along with metadata. There are five types of cries in the cleaned 
data: hunger, need for burping, belly pain, discomfort, and 
tiredness. For this database, the clips are tagged by the users 
themselves. Also, more than half of the labels are 'hungry.' This 
poses an obvious limitation of the efficacy of the labeling, but 
our considerations were put to the side due to the scarcity of 
data. There is a total of 457 5-second clips after data processing. 
ESC-50 is a collection of 2000, 5-second-long recordings of 
environmental Audio divided into 50 semantical categories. 
One of these categories is removed in feature extraction 
because it is 'crying baby.' The feature selected for 
classification is the first ten the Mel frequency Cepstral 
Coefficients (mfccs) averaged over the 5-second clip. 

For identification of the crying, we use a support vector 
machine (SVM) with an Rbf kernel [13]. The SVM is trained 
on a combined Donateacry and ESC-50 dataset. The ten mics 
are extracted from the audio clips and averaged to be the feature 
extracted from the clip. We will use a k nearest neighbors model 
(KNN) with three neighbors for the classification. Here, we use 
the KNN model because as we only use the Donateacry dataset, 
the feature space cannot be segmented to produce sufficient 
results (a valid positive classification rate > 20% is better than 
guessing randomly uniformly). Both models use sci-kit-learn as 
their backing implementation. 

The real-time audio analysis works by gathering the Audio 
through an input stream opened by Pyaudio. The handler uses a 
callback function that operates on chunks defined by the class 
initialization. In our case, there are 2048 audio frames per 
chunk. These audio frames are collected inside the class and 
every five seconds, the mfccs for each frame is computed and 
averaged, and then a prediction is generated for the SVM and 
KNN models. 

B. Thermal Imaging & Sensor Integration 
1)  Body Temperature: The body temperature monitoring 

module is intricately designed to work in tandem with the 
PoseNet model to accurately determine the infant's body 
temperature through facial feature recognition. This system 
employs the Lepton 3.5 thermal imaging camera, leveraging the 
camera's precision in detecting thermal variances. A 
transformation matrix converts RGB frame key points 
specifically those identifying the infant's facial features into 
corresponding locations within the IR frame. Special attention 
is given to the regions around the right and left eyes, from 
which the highest temperature values are extracted. This 
selection is based on research indicating the eyes as reliable 

indicators of core body temperature. By mapping thermal data 
onto these keypoints, the module ensures precise and targeted 
temperature measurements. 

2)  Respiration Rate:  The monitoring of the respiration rate 
adopts a similar approach to body temperature measurement by 
creating a specific region based on the nose keypoints within 
the IR frame. This region encompasses the nostrils and the area 
directly below them, capturing the temperature fluctuations that 
occur with each breath. Unlike the method for body 
temperature, which seeks the maximum temperature, the 
average temperature within this region is calculated and 
analyzed over time to determine the respiration rate.  

The development of the respiration rate analysis algorithm 
draws upon critical findings from leading research [7,8], 
focusing on the area beneath the nose where temperature 
changes due to breathing are most pronounced. The algorithm 
identifies the respiration rate by analyzing temperature 
fluctuations in the frequency domain, effectively isolating the 
breathing frequency from unrelated noise.  

To refine the accuracy of this analysis, advanced digital 
signal processing techniques are applied: 

1)  Initial Processing: A Hamming window is applied to the 
data of the nose region, emphasizing the gradient of 
temperature changes within this area. The average temperature 
of this region across sequential frames forms the basis of our 
respiration signal. 

2)  Signal Processing: The signal, consisting of 270 points 
(equivalent to 30 seconds at nine frames per second), begins 
processing once it accumulates 120 points. This setup includes 
a moving average component to mitigate any displacement of 
the region being monitored. Using the most recent 50 points, a 
Hampel filter identifies and excludes outliers, enhancing signal 
clarity. 

3)  Filtering and FFT: A Butterworth filter removes 
frequencies unrelated to respiration after normalization. 
Subsequently, the Fast Fourier Transform (FFT) magnitude is 
computed. The dominant frequency identified in this spectrum 
corresponds to the infant's respiration rate, providing a precise 
measurement. 

4)  Data Continuity: To maintain the integrity of the 
analysis, the data buffer is reset if the nose point becomes 
undetectable, ensuring only relevant and continuous data is 
processed. 

This section demonstrates the integration of advanced 
thermal imaging techniques with sophisticated signal 
processing algorithms to monitor vital health parameters non-
invasively, enhancing the InfaSafe system's capability to 
provide real-time, accurate health monitoring of infants. 

C. Software Architecture 
Integrating diverse technologies into a cohesive IoT device, 

our project, InfaSafe, presents a sophisticated software 
architecture designed to monitor infant health in real-time. The 
system's operation is orchestrated through six key functional 
threads, each responsible for a distinct aspect of data 



acquisition and processing, ensuring comprehensive 
monitoring and analysis. 

1)  Vision and Position Monitoring:  Utilizing a Logitech 
Camera, the system employs computer vision techniques 
through the RGB Camera Thread. This thread leverages 
PoseNet for continuously monitoring the infant's position, 
capturing real-time video input, and analyzing it to detect the 
infant's posture and movements. 

2)  Thermal Analysis:  The IR Camera Thread takes on the 
task of processing infrared (IR) frames to identify regions of 
interest. These regions are determined based on keypoints 
detected by PoseNet, with coordinates transformed for thermal 
analysis. This is instrumental in assessing body temperature 
and identifying critical points for respiration rate monitoring. 

3)  Environmental Monitoring: The Environmental Sensor 
Thread captures ambient temperature and humidity to ensure a 
comprehensive health monitoring environment. This data is 
periodically updated, allowing cross-thread access to 
conditions that may impact the infant's well-being. 

4)  Audio Surveillance:  Capturing environmental sounds, 
the Audio Thread processes audio inputs from the Logitech 
webcam. Audio data is segmented for detailed analysis, 
providing insights into potential distress signals or 
environmental conditions. 

5)  Data Aggregation and Analysis:  The Main Processing 
Thread acts as the system's nucleus, integrating data from all 
threads. It evaluates this information against set thresholds, 
applying advanced signal processing techniques to respiration 
and temperature data. This thread is pivotal in identifying 
deviations from normal parameters triggering system alerts as 
necessary. 

6)  Alert Generation and Event Management:  Operational 
intelligence culminates in the Event Thread, which processes 
system flags to generate alerts. These alerts are crafted based 
on the frequency and nature of the flagged events, ensuring 
timely and accurate notification of potential issues. 

In addition to real-time monitoring and alert generation, the 
system emphasizes data archiving. Events are meticulously 
logged with corresponding flags and are supplemented with 
saved frames. The software architecture embodies a holistic 
approach to infant health monitoring. By seamlessly integrating 
vision, thermal imaging, environmental sensing, and audio 
analysis within a structured multi-threaded framework, InfaSafe 
ensures a comprehensive, real-time surveillance system 
designed to safeguard infant health and well-being. 

D. User Interface 
In the design phase of our application, we conceptualized the 

user interface with a focus on simplicity, functionality, and user 
engagement. Fig. 2. illustrates the initial sketches that laid the 
groundwork for our application's interface. These sketches 
represent the envisioned layout and functionality of the main 
screens within the app, including the Login, Live, Recordings, 
and Graphs screens. This preliminary design phase was crucial 
for establishing a coherent vision for the application's user 
interface, emphasizing intuitive navigation and seamless user 

interaction. Using Firebase for authentication and integrating 
Google/Gmail account linkage, the Login screen sketch was 
designed to offer a straightforward entry point for users, 
prioritizing security and convenience. The Live, Recordings, 
and Graph screens' sketches further detail our approach to 
providing real-time monitoring capabilities, easy access to 
recorded content, and insightful data visualizations, 
respectively. 

 
Fig. 2. InfaSafe Application User Interface Map 

V. RESULTS 
The results section presents the empirical outcomes of 

deploying the InfaSafe system. 

A. Pose Analysis 
PoseNet proficiently delivered keypoints at an impressive 

rate of approximately ten frames per second. This capability was 
crucial for the system's ability to track movements and maintain 
continuous monitoring, which is essential for the accurate signal 
processing of body temperature and respiration rate. During our 
tests, the DenseNet121 model outperformed the ResNet model 
in terms of the consistency and reliability of keypoint detection. 
Fig. 3. Shows an example of the DenseNet121performance. 

 
Fig. 3. Pose estimation on infant doll with PoseNet Utilizing Densenet121 
showing various unsafe sleeping positions and blanket cover. 

B. Body Temperature 
The module was tested against standard medical 

thermometers, focusing on understanding the differences in 
readings. While some variances were noted, these were 
primarily accounted for by considering the skin's emissivity rate 
of 98% and that medical thermometers measure internal (mouth) 
temperature. Although the absolute temperature readings were 



reasonably accurate, we found that the changes in temperature 
readings over time were even more precise. This aspect is 
particularly crucial for monitoring and detecting rapid changes 
in an infant's condition, making our system highly effective for 
real-time health monitoring. Fig. 4. shows pose estimation and 
thermal monitoring. Fig. 5. Shows the extracted temperature 
values.  

 
Fig. 4. Display of Pose Estimation and Thermal Monitoring: The left panel 
illustrates real-time pose estimation with keypoints connected to a subject's 
body. The right panel shows corresponding thermal imagery with transformed 
regions of interest—purple indicates the body temperature region, and green 
denotes the respiration rate area. 

 
Fig. 5. The panel graphs the extracted temperature values from the designated 
body temperature region over time, providing a continuous and non-invasive 
monitoring tool. 

C. Respiration Rate 
In the evaluation of respiration rate determination, our 

results affirm the system's adeptness in calculating respiration 
rates with a high degree of accuracy when the nose keypoint is 
visible. The incorporation of various signal processing 
techniques, such as the application of the Hampel filter and a 
moving average calculation, has yielded stable and reliable 
respiration rate measurements (see Fig. 6).  

 
Fig. 6. Respiration rate signal extraction stages raw data, then filtered data, 
which is then FFT and analyzed for the most common frequency or respiration 
rate, which is then tracked in real-time as long as the nose is present. 

VI. CONCLUSION 
This project has successfully engineered a prototype for an 

IoT-based health monitoring system aimed at mitigating the 
risks associated with Sudden Unexpected Infant Death (SUID). 
Leveraging advanced computer vision, thermal imaging, and 
integrated sensor data, the InfaSafe monitors and analyzes key 
parameters such as an infant's pose, body temperature, 
breathing, and sleep environment to ensure safety and well-
being.  This platform lays a robust foundation for research and 
data collection, which are imperative for drawing meaningful 
decisions. InfaSafe can function as a platform tailored for 
medical professionals, enabling the real-time observation of 
infant health with a specific focus on preventing SUID. While 
the current prototype marks a significant step forward, further 
development is essential to solidify our understanding, 
particularly concerning infant health outcomes. 
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