
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Facial Recognition Attendance Tracking: An
Intelligent Monitoring Approach

Syed Tauseeq Hussain, Mario Antonio Nogueira Mansur Carvalho, Vikrant Kishor Rathod, Srinivasa Mani Sankar Reddy Karri,
Xinrui Yu, Mikhail Gromov, and Jafar Saniie

Embedded Computing and Signal Processing (ECASP) Research Laboratory (http://ecasp.ece.iit.edu)
Department of Electrical and Computer Engineering
Illinois Institute of Technology, Chicago IL, U.S.A.

Abstract—This paper presents an Intelligent Monitoring
System that utilizes the Internet of Things (IoT) and Artificial
Intelligence (AI) technologies to automate the class attendance
process reliably and efficiently. Conventional approaches for
attendance tracking have been laborious and have consumed a
significant amount of time, with errors and inconsistencies being a
common occurrence. In contrast, the Intelligent Monitoring
System combines object detection & recognition AI models,
wireless communication, and cloud monitoring to generate
reliable attendance data that can be used for various purposes,
such as tracking student-by-student attendance data and
monitoring overall attendance statistics. The system comprises an
ID reader that uses radio frequency tags, a facial recognition
system that uses a camera and AI algorithms, and a cloud
monitoring system for attendance statistics. The proposed system
is designed to overcome the challenges of traditional attendance-
taking processes and provide a solution that is accurate, reliable,
and efficient.

Keywords—Internet of Things, deep learning, attendance
monitoring, facial recognition

I. INTRODUCTION

Class attendance management is a fundamental aspect of
educational institutions, playing a pivotal role in assessing
student engagement and facilitating effective teaching practices.
Traditional methods of attendance-taking have often been labor-
intensive and prone to errors, necessitating the exploration of
innovative technological solutions. The advent of the Internet of
Things (IoT) and Artificial Intelligence (AI) technologies has
revolutionized various industries, offering opportunities for
automation and optimization. In response to this trend, the
Intelligent Monitoring System has been developed to streamline
the attendance tracking process in academic settings. This
system leverages IoT and AI capabilities to generate
comprehensive student attendance data, enabling real-time
monitoring and analysis. By replacing manual methods such as
verbal roll calls or paper-based attendance sheets, the Intelligent
Monitoring System enhances efficiency and accuracy in
attendance management. This research aims to explore the
functionality and effectiveness of the Intelligent Monitoring
System in higher education environments. Specifically, it
investigates the integration of RFID (Radio Frequency
Identification) technology for ID card authentication and facial
recognition algorithms to verify student presence. Additionally,
the utilization of cloud-based platforms, such as Amazon Web
Services (AWS), for data storage and analysis is examined.
Through the implementation of this system, universities can

potentially optimize classroom allocation, improve faculty
decision-making, and gain insights into student attendance
patterns. This paper provides an in-depth examination of the
system architecture, comprising three interconnected
subsystems, and discusses its implications for educational
institutions.

The Intelligent Monitoring system logic is summarized in
Fig. 1, and the attendance tracking process is shown in Fig. 2.

Fig. 1. Overview Architecture of Intelligent Monitoring System

II. SYSTEM DESIGN

A. Overall

This sub-system is composed of an Arduino connected to an
RFID reader/writer and a Bluetooth module. These components
are connected between themselves (See Fig. 3). Students tap
their cards on the RFID reader, which captures the unique
identifier on these cards and immediately transmits them
through Bluetooth Serial Communication. The card ID is then
captured by the Raspberry Pi. The hardware used by the RFID
system is the following:

• Arduino: It is an open-source hardware platform that has
many basic components like a processor, GPIO Pins, and
Clock and supports various communication protocols
such as Serial Peripheral Interface (SPI), Inter-
Integrated-Circuit bus (I2C), Universal Asynchronous
Receiver Transmitter (UART), and Software Serial. The

Arduino platform has its software and supports various
platforms like Windows, Mac OS, and Linux. In this
paper, Arduino is used to transmit the data from the
MFRC522 RFID reader to the Raspberry Pi using the
HC-06 Bluetooth module.

• RFID Tag: RFID stands for Radio Frequency
Identification. RFID tags are usually in the form of a tag
or a card. They use Radio Frequency Technology and can
store small amounts of information [1]. The information
can be a short description, serial numbers, or even a few
pages of data. The information is stored without using
any power and can be modified. In this paper, the RFID
tags are used to store the student’s college ID numbers.

• MFRC522 RFID reader: The MFRC522 RFID reader is
an inexpensive contactless communication IC that uses
Radio Frequency technology to read RFID tags. It works
at 13.56 MHz and can be used with Arduino or other
microcontrollers to read/write data from RFID tags. In
this paper, it is mainly used to read and write the
Student’s ID to the RFID Tags, and it is interfaced with
the Arduino using the SPI Protocol.

• HC-06 Bluetooth module: HC-06 is a wireless
transceiver that works on Bluetooth technology 2.0.
While Bluetooth technology doesn’t need a central hub
or router to work, the HC-06 module can’t work
independently as it can only work as a slave device.
Therefore, another Bluetooth module or a device like a
Raspberry Pi needs to act as a Master device to begin the
communication. In this paper, HC-06 is connected to an
Arduino and it transmits the Student ID number that the
Arduino receives from the MFRC522 RFID reader to a
Raspberry Pi, which acts as a Master device [2].

Fig. 2. RFID & Bluetooth connected to Arduino UNO

B. Artificial Intelligence System
Facial recognition [3] makes the system smarter and more

secure. It delivers a two-way authentication to the attendance
monitoring system by verifying the recognized student from the
student ID received from the RFID system. If the ID stored in
the database for the recognized individual matches the ID of the
person received from the RFID system; it’s verified, the
attendance of that individual is generated and the data is sent to
the AWS cloud. However, if the IDs don’t match then
verification fails, and no data is sent to the AWS cloud hence
that individual is considered absent.

There are three parts to the facial recognition system:

1) Face Detection: The system must initially detect a face
in the frame. For that Haar Cascade classifier [4] is used. Haar
Cascades have a higher accuracy for a wide range of objects,
moreover, they are efficient, process images in real-time, and
are robust against illumination. Although there are a few other
alternatives for deep learning algorithms such as Faster RCNN,
SSD, YOLO, Mask R-CNN, etc. However considering the
Raspberry PI computational capabilities, memory constraints,
and the fact that detection and recognition would work
simultaneously, Haar cascade is preferred for the paper. For
training 40 images are considered that contain the faces of every
individual. After the database is created in the system, images
are convolved with a series of filters that are responsible for
extracting different features i.e. edges, lines, etc. Then this
algorithm classifies whether this image patch contains a face or
not. Using the same concept, a sliding window technique is
used to apply the algorithm to a complete image. Once the face
is detected, it’s considered a region of interest (ROI) and
finally, it puts the ROI into a list of training data and its
corresponding label which is the name of the individual. There
are a few points that need consideration when creating a
training database for face detection and recognition. This
includes:

a) High resolution: Images should be high in resolution
with good lighting on them to make sure all the features of the
face are properly displayed.

b) Different angles: Images should be high in resolution
with good lighting on them to make sure all the features of the
face are properly displayed. different angles should be explored

Fig. 2. Workflow Overview of the Smart Multi-Building Energy
Monitoring System

for the face to make sure that well-rounded features are
recognized. However, in our case, since we are using the frontal
face detection part of the Haar cascade algorithm, we just
needed a small amount of variation in angles, not 360 degrees.

2) Face Recognition [5]: Once the faces are detected, facial
recognition does its part by using an LBPH (Local Binary
Patterns Histograms) [6] face recognizer object which is an
algorithm used for facial recognition. It trains using the NumPy
Arrays and their corresponding labels.[7] After the data is
trained, it is stored in a .yml file. An yml file is a human-
readable data serialization language. It is used in machine / deep
learning models and Artificial intelligence models to store
metadata about the model such as its hyperparameters,
architecture, and training configuration. This metadata can be
used to reproduce and deploy the model consistently. In the
testing part, the trained model loads the label mappings, and it
uses OpenCV [8] to capture frames from the camera. For each
frame, it detects the face first and then applies the trained face
recognizer to predict the identity of the face. For the facial
recognition part, there are a few sets of lines in the code that are
important to discuss:

a) cv2.face.LBPHFaceRecognizer_create(): It is a
function in the OpenCV that creates an instance of a face
recognizer object using a Local Binary Patterns Histograms
(LBPH) algorithm. This algorithm extracts features from the
image and then uses a machine learning algorithm to classify
these features as belonging to respective individuals.

b) recognizer.predict(roi_gray): The predicted function
will take the roi_gray which is the grayscale ROI [9], the face,
as input and returns two values: id and the confidence value of
this prediction.

3) Verification: Finally, the Card ID is received by the
Raspberry PI and the script on the Raspberry PI matches it with
the name of the face detected by matching it with the name from
the CSV file containing a list of students’ IDs and names. Once
the student is verified, their attendance is generated. If the ID
doesn’t match with the name predicted by the facial recognition
system, then verification for that student fails and is considered
absent. An example of a verification successful message is
shown in Fig. 4.

Fig. 3. Verification on the terminal was successful. This pertains to the
backend of the project and won't be visible in practical implementation.

C. AWS Cloud Monitoring Implementation
Cloud monitoring capabilities to make attendance statistics

accessible remotely were built using AWS, inside which three
main services were utilized to allow for an online user interface:
AWS IoT Core, AWS IoT Analytics, and AWS QuickSight [10].

On AWS IoT Core, the system’s Raspberry Pi was
configured as a “Thing resource”, which allowed it to receive
the keys and certificates necessary to communicate with AWS
via MQTT protocol. Under this protocol, the Raspberry Pi was
the publisher of an “attendance_data” topic and AWS was the
subscriber.

Using the AWS IoT SDK libraries for Python, the Raspberry
Pi published JSON messages that contained the name, ID, and
card tapping time (See Fig. 5.) of the students whose attendance
was verified by the facial recognition system, and AWS received
those messages through MQTT protocol and was able to extract
data through AWS IoT Analytics.

Fig. 4. JSON message format utilized to transmit attendance data via MQTT

protocol.

Using the AWS IoT SDK libraries for Python, the Raspberry
Pi published JSON messages that contained the name, ID, and
card tapping time (See Fig. 5) of the students whose attendance
was verified by the facial recognition system, and AWS received
those messages through MQTT protocol and was able to extract
data through AWS IoT Analytics.

Inside Analytics, a Channel was configured to absorb the
messages under the “attendance_data” MQTT topic. Next, a
pipeline was created to extract relevant attributes from the JSON
messages, which were student name, ID, and tap time, and
forward these attributes and their values to a data store that was
created specifically for this system. For this pipeline, AWS roles
and policies had to be defined to give the necessary reading and
writing access so that the data could be transmitted. Finally, an
Analytics dataset was created and configured to ingest new data
from the data store every one minute.

At this point, the attendance data is already present in AWS,
and is organized in SQL format in the IoT Analytics dataset, so
the last step to make it accessible through an online human-
machine interface is to create a friendly dashboard. This
dashboard is possible through AWS QuickSight, a service that
allows for analysis and graphs to be generated based on datasets
from other AWS services, which includes IoT Analytics
datasets.

AWS QuickSight can ingest data from other AWS datasets
according to a defined schedule. The most frequent refresh
schedule allowed by AWS is once every 24 hours, and this was
the choice for our system. That means professors and other
University members who have access to attendance data can see
an updated dashboard once every day.[11]

On AWS QuickSight, an analysis was created based on the
attributes and their values. The analysis contained an attendance
table and an attendance totals graph. The attendance table had
student names on the rows and one lecture per column, which
allowed viewers to see what specific lectures each student
attended. In the total attendance graph, the lectures were
displayed along the x-axis of a bar chart, in which the bar height
represented the total number of students that were present in
each class. AWS QuickSight offers filter functions for the data

attributes and values that get displayed, permits the layout of the
analysis (colors, shapes, and background) to be altered, and
allows the developer to define the size and position of each
graph and table on the screen. QuickSight also allows for the
creation of calculated fields, which were important for the work
done for the Intelligent Monitoring System. Specifically, the
lecture number was one of the values displayed on the analysis
graphs, however, it was not an attribute obtained by reading the
JSON messages received and processed in AWS IoT Analytics.
To obtain the lecture number, a calculated field was created on
QuickSight that extracted the date and time of the lecture from
the attribute “taptime”, which was just a timestamp that
represented when the student tapped their ID cards at the RFID
reader. This timestamp was a String, and the date and time
extraction was based on character position.

Once the AWS QuickSight analysis was done, it was
published to a dashboard, which could be accessed through a
webpage by anyone who received permission to view the data.
The main view of the attendance statistics that Professors and
other University members can see online (see Fig. 7).

III. RESULTS

A. RFID System

The detected IDs are shown in Fig. 6.

Fig. 5. Display of IDs detected at the Arduino UNO terminal after the RFID

tag is detected via RFID reader.

B. Artificial Intelligence System

The facial recognition system indicates that the individual
has been recognized. The model outputs a bounding box around
the person's face along with their name. Successful verification
means that the student was detected via RFID, verified through
facial recognition, and their attendance was marked and sent to
the AWS cloud.

C. AWS Cloud Monitoring Implementation

The facial recognition system indicates that the individual
has been recognized. The model outputs a bounding box around
the person's face along with their name. Successful verification
means that the student was detected via RFID, verified through
facial recognition, and their attendance was marked and sent to
the AWS cloud.

The table on the upper part of the dashboard has student
names on the rows and lectures on columns and shows if each
student was present in each lecture. This table had totals on the
right-side end that showed the total number of lectures attended
by each student, which could be used by Professors to define
attendance-related grades. During the experiments, the lecture
numbers were the minute component of the time stamp obtained
when the students tapped their cards. In the future real-life

application of the Intelligent Monitoring System, this lecture
number should be the date of the time stamp, since most classes
only happen once per day. The minutes were used instead of
dates because the team wanted to see updated results in different
columns quickly for testing purposes, so it was not feasible to
wait for another day to see if the dashboard was working as
desired.

Fig. 7. Attendance data per student and lecture for a sample class of 4

registered students.

The bottom chart of the dashboard is a column chart showing
the total number of students present at each lecture. This chart
can have many uses, such as showing attendance trends for some
specific class that can indicate how engaged students are during
the semester. This can be valuable feedback for Professors.
Another potential use for this chart is for the educational
institutes to re-evaluate what is the appropriate classroom to be
assigned for each class, considering the capacity and attendance
numbers. Moreover, in case the attendance numbers are
extrapolating the room capacity, entities such as campus Public
Safety can be alerted and actions can be taken to avoid bigger
issues in case of a fire, for example.

IV. CONCLUSION

The idea of setting up a reliable attendance monitoring
system was established successfully, and a centralized system
can be set up by storing all the data in a cloud and displaying the
attendance on the AWS cloud. We were able to verify two
students and their attendance was marked and recorded. We did
not face any noticeable delays in communications.

To make this system ready for large-scale deployment, the
biggest points to work on are to make the system more robust
against wireless connection issues, to make the facial
recognition more reliable, and to adapt the dashboard following
feedback from Professors and Universities.

Our paper, originally designed for college and university
settings, demonstrates versatile applicability across various
other domains with minimal adaptation. For instance, the
system's robust authentication framework can seamlessly extend
to high-traffic environments such as airports or banks, where
stringent security measures are imperative. By integrating two-
step authentication mechanisms utilizing government-issued
IDs like passports or other identification cards, coupled with
advanced facial recognition technology, organizations can
enhance security protocols while optimizing operational

efficiency. This flexibility underscores the scalability and
adaptability of our solution, positioning it as a viable option for
diverse applications beyond the educational sector.

REFERENCES
[1] L. E. Staff, “In-depth: What is RFID? how it works? interface RC522 with

Arduino,” Last Minute Engineers, https://lastminuteengineers.com/how-
rfid-works-rc522-arduino-tutorial/ (accessed Feb. 11, 2024).

[2] “HC-06 Bluetooth module,” Components101,
https://components101.com/wireless/hc-06-bluetooth-module-pinout-
datasheet (accessed Feb. 11, 2024).

[3] D. A. R. Wati and D. Abadianto, "Design of face detection and
recognition system for smart home security application," 2017 2nd
International conferences on Information Technology, Information
Systems and Electrical Engineering (ICITISEE), Yogyakarta, Indonesia,
2017, pp. 342-347.

[4] Mittal, “Haar Cascades, explained,” Medium,
https://medium.com/analytics-vidhya/haar-cascades-explained-
38210e57970d (accessed Feb. 11, 2024).

[5] A. U. Naik and N. Guinde, "LBPH Algorithm for Frontal and Side
Profile Face Recognition on GPU," 2020 Third International Conference
on Smart Systems and Inventive Technology (ICSSIT), Tirunelveli, India,
2020, pp. 776-779.

[6] K. S. do Prado, “Face recognition: Understanding LBPH algorithm,”
Medium, https://towardsdatascience.com/face-recognition-how-lbph-
works-90ec258c3d6b (accessed Feb. 11, 2024).

[7] M. G. Sarwar, A. Dey and A. Das, "Developing a LBPH-based Face
Recognition System for Visually Impaired People," 2021 1st International
Conference on Artificial Intelligence and Data Analytics (CAIDA),
Riyadh, Saudi Arabia, 2021, pp. 286-289.

[8] A. Kumari Sirivarshitha, K. Sravani, K. S. Priya and V. Bhavani, "An
approach for Face Detection and Face Recognition using OpenCV and
Face Recognition Libraries in Python," 2023 9th International Conference
on Advanced Computing and Communication Systems (ICACCS),
Coimbatore, India, 2023, pp. 1274-1278.

[9] Noel, “Region of interest in Computer Vision,” Scaler Topics,
https://www.scaler.com/topics/region-of-interest-opencv/ (accessed Feb.
11, 2024).

[10] Visualizing data in Amazon QuickSight - Amazon quicksight,
https://docs.aws.amazon.com/quicksight/latest/user/working-with-
visuals.html (accessed Feb. 11, 2024).

[11] P. Pattnaik and K. K. Mohanty, "AI-Based Techniques for Real-Time
Face Recognition-based Attendance System- A comparative Study," 2020
4th International Conference on Electronics, Communication and
Aerospace Technology (ICECA), Coimbatore, India, 2020, pp. 1034-
1039.

