
A PyTorch-Based Deep Learning Approach for
Enhanced Liquid Level Detection in Industrial

Environments
Abhinav Narayan, Charan DK, Sneha Elizabeth Saji, Tianyang Fang and Jafar Saniie

ECASP Research Laboratory (http://ecasp.ece.iit.edu)
Department of Electrical and Computer Engineering
 Illinois Institute of Technology, Chicago, IL, USA

Abstract— The accurate detection of liquid levels is of

paramount importance across various industries, including
pharmaceuticals, beverages, and chemicals. Traditionally,
monitoring liquid levels within containers has relied on manual
procedures or basic sensor technology, which often encounters
challenges related to precision and speed. However, as the field
of computer vision advances, there is a growing interest in
leveraging more advanced techniques to overcome these
limitations and enhance liquid-level monitoring. In this context,
this research proposes the utilization of PyTorch, a powerful
open-source deep learning framework, to tackle the intricacies
associated with liquid-level monitoring. By transitioning from
traditional computer vision methods to advanced deep learning
techniques facilitated by PyTorch, this study aims to
significantly improve the accuracy, efficiency, and reliability of
liquid-level detection across industrial applications.

Keywords—Computer Vision, Deep Learning, Convolutional
Neural Networks (CNN), Loss function, accuracy, precision,
recall

I. INTRODUCTION
The incorporation of PyTorch [1] marks a significant

departure from conventional methodologies in liquid-level
monitoring, ushering in a technologically advanced solution
poised to elevate both accuracy and efficiency. PyTorch is
anticipated to facilitate intricate operations such as perspective
transformation, thresholding, and edge detection, thereby
enabling precise identification of liquid levels within
containers. This practical approach not only addresses
immediate challenges in liquid level detection but also holds
the potential to advance quality control practices and
operational optimization across diverse industrial sectors.

To elucidate the rationale behind the adoption of PyTorch
for liquid-level detection, it is imperative to delve into the
specific methodology employed in this study. The proposed
system operates by training and testing data using three
convolutional network architectures: Densely Connected
Convolutional Neural Networks (Dense-Net), Residual
Neural Networks (Res-Net), and Visual Geometry Group
Neural Networks (VGG-Net).

The process followed for each of these three models is as
follows: Initially, data augmentation is performed on the
images, followed by training and testing. The metrics utilized
to evaluate the efficacy of these models include accuracy,
categorical cross-entropy loss, precision, and recall.

There is a lot of contemporary literature related to the topic
of liquid-level detection. For detecting liquid levels in amber
glass bottles [2], images obtained were taken at a fixed
distance in ambient lighting conditions. Once data was
obtained, images were converted to grayscale, followed by
7x7 Gaussian blurring, and then edge detection with a
threshold starting with pixel intensity value of 55, and ending
at pixel intensity value of 110. Morphological operations were
then performed to obtain specific boundaries to determine
whether the bottle was underfilled, overfilled, or completely
filled. After these steps, a square was drawn around the
boundary of interest, showing the liquid’s presence. Inside this
square, vertical lines were drawn to measure whether the
bottle was completely filled, over-filled, or underfilled.

Due to the impracticality of the current approach, an
automated process was introduced to analyze different bottle
levels without geometrical dependencies. This
implementation detected the amount of viscous food [3] in a
glass bottle without many dependencies. The authors used
VGG-16, a 16-layer convolutional neural network. In this
architecture, the authors acquired the image using a fixed
lighting approach to obtain clear samples of dark viscous food.
The images were then converted to grayscale and enhanced
with Sobel and Canny Edge detection to distinguish liquid and
food in the bottle. Morphological operations (dilation and
erosion) were performed to minimize food particle size,
followed by image segmentation to determine liquid level
boundaries. Outputs were compressed from 1158×2489 to
128x128 for faster model training and testing. Data
augmentation was applied to provide diversity to the dataset.

Upon training and testing, the obtained accuracy was
98.3%, with around 10% loss function. However, the required
setup for obtaining images was fixed, potentially causing
issues with data taken at different angles and lighting
conditions. Therefore, designing a system that accommodates
data captured in various lighting conditions is crucial.

Seeing this implementation is why we have implemented
the VGG-16 model. This following implementation shows
how to implement an AI system using EDGE[4], HD cameras,
and networking to detect bottle levels – filled or empty. This
is done by connecting an HD camera to an EDGE processor
device. This processor communicates with the server to
update the results of whether the bottle is empty or completely
filled. The data given as input is that bottles with no caps are

considered empty, and the bottles with caps are completely
filled using a 2-stage CNN. Again, it is also to be noted that
the camera for capturing the bottles was at a fixed height.

This upcoming implementation makes use of image
segmentation schemes, followed by determining the area,
height, width, and extent of the bottle to determine whether it
is a completely filled or underfilled bottle. Another transform
performed once image segmentation was completed is the
Hough transform [5]. This transform determines the edges of
an image. Based on these edges, the maximum, minimum, and
overall level of the bottle is obtained. Once done, the results
obtained from the Hough transform and the area of the given
object after image segmentation are fed to a decision tree
classifier. Based on these results, the bottles are classified as
completely filled or underfilled. However, as Hough
Transform is computationally expensive, we didn’t go
forward with implementing this approach.

This next approach evaluates datasets using a sequential
net, Res-Net 50, Mobile-Net [6], and VGG-19 model to train
and test data. The data was preprocessed by converting the
original input to size 224x224. In addition to this, the
following metrics were used in the analysis of the
performance of each model – precision, recall, f1-score, and
accuracy. From these scores, it was observed that the
sequential-net model performed the best with 97% accuracy.
The authors did not mention the use of a loss function; hence,
sequential net was not included for the final comparison in
this paper.

II. LEVEL DETECTION SYSTEM DESIGN

Fig. 1. System block diagram

Fig. 1 shows the system design. The image data is
obtained, then the images are preprocessed using data
augmentation, followed by training and testing using
convolutional neural networks. In each CNN, there are some
basic building blocks worth noting, which are discussed in
depth in this paper. These basic building blocks include
activation function, loss function, and optimization functions.
Data [7] used for this implementation contained 486 images.
308 were completely filled water bottles, 139 were half-filled
water bottles, and 39 were over-filled water bottles. Image
Preprocessing is performed prior to training or testing the data.
The technique used for this implementation is data
augmentation.

Data augmentation is the process of making modifications
to the dataset in order to increase the number of samples in the
data to train and test. Plus, an added advantage of data
augmentation is it introduces diversity to the training data to
avoid overfitting. Some examples of implementing data
augmentation include reducing the size of the image to reduce
training and testing time, rotating the image by 45 degrees,
and changing hue. For this implementation, we reduced the
size of the image from the original size to 224x224 and rotated
the image by 45 degrees.

III. CONVOLUTIONAL NEURAL NETWORKS
Convolutional neural networks are a class of artificial

neural networks used for various tasks like liquid-level
classification. We have opted to use convolutional neural
networks because they can detect patterns in large datasets.
Some of the models we implemented are:

A. Residual Neural Networks (Res-Net)
The skyscraper analogy for Res-Net [8] highlights its

innovative approach to building deep neural networks by
introducing residual connections. As networks grow deeper,
they tend to suffer from the vanishing gradient problem, where
gradients become too small for effective learning in initial
layers. Res-Net addresses this by adding shortcut connections
that skip one or more layers. Fig. 2 shows the architecture of
the Res-Net model.

Fig. 2. Res-Net architecture implementation

Res-Net makes it feasible to train networks with
unprecedented depth—over 100 layers—while maintaining
performance gains. The residual connections act as alternative
paths for gradient flow during backpropagation, mitigating the
vanishing gradient problem and enabling the training of very
deep networks without degradation in performance.

Fig. 3. Residual block with skip connections

Residual Blocks: The heart of Res-Net, these blocks
feature two paths: the normal path through convolutional
layers and the shortcut path that skips (see Fig. 3) one or more
layers. The shortcut paths carry the input directly to the output
of the block, allowing the network to learn the residual of the
input to the output, rather than the full output. For this
implementation, we have used Res-Net 50.

B. Visual Geometry Group Neural Networks (VGG-16)
VGG-Net’s [9] design philosophy emphasizes depth and

uniformity, using an architecture with repetitive blocks of
convolutional layers. Each block in VGG-Net consists of
several convolutional layers using small 3x3 filters, followed
by a max-pooling layer. This uniformity and repetition, akin
to an artist meticulously working on a canvas, allow the
network to develop an increasingly complex and deep
representation of the input data.

Convolutional Layers: VGG-Net uses multiple stacks of
convolutional layers with small 3x3 filters, which are the
smallest size, to capture the patterns of left/right, up/down, and
center. This approach allows for capturing finer details in the
input images across the network’s depth.

Pooling Layers: Followed by convolutional layers, max-
pooling layers reduce the spatial dimensions of the feature
maps, condensing the information and reducing
computational requirements.

Fully Connected Layers: After several blocks of
convolutional and pooling layers, the network concludes with
fully connected layers that perform the final classification
based on the features extracted by the convolutional layers.

Depth and Performance: Despite its simplicity, VGG-Net
architecture has shown remarkable success in image
recognition tasks, proving the effectiveness of deep networks
with repetitive structures. In this paper, VGG-Net 16 was
implemented (see Fig. 4).

Fig. 4. VGG-Net architecture

C. Densely Connected Convolutional Neural Networks
(Dense-Net)

In this paper, we have used Dense-Net 121, which is a 121-
layer architecture. Dense-Net [10] architecture (see Fig. 5)
facilitates information flow between layers in a deep neural
network. Traditionally, layers in a convolutional neural
network (CNN) pass information in a linear sequence from
one layer to the next. Dense-Net changes this paradigm by
connecting each layer to every other layer in a feed-forward
fashion. In a Dense-Net, the output of each layer is
concatenated to the inputs of all subsequent layers, creating a
highly interconnected system. This means that the first layer
output is fed directly into the second layer, the combined

outputs of the first and second layers are fed into the third, and
so on. This mechanism ensures that each layer receives the
“collective knowledge” generated by all previous layers,
enriching the feature maps with diverse and comprehensive
information.

Fig. 5. Dense-Net architecture

The dense connectivity pattern significantly reduces the
problem of vanishing gradients, as gradients from the loss
function can flow directly to most layers in the network.
Moreover, it enhances feature reuse, making the network more
parameter-efficient compared to its counterparts. Dense-Net
ability to leverage the full potential of the network enables it
to achieve excellent performance with fewer parameters,
reducing the risk of overfitting on smaller datasets.

There are two main blocks for implementing Dense-Net
models:

Dense Blocks: The core of Dense-Net consists of dense
blocks, where each layer receives concatenated feature maps
from all preceding layers as input, and its own feature maps
are then passed on to all subsequent layers. This setup ensures
that each layer has access to all the raw and processed
information from the input to the current layer.

Transition Layers: Between dense blocks, transition layers
perform convolution and pooling operations to reduce the
dimensionality of the feature maps, preparing the data for the
next dense block. This helps to manage the model’s
complexity and computational demands.

IV. CNN FUNCTIONS
In each convolutional layer, activation functions are used

to introduce non-linearities to the model. This will make it
easier for the neural network to learn the images. Some that
were used in these deep neural networks are as follows:

A. Rectified Linear unit (ReLU)
ReLU[11] is a popular activation function used in deep

learning models. It introduces non-linearity to the neural
network, allowing it to learn complex patterns and
relationships in the data. This function 𝑓𝑓(𝑥𝑥) = max (0, 𝑥𝑥) is
used in the hidden layers.

B. Softmax activation function
A softmax classifier is a type of classification model used

in the context of neural networks. It’s commonly used when
the task is to classify instances into multiple classes (in this

case 3 classifications). The softmax function is used as the
output layer activation function in neural networks for multi-
class classification tasks. It transforms the raw output scores
from the previous layer into probabilities corresponding to
each class. The output of the softmax function is a probability
distribution over the classes, with each class having a
probability value between 0 and 1 and the sum of probabilities
across all classes equaling 1. Mathematically, the softmax
function is defined as follows:

𝑝𝑝(𝑦𝑦 = 𝑗𝑗|𝑥𝑥) =
𝑒𝑒𝑧𝑧𝑗𝑗

∑ 𝑒𝑒𝑧𝑧𝑘𝑘𝐾𝐾
𝑘𝑘=1

𝑝𝑝(𝑦𝑦 = 𝑗𝑗|𝑥𝑥) is the probability that training sample x
belongs to class j is the raw score for class j. K represents the
total number of classes. The softmax function takes the raw
scores and normalizes them into a probability distribution. The
class with the highest probability is then predicted as the
output class.
C. Loss Function

Categorical cross-entropy [12] is a commonly used loss
function in multi-classification tasks. It measures the
dissimilarity between the true distribution of class labels and
the predicted probability distribution outputted by the model.

Here’s how categorical cross-entropy works:

1. True Distribution: Each training example is
associated with a ground truth label, represented as a
one-hot encoded vector. In this case, there are three
classes: class 0 indicates the water bottle is fully
filled, class 1 stands for a half-filled bottle, and class
2 indicates the water bottle is overfilled.

2. Predicted Probability Distribution: The model
produces a probability distribution over classes for
each example. This distribution is typically obtained
by passing the raw output of the model through a
softmax function, which converts the logits into
probabilities, making sure that each probability sum
equals 1.

3. Loss Calculation: Categorical cross-entropy
computes the loss by comparing the true distribution
(one-hot encoded vector) with the predicted
probability distribution. It penalizes the model more
heavily for predicting probabilities that diverge
significantly from the true distribution.

The mathematical formula for categorical cross-entropy
loss is as follows:

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = −� 𝑦𝑦
𝑁𝑁

𝑖𝑖 𝑖𝑖
log (𝑝𝑝𝑖𝑖)

where N represents the number of classifications. N = 3 in
this case. 𝑦𝑦𝑖𝑖 represents the true probability of classification 𝑖𝑖.
𝑝𝑝𝑖𝑖 represents the predicted probability of classification 𝑖𝑖. The
loss is summed over all classes, and the negative sign makes
sure that the loss is minimized during training. Categorical
cross-entropy loss provides a measure of how well the

predicted probabilities align with the true distribution of class
labels, guiding the training process to produce more accurate
classification models.

D. Optimization Function
Stochastic Gradient Descent [13] (SGD) is an optimization

algorithm used to train machine learning models, especially
deep neural networks. Unlike traditional gradient descent,
which computes the gradient of the loss function with respect
to all training examples before updating the model parameters,
SGD updates the parameters incrementally, one example at a
time, or in small batches.

V. EXPERIMENT RESULTS
Table I shows the testing results for each of the three

models mentioned. Fig. 6 shows the training and testing
accuracy graph of the best case – Dense-Net 121. From Table
1, it is clear that Dense-net 121 performed the best – the loss
function clearly indicates 18%. This can be due to continuous
concatenation of the features from the previous layers. From
Table 1, it can be clear that Resnet 50 and VGG 16 were over-
fitted. Training accuracies for both Res-net and VGG were
high at 1.0 for both. This means 100% accuracy. Fig. 7 shows
the predicted outputs of the Dense-Net 121 model.

TABLE I. TESTING RESULTS

VI. CONCLUSION
The advancements in liquid-level detection are steadily

progressing. However, the necessity for a larger dataset is
evident, given the limited number of images in the current
dataset. This shortage likely contributed to over-fitting issues,
alongside fewer concatenations found in Res-Net and VGG-
Net. Moving forward, exploring other methods, such as
transformer architectures for liquid-level detection, holds
promise.

Fig. 6. Dense-Net 121 training and testing accuracy plot

Model Accuracy Precision Recall Loss
Dense-Net

121 0.93 0.948 0.93 0.18

Res-Net
50 0.83 0.84 0.93 0.4

VGG 16 0.86 0.86 0.93 0.54

(a): Predicted fully filled bottle output

(b): Predicted half filled bottle

REFERENCES
[1] PyTorch website: https://pytorch.org/docs/stable/index.html
[2] Mikhael Anthony A. Felipe, Tanya V. Olegario, Nilo T. Bugtai, and

Renann G. Baldovino, “Vision-based Liquid Level Detection in Amber
Glass Bottles using OpenCV,” in 2019 7th International Conference on
Robot Intelligence Technology and Applications (RiTA) November 1
– 3, 2019, Daejeon, Korea

[3] Changfan Zhang, Dezhi Meng, and Jing He, “VGG-16 Convolutional
Neural Network-Oriented Detection of Filling Flow Status of Viscous
Food”

[4] Leendert Remmelzwaal, “Object Detection and Tracking for Crate and
Bottle Identification in a Bottling Plant Using Deep Learning.”

[5] Nor Nabilah Syazana Abdul Rahman, Norhashimah Mohd Saad, Abdul
Rahim Abdullah, “Shape and Level Bottles Detection Using Local
Standard Deviation and Hough Transform,” International Journal of
Electrical and Computer Engineering (IJECE) Vol.8, No.6, December
2018, pp. 5032~5040 ISSN: 2088-8708, DOI:
10.11591/ijece.v8i6.pp5032-5040

[6] Oluwaseun O. Martins, Mahdi M. Abdulhamid, Mariam O. Lawal,
Osifalujo T. Olugbenga and Orimolade E. Okikiola, “Development of
a Sequential Neural Network Model for Bottle-Fill Level Detection and
Classification”.

[7] Dataset for water bottle level
detection:https://www.kaggle.com/datasets/chethuhn/water-bottle-
dataset

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun,” Deep Residual
Learning for Image Recognition”

[9] Karen Simonyan, Andrew Zisserman,“Very deep convolutional
networks for large scale image recognition”

[10] Gao Huang, Zhuang Liu, Laurens van der Maaten, “Densely Connected
Convolutional Networks”

[11] Bing Xu, Naiyan Wang, Tianqi Chen, Mu Li,“Empirical Evaluation of
Rectified Activations in Convolution Network”

[12] Zhilu Zhang, Mert R. Sabuncu, “Generalized Cross Entropy Loss for
Training Deep Neural Networks with Noisy Labels”

[13] Sebastian Ruder, “An overview of gradient descent optimization
algorithms”

[14] Evaluation: From Precision, Recall and F-Measure To ROC,
Informedness, Markedness & Correlation

(c): Predited over-filled bottle
Fig. 7. Dense-Net output classified images

