
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Smart Multi-Building Energy Monitoring System
Saurabh Saluja, Colin Prochnow, Grant Couper, Filip Zivko, Xinrui Yu, Mikhail Gromov, and Jafar Saniie

Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu)
Department of Electrical and Computer Engineering
Illinois Institute of Technology, Chicago IL, U.S.A.

Abstract—This paper presents an intelligent system
for monitoring energy usage in smart buildings. It functions as
a bridge between the smart grid and smart buildings. A web-
based platform is designed to monitor sensor data and track
power consumption on the grid. AI technology provides tips
for energy conservation based on factors such as power usage
patterns and weather conditions. The adaptability of our
approach allows for the tuning of automated protocols based
on evolving power usage patterns and grid conditions. Data is
transmitted between the client devices and the central server
via a Zigbee network organized in a star formation, allowing
for mutual communication. Our implementation results in the
improvement of the overall energy efficiency of supported
infrastructure while ensuring continuous and optimized
operation in case of a bulk grid blackout.

Keywords—Smart Grids, Smart Buildings, IoT, Artificial
Intelligence, Power Management

I. INTRODUCTION

The growing integration of renewable energy sources
and smart devices presents both immense potential and
novel challenges in optimizing energy efficiency. This work
tackles the pivotal issue of real-time power monitoring and
adaptive management for infrastructures utilizing smart
grids and smart home systems. The proposed solution is a
smart energy monitoring system for infrastructures utilizing
smart home devices. By integrating real-time sensor data
across smart devices with advanced AI-driven analysis, this
system enables cutting-edge automation and optimization of
energy consumption. The adaptability of our approach
allows for the tuning of automated protocols based on
evolving power usage patterns and grid conditions. This
establishes a foundation for maximizing efficiency in
everyday operations and resilience during grid failures.

Our system builds on recent advances in smart home
energy management, renewable energy integration, and
real-time power monitoring [1-2]. However, it uniquely
combines these capabilities into an adaptable framework
optimized for infrastructure-level deployment. The
monitoring interface and customizable automation
protocols facilitate both user-friendly operation and system-
wide coordination. The proposed system also highlights a
secure system to protect data throughout the smart grid.
Robust security is vital for this system, as a breach could
allow attackers to manipulate energy usage data or settings,
disrupt operations, or use the infrastructure for malicious
purposes. Implementing defense-in-depth with multiple
layers of protection provides resilience against security
threats [3-4]. The system features a Zigbee-based personal

area network in a star topology, which ensures seamless
two-way communication between the client devices
(Arduino smart homes) and the central server (Raspberry
Pi). This allows for fast energy-saving protocols to be
implemented at all times to reduce load and therefore stress
on the smart grid. A workflow overview of our system is
shown in Fig. 1.

Monitoring of typical power consumption patterns will
enable the system to take extreme precautionary measures
in instances of severe weather and/or bulk grid blackout to
maximize the duration the smart grid may operate in island
mode when relying solely on available stored energy.
Currently, market-available products that may accomplish a
similar task are smart meters that thoroughly communicate
data from the meter to the grid company to closely monitor
energy consumption or smart appliances that automatically
have built-in power-saving features [5]. Our paper aims to
take advantage of these existing products and further
optimize energy consumption as well as smart grid battery
life during blackouts or natural disasters. Rather than having
individual smart devices scattered throughout
infrastructures [6-7], we combine sensor data from
numerous smart home devices working in conjunction with
the sensor feedback from our power monitoring system to
ensure best-case energy efficiency both throughout the day
and in the instance of severe weather or blackout.

II. BACKGROUND

The current energy infrastructure is faced with various
challenges, including cyber threats and natural disasters that
pose a risk to the power grid. Smart grids provide a solution
to these challenges by offering both conjoined and island
modes of operation. Energy storage technology such as
photovoltaic arrays and wind turbines, although crucial to
the functioning of smart grids, have limited windows of
operation. To address these limitations, this paper proposes
a smart energy monitoring system for smart buildings. The
system is designed to monitor and level current distribution
to support infrastructure, allowing for self-healing grid
capabilities. The data acquired through this system will be
used to optimize energy usage with AI-powered smart
devices. The system utilizes Zigbee technology to create a

Fig. 1. Workflow Overview of the Smart Multi-Building Energy
Monitoring System

secure personal area network in a star topology, facilitating
two-way communication between the client devices
(Arduino-powered smart homes) and the central server
(Raspberry Pi). Access to the system is restricted to
authorized users through authentication and access control
measures. The transmitted data is also protected through
encryption, ensuring the security of both transmitted and
stored data. The AI component of the system will optimize
energy usage by learning energy consumption patterns,
predicting future energy consumption using historical data
and weather forecasts, and determining when to use saved
renewable energy versus energy from the grid. Overall, this
paper aims to revolutionize the way energy is monitored and
managed in smart buildings, providing a comprehensive
solution for energy management.

III. HARDWARE

The smart multi-building energy monitoring system
prototype consists of three main categories of hardware
components, namely sensors, Xbee modules, and relays. An
overview of the hardware components is shown in Fig. 2.
Also, a test circuit is created to perform tests with the
prototype. The said circuity is shown in Fig. 3.

A. Sensors

The smart building prototype utilizes several sensors to
gather data about the environment including temperature,
light levels, and electrical current. A DHT22 temperature
sensor measures temperature in a range of -40 to 80°C and
humidity to calculate heat index [8]. A light sensor takes
analog inputs (0-1023) to determine light thresholds of
"light", "dim", and "dark" to optimize a smart blind system
[9]. A voltage-current sensor measures electrical current in
the test circuitry, scales the analog output, and sends the data
via Zigbee to inform an AI model and web application about
real-time energy usage [10]. These sensors enable the
gathering and visualization of environmental data to create
a rudimentary smart building system.

B. XBee Modules

This is the main communication network for the system
[11]. The XBee modules run a wireless protocol called
Zigbee, and it would be running in a star network topology.
This enables two-way communication to and from the
central system and smart homes. The Zigbee module was
correctly set up between a Raspberry Pi and a singular
Arduino building. All of the temperature, light, and
voltage/current sensors were connected and data was
transferred. Moreover, two-way communication was
achieved in our system so that the user could control the
operation of certain smart home appliances via the web
application. An enable signal is sent from the web
application to the Firebase real-time database then the
Raspberry Pi program takes it from the Firebase and sends
the signal to all Arduino smart buildings. If the signal
corresponds to a certain building ID and component
connected to that building, the status of the component will
be changed. In terms of network management, QoS
policies, and traffic prioritization have been added to the
system to ensure time-sensitive control commands and
alerts take precedence over routine data transmissions
during periods of network congestion. Alerts are generated
for failed devices or degraded links to facilitate rapid
response.

C. Relays

On the simulated smart home side, relays are going to be
used to turn on and off “loads”. These loads would consist
of LEDs and resistors simulating different appliances within
a home. The relays digitize the control of these through the
Arduino control unit in the smart homes allowing for remote
control of the smart home appliances via the web
application. When an enable signal is sent through our
network topology, the enable signal of the corresponding
relay switch will be toggled and change the status of that
particular load.

Fig. 2. Smart Multi-Building Energy Monitoring System Prototype Overview

Fig. 3. Layout of the Test Circuit for Prototype

IV. SOFTWARE

A. Web Application

The design of the web app for this paper should prioritize
user experience and ease of use as there will be many pieces of
information displayed. The main features on the web page
include energy monitoring, AI suggestions, and energy savings.

The main dashboard displays real-time energy usage as well
as AI-generated suggestions for energy savings. Users can only
view their own usage and adjust their own preferences as a
building without interacting with other buildings. The main
dashboard features a control panel for adjusting settings, a
status panel displaying current energy usage, alerts for AI-
generated suggestions, and a power graph visualizing energy
consumption patterns. The main dashboard is shown in Fig. 4.

On a separate security tab, authorized users can access and
control the system. This section includes performance
monitoring of individual devices, access management, and
other security features, ensuring the system operates safely and
securely. Administrators can also handle connected devices and
manage authentication for users granting access only to
authorized individuals. The security tab is shown in Fig. 5.

Another section of the app, the “About” tab, provides
historical data and energy consumption patterns. This
information helps users understand their energy usage habits
and make informed decisions about energy management. The
About tab briefly explains the paper's purpose, its features, and
the team members involved in its creation. The web app
combines functionality, security, and user-friendliness to
deliver an effective energy management platform.

Fig. 4. Web Application: Image of Main Dashboard

Fig. 5. Web Application: Image of Security Tab

B. Artificial Intelligence (Predictive Decision Making)

To predict the energy usage within our system, we have to
use a machine learning model that is appropriate for the usage
case. A regression model such as Random Forest is well suited
for this task. A Python script that we coded employs a Random
Forest Regressor model [12] to forecast power consumption
based on various environmental factors. The Random Forest is
an ensemble learning technique that builds multiple decision
trees during training and outputs the average prediction
(regression) or most common (classification) of the individual
trees. By averaging results from multiple trees, the model
enhances predictive accuracy and controls overfitting. The
script imports the RandomForestRegressor from the
sklearn.ensemble module and sets the number of trees
(n_estimators) to 100.

The script starts by importing required libraries, such as
pandas for data manipulation, requests for API calls, and
datetime and pytz [13] for date and time handling. It also
imports relevant modules from sklearn for model training,
evaluation, and data partitioning.

We also make use of weather forecasts to take preventative
measures. For example, if it is known that it will be sunny and
warm out on a particular day based on the forecast, the system
will respond accordingly. This can include actions such as
lowering the blinds to block out some of the heat from the sun
and beginning to start the air conditioning units earlier in the
day to decrease overall costs.

To implement this, the function get_weather_data()
retrieves weather information from the OpenWeatherMap API
[14] for a specified city and datetime. Another function
train_and_evaluate_rf_model() trains a Random Forest model
on the input data and assesses its performance using the Mean
Absolute Error (MAE) metric from the sklearn.metrics module.

To train this model, we had to create data that simulates the
energy usage of several buildings. This simulated data contains
patterns such as spikes at certain intervals (for example a spike
at 8 am, when many users are turning on their computers and
starting their workday). The model can predict these regular
patterns in energy usage and respond accordingly.

Historical data is loaded from a CSV file, preprocessed, and
divided into training and testing sets using train_test_split from
the sklearn.model_selection module. The
RandomForestRegressor model is then trained on this data and
evaluated on the test set. The historical data used for training
and testing the Random Forest model consists of the following
features: building ID, date, time, current draw, light level,
indoor temperature, cloudiness, humidity outside temperature,
and power_usage. For this system, data over a week was
collected for training and testing the model. As the system is
used more often the data collected will continuously strengthen
the model.

The user is prompted to input a date, time, and other feature
values for a power usage prediction. The script acquires the
weather data for the specified datetime, extracts pertinent
information, and combines it with the user inputs to create a
data frame. The Random Forest model predicts power
consumption, and the result is shown to the user.

The next section includes a daily model update process,
which entails fetching the current day's weather data, loading
new data from a CSV file, dividing it into training and testing
sets, and updating the model with the new data. The updated
model's performance is assessed, and the new data is saved back
to the CSV file after updating the outside_temperature column
with the latest data from the API.

C. Real-Time Decision-Making

The system also can make decisions in real-time in response
to sudden unpredictable changes in energy and environmental
changes. As mentioned above, we have predictive measures in
place to analyze, manage, and respond accordingly within the
system. Of course, no predictive model is 100% accurate, so we
must also have measures in place such that we can further
improve the grid’s overall efficiency. These actions would be
situational, decision-based actions.

A Python script that we coded monitors real-time sensor
data from a pair of buildings, obtains weather information via
the OpenWeatherMap API, and dispatches alert notifications to
Firebase when specific conditions arise. The script sets up a
Firebase connection and establishes threshold values for
various parameters, such as current, light intensity, and indoor
temperature. It incorporates functions for acquiring weather
data, identifying daytime, transmitting alert messages to
Firebase, and evaluating sensor data for alert conditions. The
primary loop consistently processes data for both structures and
examines any alert situations. When a condition is satisfied, it
transmits an alert notification to Firebase and pauses for 60
seconds before reevaluating.

D. Firebase Database

In this paper, Firebase acts as the backbone for managing
and accessing data associated with energy monitoring for two
structures. It links the web application, the AI algorithm, and
the Raspberry Pi device, ensuring smooth interaction between
all components. An overview of the wireless communication
setup is shown in Fig. 6. Below is a summary of Firebase's role
in each segment:

1) Web app: The web app employs the Firebase Realtime
Database to store and exhibit real-time energy consumption
data, AI-generated recommendations, and other pertinent
information. The firebase.js file sets up the Firebase
configuration, connects to the database, and exports the
database object for utilization in other sections of the web app.

Fig. 6. Wireless Communication Setup Overview

2) AI algorithm: The AI code fetches sensor data from
the Firebase Realtime Database and processes it to produce
suggestions and notifications for energy management. It
leverages external APIs (such as OpenWeatherMap) to collect
relevant weather data for decision-making purposes. After
processing the data, the AI algorithm sends alerts back to
Firebase, which can then be shown on the web app. The
historical code that utilizes Random Forest also uses values
indirectly from Firebase, as the values at the end of the day will
be grabbed from historical_data.csv.

3) Raspberry Pi code: The web app employs the Firebase
Realtime Database to store and exhibit real-time energy
consumption data, AI-generated recommendations, and other
pertinent information. The firebase.js file sets up the Firebase
configuration, connects to the database, and exports the
database object for utilization in other sections of the web app.

V. SECURITY

To address security concerns, Firebase offers a variety of
security features designed to safeguard data and maintain
appropriate access control. With Firebase Authentication, users
are authenticated before gaining access to the web app. This
ensures that only authorized individuals can view and modify
data. To protect against unauthorized access, our web
application and central server implement multi-factor
authentication using a combination of passwords, one-time
codes sent to registered devices, and U2F security keys. This
layered approach prevents threat actors from easily
compromising user accounts. We have also set up Firebase
Realtime Database Rules, where we can control the read and
write access to our specific database. This means that users can
only interact with data they are authorized to access (thus
preventing unauthorized access or tampering). Database Rules
can also validate incoming data, ensuring that only data meeting
specific criteria can be stored in the database. This helps us
maintain the data integrity of our system. Finally, Firebase
employs SSL/TLS encryption to protect data transmitted
between the client and server, ensuring that data in transit
remains secure and uncompromised.

Next, the Zigbee protocol, which is used by XBee modules,
has built-in security features designed to protect
communication between devices. First, Zigbee leverages
Advanced Encryption Standard (AES) with a 128-bit key to
encrypt data transmitted between devices. This security
measure ensures data is safe from eavesdropping and tampering
during transmission. Next, Zigbee uses link keys to protect
communication between individual devices, and network keys
to protect communication within the entire network. These
keys, combined with AES-128 encryption, provide secure
communication channels. Additionally, Zigbee includes key
management features that securely generate, distribute, and
update keys. This guarantees that keys stay secure and up-to-
date, minimizing the likelihood of unauthorized access. Finally,
Zigbee devices can authenticate each other before establishing
a secure communication channel. This stops unauthorized
devices from joining the network or posing as legitimate
devices.

The security tab on the website provides users with the
ability to oversee encrypted data transfers between the Arduino
units and the central Raspberry Pi, guaranteeing the accuracy
and reliability of the exchanged data. Additionally, the tab
offers user management options for authentication and access
control, enabling access exclusively for authorized individuals.
Users can create, modify, or revoke usernames and passwords
as required. Moreover, the security tab allows administrators to
handle connected devices within the system effectively.

We also have authentication and access control. What this
means is that only authorized users have access to, and the
ability to control the system. We require users to have a
username and password to access our system, which will be
behind the web application, which we described earlier in this
paper.

Finally, we have device management. This allow us for
example to remove an Arduino from the system if it has been
compromised or stolen.

VI. RESULTS

From the goals our team set out to accomplish, we made
significant progress and were ultimately able to show proof of
concept and develop the structure for our system. Since the
system is highly customizable and scalable, we wanted to make
sure that the most vital components of our system were
implemented and functioning.

The web application user interface was developed and
communicated with both the AI algorithm implemented as well
as with our Firebase real-time database to collect and visualize
the sensor data. Each Arduino smart building was connected to
a temperature/humidity sensor, current sensor, and
photosensitive sensor, as well as to a router XBee module for
two-way wireless communication.

Not only did our system push real-time sensor data to the
Firebase via the Raspberry Pi coordinator device, but we were
also able to implement relay switches so that a user could
manually control the functions of smart home appliances
through the web application. This was demonstrated by the
model circuit’s loads being turned on or off to decrease the
current draw if the current went past a designated threshold.
This was accompanied by the AI algorithm displaying
suggestions/warnings on the web application for energy
consumption optimization. Additionally, we had a portion of
our system powered by a separate backup battery as well as
charged by a photovoltaic array to mitigate the system going
down in case of a blackout/brownout in the infrastructure’s
power grid.

Some challenges we faced included finding a common
sampling rate for all of our sensor data to be sent at the same
time which was ultimately constrained by the DHT22 sensor
having a .5Hz sample rate as well as the fact that we could not
flood the Zigbee with too much data all at once or we would
run into packet collision errors and only a fraction of the data
would be sent.

The same issue was faced in implementation of the two-way
communication as packet collision in the other direction caused
significant latency when turning off devices through the web

application. This is also because the XBee modules cannot
transmit and receive data simultaneously and instead require
some amount of time of separation between when it receives
and transmits, mitigated by the utilization of delays within our
Arduino program.

Moreover, we had challenges developing training data for
the AI as it would require multiple weeks of the system running
and collecting variable data to tune itself to make proper
suggestions, however, the real-time portion was able to function
properly and display suggestions on the web application.

VII. CONCLUSION

The smart energy monitoring system aims to improve
energy efficiency in smart buildings by integrating with the
smart grid and smart buildings. The system offers real-time
power monitoring through a web-based interface and AI-
generated recommendations for energy savings. A Zigbee
network configured in a star topology ensures client and server
communication.

As our system is highly customizable and scalable, many
future changes could be made highly dependent on the
infrastructure in which it will be implemented. Since we did
not have access to a full-scale model, the current sensor is an
Arduino-based current sensor meant for small electronic
applications, however, the current sensor as well as the other
sensors may need to be scaled up to higher quality versions to
suit the needs of a particular application.

Additionally, more sensors could be added to test for other
variables not tested for in our system for a more complete and
detailed energy-optimizing system. The AI could be highly
optimized in the future once a significant capacity of training
data has been collected from infrastructures with smart home
devices to pick up on energy consumption trends over a longer
period. The web application will have to be optimized to
visualize any further sensor data that gets implemented as well
as customize the device control section to operate in
conjunction with features available within smart home
appliances. As of right now the feature simply turns on/off the
device while in reality, we would like for the thermostat control
feature for example to be able to adjust the temperature
remotely or turn off or dim specific lights in portions of an
infrastructure that are either unnecessary or being unused to
save energy. Additionally, for practical implementation, strict
network segmentation and micro-segmentation policies would
have to be included to contain any potential breach. The smart
home device networks would then be isolated from the central
management network, limiting lateral movement opportunities
for attackers. Additionally, firewalls should be put up so
individual smart homes are protected from each other.

This system is poised to bring about a major change in
energy management in smart buildings, due to its
comprehensive and effective solution for smart energy
monitoring.

REFERENCES
[1] I. Priyadarshini, S. Sahu, R. Kumar, and D. Taniar, “A machine-learning

ensemble model for predicting energy consumption in smart homes,”
Internet of Things, vol. 20, p. 100636, 2022.

[2] C. Liu, B. Sun, C. Zhang, and F. Li, “A hybrid prediction model for
residential electricity consumption using Holt-Winters and extreme
learning machine,” 2020.

[3] W. Wang and Z. Lu, “Cyber security in the smart grid: Survey and
challenges,” Computer Networks, vol. 57, no. 5, pp. 1344–1371, 2013.

[4] N. Abosata, S. Al-Rubaye, G. Inalhan, and C. Emmanouilidis, “Internet
of things for system integrity: A comprehensive survey on security,
attacks and countermeasures for Industrial Applications,” Sensors, vol.
21, no. 11, p. 3654, 2021.

[5] “Smart Home: The Smart Grid.” Smart Home: The Smart Grid |
SmartGrid.gov, 16 Dec. 2019,
https://www.smartgrid.gov/the_smart_grid/smart_home.html.

[6] M. Yesilbudak and A. Colak, “Integration challenges and solutions for
renewable energy sources, electric vehicles and demand-side initiatives in
smart grids,” 2018 7th International Conference on Renewable Energy
Research and Applications (ICRERA), 2018.

[7] K. M. Tan, T. S. Babu, V. K. Ramachandaramurthy, P. Kasinathan, S. G.
Solanki, and S. K. Raveendran, “Empowering smart grid: A
comprehensive review of energy storage technology and application with
Renewable Energy Integration,” Journal of Energy Storage, vol. 39, p.
102591, 2021.

[8] “DHT22 Temperature Sensor Datasheet”,
https://wiki.dfrobot.com/DHT22_Temperature_and_humidity_module_
SKU_SEN0137

[9] “Photosensitive sensor module”,
http://www.energiazero.org/arduino_sensori/photosensitive_sensor_mod
ule.pdf

[10] “DKARDU Voltage Current Sensor Module“,
https://www.sparkfun.com/datasheets/BreakoutBoards/0712.pdf

[11] “Xbee Guide.” XBee Guide - SparkFun Electronics,
https://www.sparkfun.com/pages/xbee_guide.

[12] “Sklearn.Ensemble.Randomforestregressor.” Scikit, scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestReg
ressor.html.

[13] Bishop, Stuart. Pytz, pypi.org/project/pytz/.
[14] “One Call API 3.0” OpenWeatherMap,

https://openweathermap.org/api/one-call-3

