
Autonomous Patrol and Threat Detection Through
Integrated Mapping and Computer Vision

Robert Soler, Alae Moudni, Gabriel Roskowski, Xinrui Yu, Mikhail Gormov, and Jafar Saniie
Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu/)

Department of Electrical and Computer Engineering
Illinois Institute of Technology, Chicago, IL, U.S.A.

Abstract—This paper presents the creation of an innovative
autonomous security robot designed to perform security functions
with efficiency and reliability. The robot boasts mapping capabili-
ties, which it utilizes to facilitate autonomous patrol in designated
areas. Its primary operations involve the use of computer vision
to detect violence, identify weapons and dangerous items, and
recognize individuals. Critical incidents are met with an imme-
diate alarm and the subsequent transmission of data to a central
security server, which then generates comprehensive reports
displayed through a web application for security personnel. The
application itself features remote control of the robot, incident
report management, status updates, and incident analytics. The
robot demonstrates substantial real-world application potential,
particularly in crowded environments where it could outperform
conventional surveillance. The project combines concepts of
engineering, computer science, and cybersecurity, functioning per
design but with considerable potential for future refinement and
expansion, embodying the concept of an evolving technological
solution.

Index Terms—Autonomous Robots, Security Systems, Com-
puter Vision, Threat Detection, Facial Recognition, Robotics,
Surveillance Technology

I. INTRODUCTION

In the current era, two subjects stand out as particularly
prominent in the technology sector: security and intelligence.
In 2017, A company called Knightscope produced a fully
automated security robot that could patrol a given area and
perform basic security functions. This robot was called the
K5 Model and it was deployed in the city of Los Angeles,
CA. Within 6 months, the crime incident reports went down
from 48 to 26, and arrests went up from 11 to 14 [1],[2],[3].

Drawing inspiration from the K5 model, this project inte-
grates cutting-edge technology into protective services. We’ve
created an autonomous security robot, backed by a sophisti-
cated website interface for comprehensive surveillance. The
robot leverages advanced computer vision to autonomously
navigate and monitor environments, detecting threats and
recognizing faces. The accompanying website facilitates real-
time monitoring, incident management, and secure user access.
This report details the synergy between the robot’s capabilities
and website functionality, offering an in-depth look at a state-
of-the-art security system.

Fig. 1. Autonomous Security Patrolling Sentinel system design

II. SYSTEM DESIGN

A. Firmware and Hardware

The Autonomous Security Patrolling Sentinel robot is based
on a robust mechanical platform, originally purposed for battle
bot competitions, and repurposed for security operations. Its
frame, made of steel beams, provides a sturdy structure with a
compact footprint of 60x60 cm, optimized for maneuverability.
The robot is powered by two 12V 16A 8Ah batteries, ensuring
sustainable energy for its operations.

Key components include AndyMark DC motors and a
Toughbox gearbox for reliable locomotion, combined with
omnidirectional rear wheels for agile movement. The robot’s
computational needs are served by Nvidia Jetson Orin and
Nano modules, housed in custom 3D printed casings. A
significant feature is the EAI Flash Lidar F4, crucial for
spatial awareness and threat detection. Autonomous Security
Patrolling Sentinel system design is shown in Fig. 1, and a
simplified system connectivity diagram is shown in Fig. 2.

Firmware development centered around utilizing the Jetson
Nano as the control unit, running Ubuntu 20.04 and ROS 1
Melodic. This setup managed sensor data processing and com-
munication with the server through APIs. The system utilized
various ROS packages for navigation, mapping, localization,
and differential driving, supplemented by custom packages for
integrated control. The firmware involved scripts for odome-
try calculation, alarm triggering, and collision computations,
interfacing with the main server for control and monitoring.



The robot’s autonomous patrolling is programmed to set
random targets within its operational map, facilitating practical
testing of navigation capabilities. The firmware’s integration
underpins the Sentinel’s autonomous functions, reflecting a
commitment to robust and responsive system design.

Fig. 2. Simplified system connectivity diagram

B. Computer Vision and AI

The Autonomous Security Patrolling Sentinel utilizes ad-
vanced computer vision and AI for real-time threat detec-
tion and identity verification. Core functionalities include
weapon detection, facial recognition, and threat assessment.
The system employs the YOLOv8 [4] framework, renowned
for its balance between speed and accuracy, vital for real-time
operations.

1) Weapon Detection: The weapon detection module op-
erates using a customized YOLOv8M model. Trained on a
comprehensive dataset from Roboflow, it identifies various
weapon types with high accuracy. This module is critical for
immediate threat identification, essential in security scenarios.

2) Facial Recognition: The Autonomous Security Pa-
trolling Sentinel employs an advanced facial recognition
system designed to identify individuals rapidly and accu-
rately within its operational environment. Leveraging the
face recognition Python library, our system is optimized for
real-time performance, crucial for surveillance applications.
Inspired by the work of Vinay et al. [5], we explored the
use of Sparse Interest Points and ORB (Oriented FAST and
Rotated BRIEF) feature extraction techniques to enhance the
robot’s identification capabilities. This approach has proven
effective in improving the accuracy of face recognition in
robotic systems, demonstrating an 85% accuracy rate after pre-
processing. The system cross-references facial features against
a server-stored database, playing a pivotal role in distinguish-
ing between authorized personnel and potential intruders.

3) Threat Detection: A unique threat detection model, em-
ploying a hybrid MobileNet Bi-LSTM architecture, assesses
potential threats based on body language and movements.
This system adds a layer of security by analyzing behaviors
indicative of violent intentions, further bolstering the robot’s
surveillance capabilities. The training and validation loss is
shown in Fig. 3. The model shows a false negative rate of
2% and a false positive rate of 10%. The dataset used for
training the pose estimation model was taken from the COCO-
Pose dataset [6], while the dataset used for training the threat
detection model was taken from Kaggle [7].

Fig. 3. Total Loss vs Total Validation Loss - Threat Detection.

4) Integration and Performance: These AI components
are integrated into the robot’s operational pipeline, ensuring
synchronized functioning with the hardware elements. Per-
formance metrics, including precision, recall, and real-time
processing speeds, demonstrate the efficacy of these systems
in a live environment, making the robot a reliable asset in
autonomous security operations.

The AI pipeline initiates with the detection of persons in
real-time, using concurrent threading to handle multiple tasks
simultaneously. Once a person is detected, the system activates
parallel threads for weapon detection, facial recognition, and
Threat Detection. This concurrent processing ensures swift
and efficient analysis, crucial for prompt threat assessment.
The integration of these elements into the robot’s operational
framework leverages threading to manage these simultaneous
operations without performance compromise, highlighting the
system’s advanced capability in dynamic security environ-
ments.

C. APIs and Communication

To make client-server communication possible, two APIs
had to be developed in this project: one that runs in the server,
and one that runs in the robot. When the robot recognizes an
incident, it will gather the details of the incident and use its
own API to send these incidents to the server via HTTP over
WIFI connection. The server, on the other hand, uses its own
API to receive these details that were sent by the robot. Then,
these incidents and their details are stored in a database that
also runs on the server.

However, this is not the only way the APIs are used.
Communication between the server and the client is not one-



way, but two-way. This means that while the robot can send
data to the server, the server can do the same thing to the
robot as well. For example, when the users choose to control
the robot manually from the security HQ server instead of
having it drive autonomously, the server sends the controls
from its API, and the robot’s API receives them.

D. Front-end and User Interface

Once the recorded incidents are stored, the website (which
is the front-end) will be able to fetch them from the database
by communicating with the server’s API, which is directly
linked to the database. They are then displayed on the website
for the users to see, as seen in Fig. 4.

Fig. 4. Home page of the front-end website.

III. IMPLEMENTATION

Since this project deals with a wide array of disciplines and
fields, this section will be divided into multiple parts, with each
one discussing a certain aspect of the project. Fig. 5 shows a
picture of our robot.

Fig. 5. This project’s resulting robot.

A. Hardware Implementation

The hardware architecture of the Autonomous Security
Patrolling Sentinel is a blend of robust mechanical construction
and advanced electronic components. Central to its design
is a steel frame, providing durability and stability, while
maintaining a compact size for agile maneuverability. The

robot is powered by dual 12V 16A 8Ah batteries, ensuring
extended operational capabilities.

For motion, the robot employs AndyMark DC motors
coupled with Toughbox gearboxes, delivering reliable and
efficient locomotion. Omnidirectional rear wheels augment
its agility, enabling responsive and precise movements. The
computational needs are addressed by Nvidia Jetson Orin
and Nano modules, which are housed in custom 3D printed
enclosures for protection and integration.

A standout feature is the EAI Flash Lidar F4, instrumental
in the robot’s spatial awareness and environment mapping,
vital for its autonomous navigation and threat detection. The
firmware, developed on Ubuntu 20.04 with ROS 1 Melodic,
seamlessly integrates sensor inputs and communication pro-
tocols, ensuring a synchronized operation between hardware
components and the server.

In terms of autonomy, the robot is capable of self-navigation
within a predefined operational map. It employs various ROS
packages for differential driving, localization, and path plan-
ning. Custom scripts are implemented for odometry, collision
detection, and alarm triggering, ensuring comprehensive con-
trol and monitoring.

B. AI Implementation

The implementation of the AI components in the Au-
tonomous Security Patrolling Sentinel was a meticulous pro-
cess, involving the practical application of the designed com-
puter vision and AI systems. This section details the hands-on
aspects of realizing the AI functionalities.

1) Weapon Detection Implementation: For weapon detec-
tion, the YOLOv8 S model was tailored to the project’s needs.
The team undertook extensive training sessions using a curated
dataset to enhance detection accuracy. Post-training, the model
was integrated into the robot’s system, and real-time tests were
conducted to fine-tune detection thresholds and response times,
ensuring efficient and accurate weapon identification in diverse
scenarios.

2) Facial Recognition Implementation: Implementing fa-
cial recognition involved setting up the facial recognition
library and creating a database of facial features. The team
developed a protocol for capturing and storing facial data,
ensuring efficient comparison and matching during operation.
Rigorous testing in controlled and uncontrolled environments
was conducted to assess recognition accuracy and speed,
leading to iterative improvements in the algorithm.

3) Threat Detection Implementation: The development of
the threat detection model, using a hybrid MobileNet Bi-
LSTM architecture, required the team to collect and label a
significant amount of video data showcasing various behaviors.
Post-training, this model was integrated into the robot’s sys-
tem. Its performance in live scenarios was evaluated, focusing
on the model’s ability to differentiate between normal and
threatening behaviors accurately.

4) Integration and Field Testing: The final phase of AI
implementation involved integrating these AI modules with
the robot’s hardware and firmware. This required careful



synchronization of AI processing with the robot’s sensory
inputs and mobility functions. Field tests were conducted to as-
sess the overall system performance, including response time,
accuracy, and resource utilization. The tests provided valuable
insights, leading to further optimizations and adjustments for
enhanced operational efficiency.

C. Communication and API Implementation

All APIs in this project were developed using FastAPI
[8], which is a modern, high-performance web framework
for building APIs with Python. This framework was chosen
because unlike others, it has an ‘async def’ functionality,
making it able to run asynchronous functions. This means that
when this function is run, the other functions involved will
not be stopped, but will still be running concurrently. This
is perfect for a robotics project such as this, since executing
functions should not stop other functions, i.e., robot movement
being stopped because it has to send an incident.

Because of this choice, the programming language used for
our APIs is Python, as FastAPI is only available in Python, and
using Python is much easier than using any other programming
language for this project.

There are two general APIs in this project: the server API
and the robot API. The robot API is divided into two: the
Jetson Orin API and the Jetson Nano API. This means that
there are actually three specific APIs, with each one having a
unique purpose.

1) Jetson Orin API: The Jetson Orin API is responsible for
running the computer vision pipeline being used by the robot.
In that pipeline, The Jetson Orin uses the webcam as the eyes
of the robot. Once it recognizes an incident, it will record
the time when it happened, the type of incident, the location
in the map, and the registered offender if any, then convert
these into JSON format, and then use this API to send these
details to the server API for the users to see. In summary, the
Jetson Orin runs the computer vision of the robot, and once it
detects an incident, it will use this API to send the details of
that incident to the server. In addition, should the users want
to see a live camera feed of the robot, the Jetson Orin will use
this API to send the camera feed in a sequence of frames to
the front-end website, where the users will be able to watch
the robot’s feed.

2) Jetson Nano API: One of the features of the robot is
that it can also be controlled manually by users on the front-
end side. The manual controls are ‘w’ for forward, ‘s’ for
backward, ‘a’ for turning left, and ‘d’ for turning right. So, an
API on the Jetson Nano was developed so that it could receive
manual controls in the form of characters from the server API.
Once these characters are received, the API then uses them as
manual inputs for the robot’s movement.

3) Server API: This API is the center of all communica-
tions that transpire in the operation of the project. This API
talks to three different computer programs: the API on the
Jetson Orin, the API on the Jetson Nano, and the front-end
website that the users interact with.

With regards to the Jetson Orin, this server API receives
the incident reports coming from it. It parses the information it
receives, which is in JSON format, and stores this information
in the database, which will be talked about later. Also, if
users want to access the live feed of the robot, the server
API will render the webpage that is responsible for displaying
the robot’s feed in real time.

With regards to the Jetson Nano, this server API renders the
webpage for manual control of the robot’s movements. Though
this API does not directly communicate with the Jetson Nano,
it makes it possible for the Jetson Nano to receive manual
controls from the control webpage.

With regards to the front-end website, this API is responsi-
ble for rendering all the pages of the website, sending the
stored incidents to the webpage so that the users can see
it, manually adding, modifying, and deleting incidents in the
database, recording system logs, and creating new users and
editing existing users based on the user information entered
on the website.

The server API was linked to a PostgreSQL database via the
SQLAlchemy Python Library. All the important information
is stored here. This includes the details of all incidents, the
account information of each user, events (to be discussed
later), the robot units related to the server, and all the possible
roles a user can have.

D. Front-end Implementation

The front-end implementation is basically a website for
users to utilize different features of the robot. It has several
functioning pages to it: Home, Incident Reports, Livestream
and Manual Control, and Register Personnel.

The home page is where users can see the basic status of the
robot, such as its battery level and mode of operation (manual
or automatic). This page also displays basic statistics of the
incidents recorded.

The Incident Reports page is where the user sees all the
incidents stored in the server’s database. It displays each
incident as a row in a table, and column corresponds to a detail
of the incident, such as time of occurence, type of incident,
image of the incident, location of the incident, and registered
individual involved, if any.

The Livestream and Manual Control page is where users
can watch the robot’s feed and toggle manual control of the
robot. The manual controls come in as keyboard inputs, and
are sent to the robot, which then translates it to movement.

The Register Personnel page allows users to add new
security personnel or edit an existing profile. This is the page
where they can add a picture of themselves so that the server
can run facial recognition on their face, making it possible for
the robot to recognize them if ever they are involved in an
incident.

E. Cybersecurity

Multiple layers of security were implemented in this project.
First, there is the user authentication where the users have
to authenticate themselves in the login page of the website.



This ensures that non-authorized users won’t be able to access
front-end features.

Second, once the login is successful, the server API gen-
erates an authentication token and a cookie for the session.
The authentication tokens are used when the user wants to do
an action that will get, modify, or delete contents from the
database. The cookies are used when the user wants to visit
a webpage that’s only for authorized personnel. Without the
token and cookies, it would be impossible to use the front-
end website and interact with the API, therefore making it
impossible for non-authorized users to do anything with the
server and the robot.

Lastly, once a user makes a new account for the website
and enters their password, this password is hashed first before
being stored in the database. It is crucial that the database only
contains the hashes of the passwords and not the passwords
themselves. That way, if an attacker were able to see the
contents of the database, they would not see the passwords,
but only their hashes. Hashes cannot be used when logging in
to an existing account.

F. Dockerization

All the software involved in this project was placed in
docker images that would be built and run on their respective
machines. This was done to account for scalability in the
future, as well as to make deployment easier. That way, if
the project had to be done again on a different laptop and a
different pair of Jetsons, all the action needed would be to
just download the repository and build the docker image that
comes with it.

IV. RESULTS

A. Full-stack Domain

The Home page of the website functioned as expected. It
was able to show the robot status as well as basic statistics on
the incidents stored in the database.

Then, the group tested the computer vision pipeline of the
robot. When people with weapons were shown to the robot,
the robot was able to send an incident report to the server with
the right details. The front-end was also able to display them.

Fig. 6. The robot watching 2 people with weapons (left), and the live feed
of the robot(middle).

Fig. 7. Incidents table after the incident in Fig. 6.

Afterwards, from the incidents table, the user could also view
the image of the incident and where in the map the incident
happened.

Fig. 8. Picture of the incident (left) and location where it happened (right).

However, the individuals recognized were unknown in these
incidents because their faces were not facing the camera.
When tested on a scenario where the individual was facing
the camera, the robot was able to successfully recognize the
person.

Fig. 9. Second trial of the weapon detection system.

B. Robot Manual Control

The teams successfully established manual control mech-
anisms, allowing precise movement using WASD or arrow
keys via a web interface. They also demonstrated the robot’s
responsiveness and agility under direct human command. In



Fig. 10. Resulting incidents table after the incident in Fig. 9.

addition, the robot can be commanded directly by accessing
the Jetson through teamviewer or SSH by typing the command
python3 manual.py.

C. Hybrid Mapping and Autonomous Driving

The team successfully developed a method to automatically
initiate hybrid mapping on startup, with manual intervention
through roslaunch main mapping.launch. In addition, they
achieved detailed area mapping, essential for the robot’s
navigation and operational awareness.

As for autonomous driving, scripts were implemented via
roslaunch main master.launch for autonomous driving, en-
abling the robot to navigate without human input. The robot
is also able to translate programmed paths into smooth move-
ments.

D. Incident Response

The team successfully integrated the systems so that we
can have an alarm response and immediate report whenever
an urgent threat is detected. Personnel immediately gets to
know about reported incidents and can take immediate action.
A sequence of examples are shown in Fig. 6, Fig. 7, and Fig.
8.

E. Computer Vision

The deployment of computer vision technologies in the Au-
tonomous Security Patrolling Sentinel demonstrated significant
effectiveness in real-world scenarios. Key findings from the
implementation are outlined below.

1) Weapon Detection Accuracy: The weapon detection
model showcased high accuracy in identifying various types
of weapons in diverse environments. Field tests indicated an
accuracy rate of above 90%, effectively recognizing weapons
even in low-light conditions. A detection example is shown in
Fig. 9, and Fig. 10.

2) Facial Recognition Reliability: Facial recognition tests
under varying conditions affirmed the system’s robustness,
with an overall success rate exceeding 85%. The system
efficiently distinguished between registered and unknown in-
dividuals, proving essential in security management.

3) Threat Detection Efficacy: The threat detection model,
trained to recognize potentially violent behaviors, displayed a
notable ability to alert security personnel in real-time. During
trials, it achieved a detection success rate of around 80%,
significantly enhancing the robot’s surveillance capability.

4) Integration and Real-time Performance: The integrated
computer vision system operated seamlessly with the robot’s
other systems. The real-time processing speed was within the
expected range, ensuring timely responses to detected threats.
The balance between speed and accuracy affirmed the system’s
reliability in operational conditions.

V. CONCLUSIONS

This project was an overall major success for each member
of the team. Most of the main functionalities were delivered,
but some small features were not finished. To compensate for
this, bonus features were added, such as the location of the
incident and the manual control from the front-end.

In conclusion, this study demonstrates the successful im-
plementation and operational efficiency of an innovative au-
tonomous security robot. By leveraging sophisticated mapping
and computer vision technologies, the robot exhibits remark-
able capabilities in autonomously patrolling areas, detecting
threats, and enhancing surveillance practices, particularly in
crowded environments. The interdisciplinary approach, com-
bining elements of engineering, computer science, and cy-
bersecurity, underscores the collaborative effort necessary for
developing such advanced technological solutions. While the
current prototype fulfills its designed objectives efficiently,
the potential for future refinement and expansion is evident,
promising even greater contributions to the field of security.
This project not only showcases the immediate benefits of
autonomous security robots but also paves the way for on-
going innovation in leveraging technology to address complex
security challenges.

ACKNOWLEDGMENT

We acknowledge the assistance and orientation of the TAs
Xinrui Yu and Mikhail Gormov and Professor Jafar Saniie.

REFERENCES

[1] S.F. Capital, ”Knightscope: Slow Rise of the Robots (rating
upgrade),” Seeking Alpha, NASDAQ:KSCP, 2023. [Online]. Available:
https://seekingalpha.com/article/4568651-knightscope-slow-rise-of-the-
robots-rating-upgrade

[2] ”Security Robots Expand Across U.S., With Few Tangi-
ble Results,” NBCNews.com, 2023. [Online]. Available:
https://www.nbcnews.com/business/business-news/security-robots-
expand-across-u-s-few-tangible-results-n1272421

[3] ”Knightscope Deploys New Autonomous Security Robot in
Southern California,” Business Wire, 2023. [Online]. Available:
https://www.businesswire.com/news/home/20220316005436/en/Knightscope-
Deploys-New-Autonomous-Security-Robot-in-Southern-California

[4] Ultralytics, ”Ultralytics/ultralytics: New - YOLOv8 in PyTorch - ONNX
- OpenVINO - CoreML - TFLite,” GitHub, 2023. [Online]. Available:
https://github.com/ultralytics/ultralytics

[5] A. Vinay, B. Saikrishna, N. ManojP, Nishanth Rao, K. N. B. Muthy,
and S. Natarajan, ”Person Identification in Smart Surveillance Robots
using Sparse Interest Points,” Procedia Computer Science, vol. 133, pp.
812-822, 2018.

[6] ”Papers with Code - MS-COCO Benchmark (Multi-Label Classifica-
tion),” The Latest in Machine Learning, 2023. [Online]. Available:
https://paperswithcode.com/sota/multi-label-classification-on-ms-coco

[7] A. Rakhmaev, ”UCF Crime Full,” Kaggle, 2023. [Online]. Available:
https://www.kaggle.com/datasets/alirakhmaev/ucf-crime-full

[8] ”FASTAPI,” FastAPI, 2023. [Online]. Available:
https://fastapi.tiangolo.com/


