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Abstract—This paper presents an intelligent system 
for monitoring energy usage in smart buildings. It functions as 
a bridge between the smart grid and smart buildings. A web-
based platform is designed to monitor sensor data and track 
power consumption on the grid. AI technology provides tips 
for energy conservation based on factors such as power usage 
patterns and weather conditions. The adaptability of our 
approach allows for the tuning of automated protocols based 
on evolving power usage patterns and grid conditions. Data is 
transmitted between the client devices and the central server 
via a Zigbee network organized in a star formation, allowing 
for mutual communication. Our implementation results in the 
improvement of the overall energy efficiency of supported 
infrastructure while ensuring continuous and optimized 
operation in case of a bulk grid blackout. 
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I. INTRODUCTION  

The growing integration of renewable energy sources 
and smart devices presents both immense potential and 
novel challenges in optimizing energy efficiency. This work 
tackles the pivotal issue of real-time power monitoring and 
adaptive management for infrastructures utilizing smart 
grids and smart home systems. The proposed solution is a 
smart energy monitoring system for infrastructures utilizing 
smart home devices. By integrating real-time sensor data 
across smart devices with advanced AI-driven analysis, this 
system enables cutting-edge automation and optimization of 
energy consumption. The adaptability of our approach 
allows for the tuning of automated protocols based on 
evolving power usage patterns and grid conditions. This 
establishes a foundation for maximizing efficiency in 
everyday operations and resilience during grid failures.  

Our system builds on recent advances in smart home 
energy management, renewable energy integration, and 
real-time power monitoring [1-2]. However, it uniquely 
combines these capabilities into an adaptable framework 
optimized for infrastructure-level deployment. The 
monitoring interface and customizable automation 
protocols facilitate both user-friendly operation and system-
wide coordination. The proposed system also highlights a 
secure system to protect data throughout the smart grid. 
Robust security is vital for this system, as a breach could 
allow attackers to manipulate energy usage data or settings, 
disrupt operations, or use the infrastructure for malicious 
purposes. Implementing defense-in-depth with multiple 
layers of protection provides resilience against security 
threats [3-4]. The system features a Zigbee-based personal 

area network in a star topology, which ensures seamless 
two-way communication between the client devices 
(Arduino smart homes) and the central server (Raspberry 
Pi).  This allows for fast energy-saving protocols to be 
implemented at all times to reduce load and therefore stress 
on the smart grid. A workflow overview of our system is 
shown in Fig. 1.  

Monitoring of typical power consumption patterns will 
enable the system to take extreme precautionary measures 
in instances of severe weather and/or bulk grid blackout to 
maximize the duration the smart grid may operate in island 
mode when relying solely on available stored energy.  
Currently, market-available products that may accomplish a 
similar task are smart meters that thoroughly communicate 
data from the meter to the grid company to closely monitor 
energy consumption or smart appliances that automatically 
have built-in power-saving features [5].  Our paper aims to 
take advantage of these existing products and further 
optimize energy consumption as well as smart grid battery 
life during blackouts or natural disasters. Rather than having 
individual smart devices scattered throughout 
infrastructures [6-7], we combine sensor data from 
numerous smart home devices working in conjunction with 
the sensor feedback from our power monitoring system to 
ensure best-case energy efficiency both throughout the day 
and in the instance of severe weather or blackout. 

II. BACKGROUND 

The current energy infrastructure is faced with various 
challenges, including cyber threats and natural disasters that 
pose a risk to the power grid. Smart grids provide a solution 
to these challenges by offering both conjoined and island 
modes of operation. Energy storage technology such as 
photovoltaic arrays and wind turbines, although crucial to 
the functioning of smart grids, have limited windows of 
operation. To address these limitations, this paper proposes 
a smart energy monitoring system for smart buildings. The 
system is designed to monitor and level current distribution 
to support infrastructure, allowing for self-healing grid 
capabilities. The data acquired through this system will be 
used to optimize energy usage with AI-powered smart 
devices. The system utilizes Zigbee technology to create a 

Fig. 1. Workflow Overview of the Smart Multi-Building Energy 
Monitoring System 



secure personal area network in a star topology, facilitating 
two-way communication between the client devices 
(Arduino-powered smart homes) and the central server 
(Raspberry Pi). Access to the system is restricted to 
authorized users through authentication and access control 
measures. The transmitted data is also protected through 
encryption, ensuring the security of both transmitted and 
stored data. The AI component of the system will optimize 
energy usage by learning energy consumption patterns, 
predicting future energy consumption using historical data 
and weather forecasts, and determining when to use saved 
renewable energy versus energy from the grid. Overall, this 
paper aims to revolutionize the way energy is monitored and 
managed in smart buildings, providing a comprehensive 
solution for energy management. 

III. HARDWARE 

The smart multi-building energy monitoring system 
prototype consists of three main categories of hardware 
components, namely sensors, Xbee modules, and relays. An 
overview of the hardware components is shown in Fig. 2. 
Also, a test circuit is created to perform tests with the 
prototype. The said circuity is shown in Fig. 3.  

A. Sensors 

The smart building prototype utilizes several sensors to 
gather data about the environment including temperature, 
light levels, and electrical current. A DHT22 temperature 
sensor measures temperature in a range of -40 to 80°C and 
humidity to calculate heat index [8]. A light sensor takes 
analog inputs (0-1023) to determine light thresholds of 
"light", "dim", and "dark" to optimize a smart blind system 
[9]. A voltage-current sensor measures electrical current in 
the test circuitry, scales the analog output, and sends the data 
via Zigbee to inform an AI model and web application about 
real-time energy usage [10]. These sensors enable the 
gathering and visualization of environmental data to create 
a rudimentary smart building system. 

B. XBee Modules 

This is the main communication network for the system 
[11]. The XBee modules run a wireless protocol called 
Zigbee, and it would be running in a star network topology. 
This enables two-way communication to and from the 
central system and smart homes. The Zigbee module was 
correctly set up between a Raspberry Pi and a singular 
Arduino building. All of the temperature, light, and 
voltage/current sensors were connected and data was 
transferred. Moreover, two-way communication was 
achieved in our system so that the user could control the 
operation of certain smart home appliances via the web 
application.  An enable signal is sent from the web 
application to the Firebase real-time database then the 
Raspberry Pi program takes it from the Firebase and sends 
the signal to all Arduino smart buildings.  If the signal 
corresponds to a certain building ID and component 
connected to that building, the status of the component will 
be changed.  In terms of network management, QoS 
policies, and traffic prioritization have been added to the 
system to ensure time-sensitive control commands and 
alerts take precedence over routine data transmissions 
during periods of network congestion. Alerts are generated 
for failed devices or degraded links to facilitate rapid 
response. 

C. Relays 

On the simulated smart home side, relays are going to be 
used to turn on and off “loads”. These loads would consist 
of LEDs and resistors simulating different appliances within 
a home. The relays digitize the control of these through the 
Arduino control unit in the smart homes allowing for remote 
control of the smart home appliances via the web 
application.  When an enable signal is sent through our 
network topology, the enable signal of the corresponding 
relay switch will be toggled and change the status of that 
particular load.  

 
Fig. 2. Smart Multi-Building Energy Monitoring System Prototype Overview 



 
Fig. 3. Layout of the Test Circuit for Prototype

 
IV. SOFTWARE 

A. Web Application 

The design of the web app for this paper should prioritize 
user experience and ease of use as there will be many pieces of 
information displayed. The main features on the web page 
include energy monitoring, AI suggestions, and energy savings.  

The main dashboard displays real-time energy usage as well 
as AI-generated suggestions for energy savings. Users can only 
view their own usage and adjust their own preferences as a 
building without interacting with other buildings. The main 
dashboard features a control panel for adjusting settings, a 
status panel displaying current energy usage, alerts for AI-
generated suggestions, and a power graph visualizing energy 
consumption patterns. The main dashboard is shown in Fig. 4.  

On a separate security tab, authorized users can access and 
control the system. This section includes performance 
monitoring of individual devices, access management, and 
other security features, ensuring the system operates safely and 
securely. Administrators can also handle connected devices and 
manage authentication for users granting access only to 
authorized individuals. The security tab is shown in Fig. 5.  

Another section of the app, the “About” tab, provides 
historical data and energy consumption patterns. This 
information helps users understand their energy usage habits 
and make informed decisions about energy management. The 
About tab briefly explains the paper's purpose, its features, and 
the team members involved in its creation. The web app 
combines functionality, security, and user-friendliness to 
deliver an effective energy management platform. 

 
Fig. 4. Web Application: Image of Main Dashboard 

 
Fig. 5. Web Application: Image of Security Tab 



B. Artificial Intelligence (Predictive Decision Making) 

To predict the energy usage within our system, we have to 
use a machine learning model that is appropriate for the usage 
case. A regression model such as Random Forest is well suited 
for this task. A Python script that we coded employs a Random 
Forest Regressor model [12] to forecast power consumption 
based on various environmental factors. The Random Forest is 
an ensemble learning technique that builds multiple decision 
trees during training and outputs the average prediction 
(regression) or most common (classification) of the individual 
trees. By averaging results from multiple trees, the model 
enhances predictive accuracy and controls overfitting. The 
script imports the RandomForestRegressor from the 
sklearn.ensemble module and sets the number of trees 
(n_estimators) to 100. 

The script starts by importing required libraries, such as 
pandas for data manipulation, requests for API calls, and 
datetime and pytz [13] for date and time handling. It also 
imports relevant modules from sklearn for model training, 
evaluation, and data partitioning. 

We also make use of weather forecasts to take preventative 
measures. For example, if it is known that it will be sunny and 
warm out on a particular day based on the forecast, the system 
will respond accordingly. This can include actions such as 
lowering the blinds to block out some of the heat from the sun 
and beginning to start the air conditioning units earlier in the 
day to decrease overall costs. 

To implement this, the function get_weather_data() 
retrieves weather information from the OpenWeatherMap API 
[14] for a specified city and datetime. Another function 
train_and_evaluate_rf_model() trains a Random Forest model 
on the input data and assesses its performance using the Mean 
Absolute Error (MAE) metric from the sklearn.metrics module. 

To train this model, we had to create data that simulates the 
energy usage of several buildings. This simulated data contains 
patterns such as spikes at certain intervals (for example a spike 
at 8 am, when many users are turning on their computers and 
starting their workday). The model can predict these regular 
patterns in energy usage and respond accordingly.  

Historical data is loaded from a CSV file, preprocessed, and 
divided into training and testing sets using train_test_split from 
the sklearn.model_selection module. The 
RandomForestRegressor model is then trained on this data and 
evaluated on the test set.  The historical data used for training 
and testing the Random Forest model consists of the following 
features: building ID, date, time, current draw, light level, 
indoor temperature, cloudiness, humidity outside temperature, 
and power_usage. For this system, data over a week was 
collected for training and testing the model. As the system is 
used more often the data collected will continuously strengthen 
the model. 

The user is prompted to input a date, time, and other feature 
values for a power usage prediction. The script acquires the 
weather data for the specified datetime, extracts pertinent 
information, and combines it with the user inputs to create a 
data frame. The Random Forest model predicts power 
consumption, and the result is shown to the user. 

The next section includes a daily model update process, 
which entails fetching the current day's weather data, loading 
new data from a CSV file, dividing it into training and testing 
sets, and updating the model with the new data. The updated 
model's performance is assessed, and the new data is saved back 
to the CSV file after updating the outside_temperature column 
with the latest data from the API. 

C. Real-Time Decision-Making 

The system also can make decisions in real-time in response 
to sudden unpredictable changes in energy and environmental 
changes. As mentioned above, we have predictive measures in 
place to analyze, manage, and respond accordingly within the 
system. Of course, no predictive model is 100% accurate, so we 
must also have measures in place such that we can further 
improve the grid’s overall efficiency. These actions would be 
situational, decision-based actions. 

A Python script that we coded monitors real-time sensor 
data from a pair of buildings, obtains weather information via 
the OpenWeatherMap API, and dispatches alert notifications to 
Firebase when specific conditions arise. The script sets up a 
Firebase connection and establishes threshold values for 
various parameters, such as current, light intensity, and indoor 
temperature. It incorporates functions for acquiring weather 
data, identifying daytime, transmitting alert messages to 
Firebase, and evaluating sensor data for alert conditions. The 
primary loop consistently processes data for both structures and 
examines any alert situations. When a condition is satisfied, it 
transmits an alert notification to Firebase and pauses for 60 
seconds before reevaluating. 

D. Firebase Database 

In this paper, Firebase acts as the backbone for managing 
and accessing data associated with energy monitoring for two 
structures. It links the web application, the AI algorithm, and 
the Raspberry Pi device, ensuring smooth interaction between 
all components. An overview of the wireless communication 
setup is shown in Fig. 6. Below is a summary of Firebase's role 
in each segment: 

1) Web app: The web app employs the Firebase Realtime 
Database to store and exhibit real-time energy consumption 
data, AI-generated recommendations, and other pertinent 
information. The firebase.js file sets up the Firebase 
configuration, connects to the database, and exports the 
database object for utilization in other sections of the web app. 
 

Fig. 6. Wireless Communication Setup Overview 



2) AI algorithm: The AI code fetches sensor data from 
the Firebase Realtime Database and processes it to produce 
suggestions and notifications for energy management. It 
leverages external APIs (such as OpenWeatherMap) to collect 
relevant weather data for decision-making purposes. After 
processing the data, the AI algorithm sends alerts back to 
Firebase, which can then be shown on the web app. The 
historical code that utilizes Random Forest also uses values 
indirectly from Firebase, as the values at the end of the day will 
be grabbed from historical_data.csv. 

3) Raspberry Pi code: The web app employs the Firebase 
Realtime Database to store and exhibit real-time energy 
consumption data, AI-generated recommendations, and other 
pertinent information. The firebase.js file sets up the Firebase 
configuration, connects to the database, and exports the 
database object for utilization in other sections of the web app. 

V. SECURITY 

To address security concerns, Firebase offers a variety of 
security features designed to safeguard data and maintain 
appropriate access control. With Firebase Authentication, users 
are authenticated before gaining access to the web app. This 
ensures that only authorized individuals can view and modify 
data. To protect against unauthorized access, our web 
application and central server implement multi-factor 
authentication using a combination of passwords, one-time 
codes sent to registered devices, and U2F security keys. This 
layered approach prevents threat actors from easily 
compromising user accounts. We have also set up Firebase 
Realtime Database Rules, where we can control the read and 
write access to our specific database. This means that users can 
only interact with data they are authorized to access (thus 
preventing unauthorized access or tampering). Database Rules 
can also validate incoming data, ensuring that only data meeting 
specific criteria can be stored in the database. This helps us 
maintain the data integrity of our system. Finally, Firebase 
employs SSL/TLS encryption to protect data transmitted 
between the client and server, ensuring that data in transit 
remains secure and uncompromised.  

Next, the Zigbee protocol, which is used by XBee modules, 
has built-in security features designed to protect 
communication between devices. First, Zigbee leverages 
Advanced Encryption Standard (AES) with a 128-bit key to 
encrypt data transmitted between devices. This security 
measure ensures data is safe from eavesdropping and tampering 
during transmission. Next, Zigbee uses link keys to protect 
communication between individual devices, and network keys 
to protect communication within the entire network. These 
keys, combined with AES-128 encryption, provide secure 
communication channels. Additionally, Zigbee includes key 
management features that securely generate, distribute, and 
update keys. This guarantees that keys stay secure and up-to-
date, minimizing the likelihood of unauthorized access. Finally, 
Zigbee devices can authenticate each other before establishing 
a secure communication channel. This stops unauthorized 
devices from joining the network or posing as legitimate 
devices.  

The security tab on the website provides users with the 
ability to oversee encrypted data transfers between the Arduino 
units and the central Raspberry Pi, guaranteeing the accuracy 
and reliability of the exchanged data. Additionally, the tab 
offers user management options for authentication and access 
control, enabling access exclusively for authorized individuals. 
Users can create, modify, or revoke usernames and passwords 
as required. Moreover, the security tab allows administrators to 
handle connected devices within the system effectively. 

We also have authentication and access control. What this 
means is that only authorized users have access to, and the 
ability to control the system. We require users to have a 
username and password to access our system, which will be 
behind the web application, which we described earlier in this 
paper.  

Finally, we have device management. This allow us for 
example to remove an Arduino from the system if it has been 
compromised or stolen. 

VI. RESULTS 

From the goals our team set out to accomplish, we made 
significant progress and were ultimately able to show proof of 
concept and develop the structure for our system. Since the 
system is highly customizable and scalable, we wanted to make 
sure that the most vital components of our system were 
implemented and functioning.  

The web application user interface was developed and 
communicated with both the AI algorithm implemented as well 
as with our Firebase real-time database to collect and visualize 
the sensor data. Each Arduino smart building was connected to 
a temperature/humidity sensor, current sensor, and 
photosensitive sensor, as well as to a router XBee module for 
two-way wireless communication.  

Not only did our system push real-time sensor data to the 
Firebase via the Raspberry Pi coordinator device, but we were 
also able to implement relay switches so that a user could 
manually control the functions of smart home appliances 
through the web application. This was demonstrated by the 
model circuit’s loads being turned on or off to decrease the 
current draw if the current went past a designated threshold. 
This was accompanied by the AI algorithm displaying 
suggestions/warnings on the web application for energy 
consumption optimization. Additionally, we had a portion of 
our system powered by a separate backup battery as well as 
charged by a photovoltaic array to mitigate the system going 
down in case of a blackout/brownout in the infrastructure’s 
power grid.  

Some challenges we faced included finding a common 
sampling rate for all of our sensor data to be sent at the same 
time which was ultimately constrained by the DHT22 sensor 
having a .5Hz sample rate as well as the fact that we could not 
flood the Zigbee with too much data all at once or we would 
run into packet collision errors and only a fraction of the data 
would be sent.  

The same issue was faced in implementation of the two-way 
communication as packet collision in the other direction caused 
significant latency when turning off devices through the web 



application. This is also because the XBee modules cannot 
transmit and receive data simultaneously and instead require 
some amount of time of separation between when it receives 
and transmits, mitigated by the utilization of delays within our 
Arduino program.  

Moreover, we had challenges developing training data for 
the AI as it would require multiple weeks of the system running 
and collecting variable data to tune itself to make proper 
suggestions, however, the real-time portion was able to function 
properly and display suggestions on the web application. 

VII. CONCLUSION 

The smart energy monitoring system aims to improve 
energy efficiency in smart buildings by integrating with the 
smart grid and smart buildings. The system offers real-time 
power monitoring through a web-based interface and AI-
generated recommendations for energy savings. A Zigbee 
network configured in a star topology ensures client and server 
communication.  

As our system is highly customizable and scalable, many 
future changes could be made highly dependent on the 
infrastructure in which it will be implemented.  Since we did 
not have access to a full-scale model, the current sensor is an 
Arduino-based current sensor meant for small electronic 
applications, however, the current sensor as well as the other 
sensors may need to be scaled up to higher quality versions to 
suit the needs of a particular application.  

Additionally, more sensors could be added to test for other 
variables not tested for in our system for a more complete and 
detailed energy-optimizing system.  The AI could be highly 
optimized in the future once a significant capacity of training 
data has been collected from infrastructures with smart home 
devices to pick up on energy consumption trends over a longer 
period. The web application will have to be optimized to 
visualize any further sensor data that gets implemented as well 
as customize the device control section to operate in 
conjunction with features available within smart home 
appliances.  As of right now the feature simply turns on/off the 
device while in reality, we would like for the thermostat control 
feature for example to be able to adjust the temperature 
remotely or turn off or dim specific lights in portions of an 
infrastructure that are either unnecessary or being unused to 
save energy. Additionally, for practical implementation, strict 
network segmentation and micro-segmentation policies would 
have to be included to contain any potential breach. The smart 
home device networks would then be isolated from the central 
management network, limiting lateral movement opportunities 
for attackers. Additionally, firewalls should be put up so 
individual smart homes are protected from each other. 

This system is poised to bring about a major change in 
energy management in smart buildings, due to its 
comprehensive and effective solution for smart energy 
monitoring. 
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