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Abstract— The accurate detection of liquid levels is of 

paramount importance across various industries, including 
pharmaceuticals, beverages, and chemicals. Traditionally, 
monitoring liquid levels within containers has relied on manual 
procedures or basic sensor technology, which often encounters 
challenges related to precision and speed. However, as the field 
of computer vision advances, there is a growing interest in 
leveraging more advanced techniques to overcome these 
limitations and enhance liquid-level monitoring. In this context, 
this research proposes the utilization of PyTorch, a powerful 
open-source deep learning framework, to tackle the intricacies 
associated with liquid-level monitoring. By transitioning from 
traditional computer vision methods to advanced deep learning 
techniques facilitated by PyTorch, this study aims to 
significantly improve the accuracy, efficiency, and reliability of 
liquid-level detection across industrial applications.   
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I. INTRODUCTION  
The incorporation of PyTorch [1] marks a significant 

departure from conventional methodologies in liquid-level 
monitoring, ushering in a technologically advanced solution 
poised to elevate both accuracy and efficiency. PyTorch is 
anticipated to facilitate intricate operations such as perspective 
transformation, thresholding, and edge detection, thereby 
enabling precise identification of liquid levels within 
containers. This practical approach not only addresses 
immediate challenges in liquid level detection but also holds 
the potential to advance quality control practices and 
operational optimization across diverse industrial sectors. 

To elucidate the rationale behind the adoption of PyTorch 
for liquid-level detection, it is imperative to delve into the 
specific methodology employed in this study. The proposed 
system operates by training and testing data using three 
convolutional network architectures: Densely Connected 
Convolutional Neural Networks (Dense-Net), Residual 
Neural Networks (Res-Net), and Visual Geometry Group 
Neural Networks (VGG-Net). 

The process followed for each of these three models is as 
follows: Initially, data augmentation is performed on the 
images, followed by training and testing. The metrics utilized 
to evaluate the efficacy of these models include accuracy, 
categorical cross-entropy loss, precision, and recall. 

There is a lot of contemporary literature related to the topic 
of liquid-level detection. For detecting liquid levels in amber 
glass bottles [2], images obtained were taken at a fixed 
distance in ambient lighting conditions. Once data was 
obtained, images were converted to grayscale, followed by 
7x7 Gaussian blurring, and then edge detection with a 
threshold starting with pixel intensity value of 55, and ending 
at pixel intensity value of 110. Morphological operations were 
then performed to obtain specific boundaries to determine 
whether the bottle was underfilled, overfilled, or completely 
filled. After these steps, a square was drawn around the 
boundary of interest, showing the liquid’s presence. Inside this 
square, vertical lines were drawn to measure whether the 
bottle was completely filled, over-filled, or underfilled. 

Due to the impracticality of the current approach, an 
automated process was introduced to analyze different bottle 
levels without geometrical dependencies. This 
implementation detected the amount of viscous food [3] in a 
glass bottle without many dependencies. The authors used 
VGG-16, a 16-layer convolutional neural network. In this 
architecture, the authors acquired the image using a fixed 
lighting approach to obtain clear samples of dark viscous food. 
The images were then converted to grayscale and enhanced 
with Sobel and Canny Edge detection to distinguish liquid and 
food in the bottle. Morphological operations (dilation and 
erosion) were performed to minimize food particle size, 
followed by image segmentation to determine liquid level 
boundaries. Outputs were compressed from 1158×2489 to 
128x128 for faster model training and testing. Data 
augmentation was applied to provide diversity to the dataset. 

Upon training and testing, the obtained accuracy was 
98.3%, with around 10% loss function. However, the required 
setup for obtaining images was fixed, potentially causing 
issues with data taken at different angles and lighting 
conditions. Therefore, designing a system that accommodates 
data captured in various lighting conditions is crucial. 

Seeing this implementation is why we have implemented 
the VGG-16 model. This following implementation shows 
how to implement an AI system using EDGE[4], HD cameras, 
and networking to detect bottle levels – filled or empty. This 
is done by connecting an HD camera to an EDGE processor 
device. This processor communicates with the server to 
update the results of whether the bottle is empty or completely 
filled. The data given as input is that bottles with no caps are 



considered empty, and the bottles with caps are completely 
filled using a 2-stage CNN. Again, it is also to be noted that 
the camera for capturing the bottles was at a fixed height.  

This upcoming implementation makes use of image 
segmentation schemes, followed by determining the area, 
height, width, and extent of the bottle to determine whether it 
is a completely filled or underfilled bottle. Another transform 
performed once image segmentation was completed is the 
Hough transform [5]. This transform determines the edges of 
an image. Based on these edges, the maximum, minimum, and 
overall level of the bottle is obtained. Once done, the results 
obtained from the Hough transform and the area of the given 
object after image segmentation are fed to a decision tree 
classifier. Based on these results, the bottles are classified as 
completely filled or underfilled. However, as Hough 
Transform is computationally expensive, we didn’t go 
forward with implementing this approach. 

This next approach evaluates datasets using a sequential 
net, Res-Net 50, Mobile-Net [6], and VGG-19 model to train 
and test data. The data was preprocessed by converting the 
original input to size 224x224. In addition to this, the 
following metrics were used in the analysis of the 
performance of each model – precision, recall, f1-score, and 
accuracy. From these scores, it was observed that the 
sequential-net model performed the best with 97% accuracy. 
The authors did not mention the use of a loss function; hence, 
sequential net was not included for the final comparison in 
this paper. 

II. LEVEL DETECTION SYSTEM DESIGN 

 
Fig. 1. System block diagram 

Fig. 1 shows the system design. The image data is 
obtained, then the images are preprocessed using data 
augmentation, followed by training and testing using 
convolutional neural networks. In each CNN, there are some 
basic building blocks worth noting, which are discussed in 
depth in this paper. These basic building blocks include 
activation function, loss function, and optimization functions. 
Data [7] used for this implementation contained 486 images. 
308 were completely filled water bottles, 139 were half-filled 
water bottles, and 39 were over-filled water bottles. Image 
Preprocessing is performed prior to training or testing the data. 
The technique used for this implementation is data 
augmentation. 

Data augmentation is the process of making modifications 
to the dataset in order to increase the number of samples in the 
data to train and test. Plus, an added advantage of data 
augmentation is it introduces diversity to the training data to 
avoid overfitting. Some examples of implementing data 
augmentation include reducing the size of the image to reduce 
training and testing time, rotating the image by 45 degrees, 
and changing hue. For this implementation, we reduced the 
size of the image from the original size to 224x224 and rotated 
the image by 45 degrees. 

III. CONVOLUTIONAL NEURAL NETWORKS  
Convolutional neural networks are a class of artificial 

neural networks used for various tasks like liquid-level 
classification. We have opted to use convolutional neural 
networks because they can detect patterns in large datasets. 
Some of the models we implemented are: 

A. Residual Neural Networks (Res-Net) 
The skyscraper analogy for Res-Net [8] highlights its 

innovative approach to building deep neural networks by 
introducing residual connections. As networks grow deeper, 
they tend to suffer from the vanishing gradient problem, where 
gradients become too small for effective learning in initial 
layers. Res-Net addresses this by adding shortcut connections 
that skip one or more layers. Fig. 2 shows the architecture of 
the Res-Net model. 

 
Fig. 2. Res-Net architecture implementation 

Res-Net makes it feasible to train networks with 
unprecedented depth—over 100 layers—while maintaining 
performance gains. The residual connections act as alternative 
paths for gradient flow during backpropagation, mitigating the 
vanishing gradient problem and enabling the training of very 
deep networks without degradation in performance.  

 
Fig. 3. Residual block with skip connections 

Residual Blocks: The heart of Res-Net, these blocks 
feature two paths: the normal path through convolutional 
layers and the shortcut path that skips (see Fig. 3) one or more 
layers. The shortcut paths carry the input directly to the output 
of the block, allowing the network to learn the residual of the 
input to the output, rather than the full output. For this 
implementation, we have used Res-Net 50. 



B. Visual Geometry Group Neural Networks (VGG-16) 
VGG-Net’s [9] design philosophy emphasizes depth and 

uniformity, using an architecture with repetitive blocks of 
convolutional layers. Each block in VGG-Net consists of 
several convolutional layers using small 3x3 filters, followed 
by a max-pooling layer. This uniformity and repetition, akin 
to an artist meticulously working on a canvas, allow the 
network to develop an increasingly complex and deep 
representation of the input data. 

Convolutional Layers: VGG-Net uses multiple stacks of 
convolutional layers with small 3x3 filters, which are the 
smallest size, to capture the patterns of left/right, up/down, and 
center. This approach allows for capturing finer details in the 
input images across the network’s depth. 

Pooling Layers: Followed by convolutional layers, max-
pooling layers reduce the spatial dimensions of the feature 
maps, condensing the information and reducing 
computational requirements. 

Fully Connected Layers: After several blocks of 
convolutional and pooling layers, the network concludes with 
fully connected layers that perform the final classification 
based on the features extracted by the convolutional layers. 

Depth and Performance: Despite its simplicity, VGG-Net 
architecture has shown remarkable success in image 
recognition tasks, proving the effectiveness of deep networks 
with repetitive structures. In this paper, VGG-Net 16 was 
implemented (see Fig. 4). 

 

 
Fig. 4. VGG-Net architecture 

C. Densely Connected Convolutional Neural Networks 
(Dense-Net) 

In this paper, we have used Dense-Net 121, which is a 121-
layer architecture. Dense-Net [10] architecture (see Fig. 5) 
facilitates information flow between layers in a deep neural 
network. Traditionally, layers in a convolutional neural 
network (CNN) pass information in a linear sequence from 
one layer to the next. Dense-Net changes this paradigm by 
connecting each layer to every other layer in a feed-forward 
fashion. In a Dense-Net, the output of each layer is 
concatenated to the inputs of all subsequent layers, creating a 
highly interconnected system. This means that the first layer 
output is fed directly into the second layer, the combined 

outputs of the first and second layers are fed into the third, and 
so on. This mechanism ensures that each layer receives the 
“collective knowledge” generated by all previous layers, 
enriching the feature maps with diverse and comprehensive 
information. 

 
Fig. 5. Dense-Net architecture 

The dense connectivity pattern significantly reduces the 
problem of vanishing gradients, as gradients from the loss 
function can flow directly to most layers in the network. 
Moreover, it enhances feature reuse, making the network more 
parameter-efficient compared to its counterparts. Dense-Net 
ability to leverage the full potential of the network enables it 
to achieve excellent performance with fewer parameters, 
reducing the risk of overfitting on smaller datasets. 

There are two main blocks for implementing Dense-Net 
models: 

Dense Blocks: The core of Dense-Net consists of dense 
blocks, where each layer receives concatenated feature maps 
from all preceding layers as input, and its own feature maps 
are then passed on to all subsequent layers. This setup ensures 
that each layer has access to all the raw and processed 
information from the input to the current layer. 

Transition Layers: Between dense blocks, transition layers 
perform convolution and pooling operations to reduce the 
dimensionality of the feature maps, preparing the data for the 
next dense block. This helps to manage the model’s 
complexity and computational demands. 

IV. CNN FUNCTIONS 
In each convolutional layer, activation functions are used 

to introduce non-linearities to the model. This will make it 
easier for the neural network to learn the images. Some that 
were used in these deep neural networks are as follows: 

A. Rectified Linear unit (ReLU) 
ReLU[11] is a popular activation function used in deep 

learning models. It introduces non-linearity to the neural 
network, allowing it to learn complex patterns and 
relationships in the data. This function 𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥)  is 
used in the hidden layers.  

B. Softmax activation function 
A softmax classifier is a type of classification model used 

in the context of neural networks. It’s commonly used when 
the task is to classify instances into multiple classes (in this 



case 3 classifications). The softmax function is used as the 
output layer activation function in neural networks for multi-
class classification tasks. It transforms the raw output scores 
from the previous layer into probabilities corresponding to 
each class. The output of the softmax function is a probability 
distribution over the classes, with each class having a 
probability value between 0 and 1 and the sum of probabilities 
across all classes equaling 1. Mathematically, the softmax 
function is defined as follows: 

𝑝𝑝(𝑦𝑦 = 𝑗𝑗|𝑥𝑥) =
𝑒𝑒𝑧𝑧𝑗𝑗

∑ 𝑒𝑒𝑧𝑧𝑘𝑘𝐾𝐾
𝑘𝑘=1

 

𝑝𝑝(𝑦𝑦 = 𝑗𝑗|𝑥𝑥)  is the probability that training sample x 
belongs to class j is the raw score for class j. K represents the 
total number of classes. The softmax function takes the raw 
scores and normalizes them into a probability distribution. The 
class with the highest probability is then predicted as the 
output class. 
C. Loss Function 

Categorical cross-entropy [12] is a commonly used loss 
function in multi-classification tasks. It measures the 
dissimilarity between the true distribution of class labels and 
the predicted probability distribution outputted by the model. 

Here’s how categorical cross-entropy works: 

1. True Distribution: Each training example is 
associated with a ground truth label, represented as a 
one-hot encoded vector. In this case, there are three 
classes: class 0 indicates the water bottle is fully 
filled, class 1 stands for a half-filled bottle, and class 
2 indicates the water bottle is overfilled. 

2. Predicted Probability Distribution: The model 
produces a probability distribution over classes for 
each example. This distribution is typically obtained 
by passing the raw output of the model through a 
softmax function, which converts the logits into 
probabilities, making sure that each probability sum 
equals 1. 

3. Loss Calculation: Categorical cross-entropy 
computes the loss by comparing the true distribution 
(one-hot encoded vector) with the predicted 
probability distribution. It penalizes the model more 
heavily for predicting probabilities that diverge 
significantly from the true distribution. 

The mathematical formula for categorical cross-entropy 
loss is as follows: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  −� 𝑦𝑦
𝑁𝑁

𝑖𝑖 𝑖𝑖
log (𝑝𝑝𝑖𝑖) 

where N represents the number of classifications. N = 3 in 
this case.  𝑦𝑦𝑖𝑖 represents the true probability of classification 𝑖𝑖. 
𝑝𝑝𝑖𝑖 represents the predicted probability of classification 𝑖𝑖. The 
loss is summed over all classes, and the negative sign makes 
sure that the loss is minimized during training. Categorical 
cross-entropy loss provides a measure of how well the 

predicted probabilities align with the true distribution of class 
labels, guiding the training process to produce more accurate 
classification models. 

D. Optimization Function 
Stochastic Gradient Descent [13] (SGD) is an optimization 

algorithm used to train machine learning models, especially 
deep neural networks. Unlike traditional gradient descent, 
which computes the gradient of the loss function with respect 
to all training examples before updating the model parameters, 
SGD updates the parameters incrementally, one example at a 
time, or in small batches. 

V. EXPERIMENT RESULTS 
Table I shows the testing results for each of the three 

models mentioned. Fig. 6 shows the training and testing 
accuracy graph of the best case – Dense-Net 121. From Table 
1, it is clear that Dense-net 121 performed the best – the loss 
function clearly indicates 18%. This can be due to continuous 
concatenation of the features from the previous layers. From 
Table 1, it can be clear that Resnet 50 and VGG 16 were over-
fitted. Training accuracies for both Res-net and VGG were 
high at 1.0 for both. This means 100% accuracy. Fig. 7 shows 
the predicted outputs of the Dense-Net 121 model. 

TABLE I. TESTING RESULTS 

VI.   CONCLUSION 
The advancements in liquid-level detection are steadily 

progressing. However, the necessity for a larger dataset is 
evident, given the limited number of images in the current 
dataset. This shortage likely contributed to over-fitting issues, 
alongside fewer concatenations found in Res-Net and VGG-
Net. Moving forward, exploring other methods, such as 
transformer architectures for liquid-level detection, holds 
promise. 

 

Fig. 6. Dense-Net 121 training and testing accuracy plot

Model Accuracy Precision Recall Loss 
Dense-Net 

121 0.93 0.948 0.93 0.18 

Res-Net 
50 0.83 0.84 0.93 0.4 

VGG 16 0.86 0.86 0.93 0.54 



 

  
(a): Predicted fully filled bottle output 

 

 
(b): Predicted half filled bottle  
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