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ABSTRACT

The utilization of ultrasonic testing has been extended to many applications
including the testing of complex materials and high-resolution medical imaging systems.
These applications demand a system that will detect and classify target echoes efficiently
and accurately. The scope of this thesis is to utilize split-spectrum processing (SSP)
combined with nonlinear classifiers to detect ultrasonic target echoes in the presence of
microstructure scattering noise.

In ultrasonic nondestructive evaluation (NDE), a broadband acoustic pulse is
transmitted into a specimen, and then targets (i.e., crack, flaw, delamination...) as well as
microstructure (i.e., grains) will reflect this pulse. The reflected signal is highly complex
due to the interference of multiple echoes with random amplitude and phase.
Furthermore, the frequency-dependent absorption and scattering property of the specimen
will also cause the energy attenuation of the signal. Therefore, the success of ultrasonic
target detection depends on the effectiveness of the signal processing algorithm and the
development of a robust classification technique. In this study, SSP is used to display the
diversity of ultrasonic signals on the time-frequency plane. Then, the nonlinear
classifiers are applied to detect targets according to the signal features obtained on that
plane. The SSP is implemented by using Gaussian bandpass filters. The parameters of
the Gaussian filters include the number of filters, the bandwidth, and their center
frequencies. These parameters and signal characteristics govern the signal correlation
among the SSP channels. The nonlinear classifiers studied in this thesis include

statistical classifiers, fuzzy classifiers, and neural networks (NN). The statistical



classifiers, including the Bayes classifier and the maximum a posteriori (MAP)
estimation classifier, are developed based on the estimation of the target and clutter
probability density function (PDF). The fuzzy classifier, a novel development, is
obtained by modifying the fuzzy entropy. To implement the fuzzy classifier, it is
necessary to build the membership functions based on the statistical properties of the
ultrasonic signals.

Neural networks (NN), due to their trainability and adaptability, are powerful
tools for signal classification. Without solution methodology or mathematical models of
the target signals, NN can recognize the target patterns after a training process. In NDE
applications the important issue in the design of the NN is the selection of the training
strategy and training data such that a target echo embedded in a scattering noise can be
recognized.

In this thesis, we present the mathematical derivation for these techniques and use
both simulation and experimental results to demonstrate their applications in ultrasonic
nondestructive testing. Results obtained in this investigation demonstrate that target
detection using these techniques is a viable approach when the flaw-to-clutter ratio is
about 0 dB. A comparative result is presented in this thesis, which shows that SSP-NN
exhibits the best performance when compared to other model-based detection techniques

presented in this thesis.

xi



CHAPTER 1

INTRODUCTION

The objective of this thesis is to apply various signal processing techniques to
analyze backscattered ultrasonic signals. The specified goal is the development of a
signal detection system, that utilizes the inherent properties of grain and flaw signals
exhibited on the time-frequency plane, to separate flaw echoes from grain echoes. In this
thesis, split-spectrum processing (SSP) is used to perform a signal pre-processing in
which many signal features that cannot be observed in the time or frequency domain can
be displayed on the joint time-frequency plane, and in addition the signal-to-noise ratio
can be enhanced. Once the signal features are obtained by using split-spectrum
processing, several classifiers including statistical classifiers, fuzzy classifiers, and neural
networks (NN) can be used to detect flaw signals. This thesis presents the development

and analysis for the processing of ultrasonic signals based on the previous highlight.

1.1 Intreduction of Ultrasonic Non-Destructive Evaluation

Ultrasound has been utilized by the industry for nondestructive testing since the
early 40’s. Nowadays, ultrasonic testing is widely used in medical diagnosis too. The
objective of the ultrasonic non-destructive evaluation (NDE) of materials is to learn their
characteristics through the analysis of the backscattered ultrasonic signals. Research in
the area of ultrasonic images has been emphasized, because an ultrasonic wave can

propagate through materials to considerable depths, without damaging the testing object.



This allows extracting information from deep within the testing object by examining the
backscattered ultrasonic signal. However, this information is highly complex due to the
interference of multiple backscattered echoes with random amplitude and phase.
Therefore, in order to examine the backscattered ultrasonic signal, an effective signal
processing is necessary. It is the objective of this investigation to develop a technique in
order to extract and display the features of ultrasonic signals for material testing.

Most NDE techniques are obtained by using the statistical and spectral
processing techniques [1-9]*. Basically, these techniques were developed based on the
probabilistic nature of ultrasonic signals. An important result determined by the previous
methodologies is that the ultrasonic scattering signal is random and nonstationary, and its
frequency characteristic is governed by the scattering absorption and dispersion of
echoes. This makes the ultrasonic nondestructive testing a challenging problem. In
recent years, many researchers successfully applied the time-frequency analysis [10-20]
to display the energy of ultrasonic signals on the joint time-frequency plane and thereby
enhance the signal-to-noise ratio (i.e., SNR) of target signals. The time-frequency
analysis is desirable to investigate the nonstationary characteristics of ultrasonic signals.
Therefore, split-spectrum processing is used to study the nonstationary characteristics of
ultrasonic signals. It is also important to develop a signal detection algorithm to detect the
target of interest. Since most NDE applications deal with the signals embedded in highly

noisy environments, a simple linear filtering technique is unable to obtain a

* Numbers in brackets refer to numbered references in the bibliography



satisfactory performance. In order to improve the performance, we use nonlinear methods
including fuzzy theory, and neural network theory in our design. In this thesis we present
the application of the split-spectrum processing coupled with a nonlinear signal classifier

for ultrasonic flaw detection.

1.2 Propagation of Ultrasonic Wave in Solids

Most ultrasonic nondestructive evaluations are applied on solid materials such as steel
and composites. An ultrasonic wave propagated in solid materials, in general, is affected
by three factors: beam spreading, absorption, and scattering. Beam spreading is primarily
decided by transducers and is a geometric function. Absorption results from the energy
transformation by which the energy of ultrasonic wave is converted to the heat energy of
specimen. This transformation losses energy permanently and cannot be used in material
inspection. Scattering is caused by the reflection at grain boundaries, small cracks, and
other material nonhomogeneities. This reflection changes the intensity of an ultrasonic
wave depending on the microstructure of testing materials, therefore this phenomena, on
the contrary, can be used to investigate the grain size or the size and orientation of the
defect (i.e., flaw) of testing materials.

Both absorption and scattering cause the attenuation of ultrasonic waves by
diminishing its intensity or its energy. The general attenuation behavior of ultrasonic
signals in solid materials is shown in Figure 1.1. However, they limit the ultrasonic
testing differently. Absorption is a direct conversion of ultrasonic wave energy to heat

energy. This effect can be reduced by using lower frequencies with lesser absorption or
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increasing the intensity of ultrasonic waves. The scattering loss is determined by the

grain diameter relative to ultrasonic wavelength. According to the ratio of the ultrasonic

wave to the mean grain diameter (1/D), the effect [16] of scattering can be calssified to
three distinct regions: Rayleigh, Stochastic, and Diffusion regions as shown in Figure
1.2. In the Rayleigh region (i.e., A/D > 1, the wavelength is relatively large compared to
grain diameter), the scattering coefficient is proportional to the fourth power of the
frequency. In the regions of Stochastic (i.e., A/D =1 ) and Diffusion (i.e., 1/D <1),
the ultrasonic wave is scattered between grains and the scattering coefficient is
proportional to the frequency squared. Our analysis deals with the Rayleigh scattering
region. If a broad-band echo is used, the attenuation results in a downward shift of the
spectrum in the frequency domain. More specifically, higher frequencies are attenuated
more than lower frequencies; therefore, lower frequencies present higher amplitude than
higher frequencies. In addition, in the Rayleigh region, due to the scattering phenomena,
an upward shift of the spectrum in the frequency domain is also expected. The overall
result is that the echo reflected from flaws has a lower frequency compared to that of the

echo backscattered from internal microstructure of testing materials.

1.3 Ultrasonic Pulse-Echo Measurement

Ultrasonic inspection is typically performed using the pulse-echo method. In this

method the same transducer is used as a transmitter and a receiver. A packet of broadband

ultrasonic pulse would be fired by the transducer and travels through testing material.
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When the ultrasonic pulse strikes cracks or grain boundaries it will be reflected running in
the opposite direction in the testing material. Then the transducer receives the
backscattered ultrasonic signal that contains the structure information of the testing
material. Figure 1.3 illustrates a typical arrangement of laboratory equipment used in the
pulse-echo method for the acquisition of ultrasonic backscattered signals. The major
components of the system include an ultrasonic pulser, a transmitting/receiving
piezioelectric transducer, a high-speed digitizer and a processing computer with IEEE-
488 interfacing. The pulser and transducer are used to generate a burst of ultrasonic
pulses and transmit them into the specimen of interest. The transducer also receives the
backscattered ultrasonic signal and passes the signal to the digitizer. The high-speed
digitizer converts the analog ultrasonic signal to digital signal such that the technology of
modern digital signal processing can be used to process the ultrasonic signal. The
function of the processing computer is to conduct the whole experimental procedure and

process the acquired signal according to the methodologies developed in this thesis.

1.4 Brief Introduction to the Research

Our objective in this research is to develop an ultrasonic flaw detection system.
The solution provided by this thesis includes two processes: signal feature extraction and
signal classification. The signal feature extraction is to extract and enhance target signals
from grain signals and is performed by using split-spectrum processing. The split-
spectrum processing basically chops the ultrasonic signal using a class of bandpass filters.

Signal classification has been studied for many years, and several methods have been
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successfully reported [21]. In this thesis, the statistical methods including the Bayes
classifier and the MAP classifier are used in the ultrasonic detection problems. In
general, the statistical methods estimate the probability of the presence of ultrasonic
signals of interest. Therefore, the key issue is in the estimation of the signal probability
density function (PDF). Besides, in this thesis, newly developed methodologies
including a fuzzy classifier and a neural network classifier are also applied to the
ultrasonic flaw detection problems. Fuzzy theory estimates the existing possibility of
ultrasonic signal of interest, and the key issue is on the building of the fuzzy membership
functions that are used to indicate the existing possibility of signals of interest. Neural
networks are non-linear parallel mapping processing. Without any mathematical model
of the interested signal, neural networks can learn the signal patterns by a training
process. The training process iteratively uses some sample-input signals and their desired
responses to adjust the connecting weights between neural nodes until the mapping error
can be minimized. After a proper training, the neural network can work like a human

brain to recognize target signals embedded in a noisy environment.

1.5 Thesis Outline

The organization of this thesis is as follows. A literature survey of split-spectrum
processing in ultrasonic applications is presented in Chapter II. This chapter includes the
fundamentals of the split-spectrum processing, the signal models after the SSP, and the
selection considerations of the SSP filters in the application of NDE. Chapter III

introduces the statistical discriminant functions. The fundamentals of the statistical
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estimation are presented, and specifically the Bayes classifier and the MAP classifier are
discussed in this chapter. Both methods use the estimation theory to estimate the
parameters of the probability density function of interested signals.

In Chapter IV, we review the theory of fuzzy set, and introduce a novel fuzzy
discriminant classiﬁér used to detect the flaw echoes from background noise. The fuzzy
discriminant classifier includes membership functions and a discriminant function. The
fuzzy membership functions are created by incorporating the PDF (probability density
function) of signals and background noise. The inclusion of the PDF can guarantee and
enhance signal detection. The discriminant function is obtained by modifying the fuzzy
entropy, and can utilize the output of fuzzy membership functions (i.e., a fuzzy set) to
detect the target signals.

In Chapter V, a three-layer feedforward neural network is developed. This three-
layer neural network is trained by using a backpropagation learning process. After
properly training the neural network, the neural network can perform a highly complex
non-linear mapping process. This non-linear processing can separate target signals from
background noise by mapping them to different places in the signal space. In addition, the
neural network designed for the detection is highly desirable, since the VLSI
implementation for the real-time application is feasible. In Chapter VI, we compare the
performances of the neural network and Bayes classifier to the performances of recently
proposed techniques including the order statistical filters and the polarity thresholding in
the application of ultrasonic flaw detection.

Both the simulated and experimental data are applied to all previous theories. The

data is introduced in Chapter III, and used to test the SSP algorithm as well as all
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classifiers. The test results are compared to find the best classifier. The last chapter,

Chapter VII, presents the summary of this thesis work and future recommendations.
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CHAPTERII

SPLIT SPECTRUM PROCESSING

In this chapter, we review the literature of the split spectrum processing (SSP) and
present how to apply the SSP algorithm to the application of ultrasonic flaw detection.
Section 2.1 briefly introduces some important discoveries concerning the SSP algorithm
in ultrasonic applications in the last two decades. Section 2.2 shows the fundamentals of
the SSP by studyirg its structure. The signal properties and the signal models after
processed by SSP algorithm are discussed too. In addition, the significant differences of
using orthogonal and non-orthogonal Gaussian filters in the SSP algorithm are presented
in this section. Section 2.3 presents the considerations of selecting the parameters of the
SSP filters. These parameters include the number of filters, the bandwidth of filters, and
the center frequencies of filters. Besides, we explain why we select the Gaussian filters

as the SSP channels for the application of ultrasonic flaw detection.

2.1 Introduction

In the application of ultrasonic non-destructive evaluation (NDE), the ultrasonic
signal is composed by multiple backscattered grain and flaw echoes with random
amplitude and phase. This causes the signal energy of both the flaw and the grain echoes
spreading over the same frequency band; therefore, a single filter is unable to separate

flaw echoes from grain echoes.
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A suitable solution for this situation is to employ split-spectrum processing (SSP).
The SSP divides the signal frequency band into several smaller frequency bands, and
these frequency bands can be implemented by using FIR or IIR filters. Each filter
extracts signal energy according to its frequency range. This property is very useful for
the analysis of ultrasonic signals because the ultrasonic signal backscattered from grains
is randomly distributed within the frequency bands, and the ultrasonic signal
backscattered from flaws usually has a big amplitude and is concentrated on the
frequency bands. Therefore the output from the SSP algorithm can be used to enhance
the SNR of flaw signals and thereby to present their signal features.

In the last two decades, some research [22-29] shows that the SSP algorithm is
capable to improve signal detection results especially in the presence of interference
noise. Newhouse, Bilgutay, Saniie, and Furganson [22] found that clutter echoes are
uncorrelated when the echo is simultaneously transmitting with two or more channels
centered at different frequency bands. Therefore by using the SSP coupling with a
minimization algorithm, they successfully improve the flaw-to-clutter (F/C) ratio.
Bilgutay and Saniie [23] investigated the material grain size by using the SSP algorithm,
and found that the SSP algorithm is useful in the applications of the industrial
examination of large-grained materials.

In recent years, the ultrasonic flaw detection problem has been greatly improved
by combining the SSP algorithm with a non-linear operation. Nihat, Bilgutay, Uthai, and
Saniie [24] show that by using the SSP algorithm, at any time instant, clutter echoes have
wide variation compared to flaw echoes. Therefore followed by a polarity thresholding

operation, the SSP algorithm is able to detect the flaw echoes. In addition to the polarity
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thresholding, several nonlinear operations such as the order statistic filter [7-8], the
morphology filter [30] were presented in the last few years. All these papers present
strong evidences to support that the SSP is a useful tool to enhance the SNR ratio in the
NDE applications

However, due to the nature of ultrasonic signals (frequency agility and diversity
caused by the backscattering of specimen), the tuning of the SSP frequency bands is very
sensitive. Besides, filter parameters such as the number of filters, the bandwidth of
filters, and the center frequencies of filters affect the results of the SSP algorithm.
Lacking knowledge of how the phase and amplitude information is affected by the SSP
algorithm, formulating the SSP algorithm becomes difficult. Therefore, for a particular
application, to obtain these parameters we need to carefully examine signal properties. In
the following section, we present the fundamentals of the SSP algorithm and then apply it

to the NDE applications.

2.2 The Fundamentals of SSP

The purpose of the SSP is to enhance the signal SNR ratio by splitting signal
spectrum into smaller frequency bands or channels. This method is very helpful if the
spectrum of background noise is randomly distributed in the frequency domain and the
spectrum of target signals is concentrated in the frequency domain. This is because that
since the target signals appeared concentrically in the frequency domain, the correlation
among the SSP channels could be used to enhance the SNR ratio. On the contrary, if the

noise is randomly distributed on the SSP channels then the correlation will be small. Due
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to this reason, in the design of the SSP, the selection of the SSP filter should be based on
extracting the target signal by using their correlation on the SSP channels, which is
decided by the parameters of the SSP filters, énd the signal spectrum property [27].

The implementation of the SSP algorithm is shown in Figure 2.1. The received
signal is denoted by 7(n), and the output of the ith filter is written as z;(n)=hin)*r(n),
where A;(n) is the impulse response of the ith filter and * denotes the convolution
operator. At any time instant, the filtered signals can be represented as z(n)=[ z;(n),
za(n), -+, zgn)]" , where k is the total number of bandpass filters and T denotes the
transpose. The vector z(n) is defined as a signal feature which carries the signal
characteristics and is dependent on the number of filters and filter parameters. Following
the bandpass filters is a scaling factor. The scaling factor is employed to obtain the
equally powered output signal on the SSP channels, because the power spectrum of
received ultrasonic echoes is not uniformly distributed. This modification can equalize

the contribution of all channels. The selection of scaling factor is discussed in the next

subsection.

2.2.1 Signal Models of SSP. In order to detect flaw echoes, the SSP channels
should cover the spectrum of target signals. But since the center frequency of target
signals is unknown, the SSP channels should cover the overall frequency bands. In this
case, the spectrum of target signals can be assumed to appear on all channels or only on
some channels. Due to this assumption, partitioning frequency band as shown in Figure
2.2 is a suitable selection in which the bandpass filters are chosen with a partially

overlapped Gaussian windows such that some correlation between the neighboring bands
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is expected. In this figure, f; is the center frequency of ith channel, and is decided by the
number of the bandpass filters when each channel is designed to have the same
bandwidth b. If the value of 4 is very small, then the output signal of the bandpass filters

can be modeled as a narrowband signal and can be approximated [31] as

z,(n)=_a, cos[(w, +IA@)nT +6,(n)] 2.1

where 4f << b, z; is assumed to be a Gaussian random variable. This assumption is
obtained by investigating the histogram of the output signal of the bandpass filters. The a;
is random variable and is expected to be large in the vicinity of ;. The random phase, 6,
is governed by the random arrival time of echoes and is considered to be uniformly

distributed from -7 to 7. Therefore, the mean of the random variable z; can be written as

Elz]= Z Ela,JE[cos[(w; +IAw)nT + 6,(n)]] (2.2)
I

The term E/cos[(w+IAw)nT+6(n)]] is zero, so E[z;] = 0. The variance can be obtained

by

2
o2 = F[z?)= Y 2l

2.3
.5 (2.3)

From the Equation (2.1), we can obtain the following equation:

z,(n)=[D,a, cos(lAamT +6,)]cos(w,nT) - [Y_ a, sin(lAanT + 6,)]sin(w nT) (2.4)
! !

This equation can be resolved to X and Y components:
z;(n) = x(n)cos(w;nT) - y(n)sin(aw;nT) (2.5)
According to the central limit theory [41], for a large value of /, X and Y are normally

distributed, and can be written as
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2

1 x
Fx(x)= o exp(— o ) (2.6)

X

__1 ¥y
)= - \[EeXP( 205) 2.7)

Since the random varibles a; and & are independent, the mean of variable X and Y are:

E[x]=)_ E[a/)E[cos(AanT +6,)] (2.8)

E[yl=_ E[a,]E[sin({AanT +6,)] 2.9)

It is apparent that E/x]=E[y]=0. Therefore, the variance can be found by the following

equations
2
ol = E[x2]=2£;11=0'2 (2.10)
I
2
o} = E[y*] =ZE—[§Q =o* 2.11)
1

From the Equation (2.4)-(2.11), the probability density function of x and y can be

rewritten as
Fo() = exp( ) @.12)
x N 20° .
N y' 2.13
)= enpl=y ) @13)

It can be proved that x and y are uncorrelated [32] such that Ef/xy/=E[x]JE[y]=0. Then the

joint probability of x and y can be presented as

2 2

1 x+y
,y) = - 14
For(x,¥) 3 5 exp( o ) (2.14)

By using the polar coordinates, the joint probability of x and y can be rewitten as
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2

(~52) 2.15)

’
Jre(rs0) = Dy 2y

Finally the distribution of R can be found by

fur)= [ fuolr,6)d6 2.16)
which is
JAQ) =§e>cp(—2% @2.17)

Equation (2.17) is refered to as the Rayleigh probability function. The mean, the second

moment, and the variance can be found in term of
% 2 2 2 . 2
Elr]= 39 E[r*l=20" ; a,=[2—5]a (2.18)

To confirm the theoretical derivation, an experimental ultrasonic data, as show in Figure
2.3, is processed by an eight-channel SSP algorithm, and then filtered by an envelope
detector. Figure 2.4 shows the output of the SSP channels as well as the histogram of the
envelope filtered signals. As shown in this figure, the histograms (bar lines) are very
close to the Rayleigh probability function (dash line).

Since the spectrum of grain signals has a Gaussian shape as shown in Figure
2.5(a), the energy will be unevenly distributed on each channel when we apply it to the
SSP algorithm. This is undesirable because other channels with large amplitude may
suppress some channels with smaller amplitude in the detection processing. To solve this
problem, power equalization is necessary on each channel and this is the reason we
involve the scaling factor in the previous section. Since we are dealing with the statistical

properties of the SSP and each channel should be treated equally, scaling by the standard
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0 0.05 0.1 0.15 0.2 0.25 Sec.

Figure 2.3  An Experimental Ultrasonic Signal (Transducer Center Frequency = 5
MHz, Sampling Rate = 100 MHz, Spicement : No 5 steel)
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deviation becomes a good choice. In this case, the output signal on each channel is
normalized to have the same variance. Besides, the mean on each channel should also be
normalized to zero (dc value does not carry the flaw information). After normalization,
the spectrum of grain signal can be represented as the band limited white noise signal as
shown in Figure 2.5(b). This normalization also help to improve the signal model of the
output signal of bandpass filters in Equation (2.1). Since the variance and the mean on
each channel are normalized to be the same, the random variables, q; and 8, could be

assumed to be the same on all channels. The center frequency ®; becomes the only

difference variable in this signal model.

2.2.2 Statistical Properties of SSP. From a statistical point of view, the
properties of SSP can be obtained by examining the correlation among the SSP channels.
The fundamental estimation of the correlation is the second order cross correlation
function, Efz; z;/, where z; and z; are the output from the channel ith and jth respectively
(assuming the means are zero on all channels).

Basically, E/z; z;/ finds the expected value of the product z; z; , which is used to
find the angle between two vectors in the linear algebra. Therefore, if the channels are
orthogonal, the E/z; z;] will equal to zero meaning that no correlation is existing. If the
channels are non-orthogonal, then E/z; z;/ can give us the value of correlation. Therefore,
it is reasonable to use the covariance matrix to represent the correlation among channels

for further use. The covariance matrix is represented as
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o Op v O
oy On v :
3= : : : k is the number of channels. 2.19)
Ou i v Ok
where
N
— 1 .
m; = Z z;(n) m; is the mean on channel i, (2.20)
n=1

N
o; = -,'Vzlz,.(n)z (n)—mm; oy is the covariance of channel i and j. (2.21)

The correlation is affected by the frequency bands of the SSP filters. If the bandwidth of
the SSP channels is non-orthogonal and highly overlapped, then higher correlation will
appear among the SSP channels; otherwise, the correlation will be small. In Figure 2.6,
we present two SSP covariance matrices. Figure 2.6(a) is the covariance matrix obtained
by eight non-orthogonal Gaussian channels and Figure 2.6(b) is the covariance matrix
obtained by eight orthogonal Gaussian channels. Both of the non-orthogonal and the
orthogonal Gaussian filters use same filter parameters (i.e., center frequencies , and
bandwidth). In Figure 2.6(a), since the filters are overlapped we can find the correlation
appeared between adjacent filters. However, the orthogonal filters provide a diagonal

matrix as shown in Figure 2.6(b).
2.3 NDE Applications of SSP Filters

In the ultrasonic flaw detection problems, it has been found that the spectrum of

grain signals is random but basically keeps in a Gaussian shape, and the spectrum of flaw
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signals is also in a Gaussian shape with an unknown center frequency. Besides, non-
orthogonal signal space can present the signal correlation that is an useful factor to detect
the similarity of the interested signals. This reason could contribute significant
advantages in the NDE applications. Therefore, we select Gaussian filters to implement
the SSP channel as shown in Figure 2.2. The parameters of selecting the filters include
the number of the filters, the bandwidth of the filters, and the center frequencies of filters.
In general, increasing the number of the bandpass filters will increase the correlation
among SSP channeis if the total frequency range covered by the filter banks remains
unchanged. However, increasing the number of filters demands higher computational
time. If the number of filters is too small then some information related to clutter or flaw
echoes might be lost, because the filters cannot effectively cover the entire signal band.
On the other hand, increasing the bandwidth while the number of filters is fixed will
introduce large overlap, which as a result reduces the sensitivity of clutter noise to
different frequency bands. In addition, since the SSP is trying to extract the signal
features by using a class of bandpass filters, the bandwidth of the filters should be smaller
than the bandwidth of the interested signals. A good discussion of the effects of the
number of the SSP channels and the bandwidth of the SSP channels can be found in
Saniie’s research [27].

In the following chapters, several signal detection classifiers including statistical,
Fuzzy, and neural network classifiers are developed to couple with the SSP algorithm and
apply to the application of ultrasonic flaw detection. In order to compare their
performance, a parameter set will be selected in the next chapter and used in the rest of

the chapters such that the comparison can be reasonable.
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CHAPTER IIT
STATISTICAL DISCRIMINANT FUNCTIONS

3.1 Introduction

In the previous chapter, we introduced the SSP algorithm that, according to the signal
frequency diversity, creates the signal feature vectors containing the information related
to the microstructure of testing materials. In this chapter, we apply statistical
discriminant functions to the signal feature vectors for detecting the flaw echoes
embedded in a noisy environment. In recent years, statistical methods have been
successfully used in ultrasonic flaw detection and improved ultrasonic medical imaging
[23], [33-39]. In particular, minimum detection and polarity thresholding [23],[33] have
been studied extensively and shown to be effective for flaw detection. These results
present evidence that the statistical classifiers are capable of separating flaw echoes from
clutter echoes as long as they are able to classify the statistical differences of clutter and
flaw echoes.

This chapter introduces two statistical methods and applies them to the application of
ultrasonic flaw detection. In Section 3.2, we present the Bayes classifier [40]. The Bayes
classifier utilizes the statistical differences of clutter and flaw echoes over the frequency
bands to separate them. Specifically, the probabilities of the appearances of both the
clutter and flaw echoes will be estimated, and the likelihood ratio is utilized to produce a
discriminant function. In Section 3.3, we develop the maximum a posteriori (MAP)

estimation to detect ultrasonic flaw echoes. The objective of the maximum a posteriori
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estimation is to enhance the signal feature vectors obtained by using the SSP algorithm,
and we then calculate the variance of the enhanced feature vectors to determine the signal
pattern (i.e., either clutter or flaw echoes). In this chapter, the performances of Bayes
classifier and MAP classifier are examined by using both the simulated and experimental

data. The results are presented in Section 3.4.

3.2 Bayes Classifier

In the development of Bayes classifier [40], two hypotheses, Hy and H;, are assumed
to exist in the signal space. The hypothesis, Hj, represents a flaw echo embedded in
clutter echoes, and the hypothesis, /;, represents clutter echoes. By this assumption, the

criterion for decision making can be written as

_p(z/Hy) _ p(H)
W)= erm) oy G4

pGIH) _pH) 3.2)
p/HY  pH)

#(2)=

where @(z) is the likelihood ratio serving as the discriminant function and z is the output
of the SSP channels after normalized by the scaling factors (discussed in Chapter II). In
Equations 3.1 and 3.2, p(Hy) is the probability of the presence of flaws, p(H)) is the
probability of the presence of clutter, and p(H})/ p(Hy) is the detection threshold. p(z/Hp)
is the probability density function of flaw-plus-clutter, and p(z/H)) is the probability
density of clutter echoes.

In the design of the Bayes classifier, the major barrier is to estimate a priori

probability density functions for both flaw and clutter classes. To solve this problem, we
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inspected the histogram of the ultrasonic signals at the output of the SSP channels and
found they were in a Gaussian shape. According to this observation, we assumed that the
elements of the feature vectors (i.e., the output of SSP channels) are Gaussian-distributed,
and then the joint probability density function of the elements of feature vectors can be

represented as the following

f(@) e exp[-3(z-M)"27(z-M)] (3.3)

1
" e (Y]
where /Z/ is the determinant of the covariance matrix 5 defined in Equation 2.19, the
matrix 2 is the inverse of 5, and k is the dimension of the feature vectors. Since it is a
normal distributed feature vector, it is more convenient to write the likelihood ratio (i.e.,

discriminant function) in a log form:
Ing(z) = —%[(z - My)Zg (z- M)+ %[(Z -M)Z](z- M) (3.4)

To obtain the threshold value, we assumed that the probability of p(Hp) and the
probability of p(H)) are equal. This assumption is made according to the fact that only
two classes exist within the signal space. By using this assumption, the decision rule of
Bayes classifier can be expressed as

Ing(z)>0—> H, 3.5)

Ing(z)<0— H, (3.6)
Since the probabilities for the hypotheses H) and H; are not necessary to be equal, the
threshold value may not be zero. In practice, the threshold value can be found by
carefully examining the discriminant function. Finally, the overall system diagram is

drawn in Figure 3.1.
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Figure 3.1 The Block Diagram of Bayes Discriminant System
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In practice, we applied the SSP algorithm to grain signal and grain plus a target signal
to find the parameters, 2, 27 My, and M;. In this study, the backscattered echo from the
back surface of the test material was used to simulate the target signal. This is due to the
fact that the backscattered echo from the back surface of testing materials has the similar
physical characteristics as the flaw echoes.

In the next section, we present another statistical method, MAP, which estimates the
flaw echoes with the statistical information of clutter and without any prior knowledge of

flaw echoes.

3.3 Maximum A Posteriori (MAP) Estimation Classifier

By using the Bayes classifier, the major barrier is to estimate a priori probability
density for both clutter and flaw echoes. In the following section, we develop another
statistical methodology that without estimating the prior knowledge of flaw echoes can
still detect the flaw echoes when the flaw-to-clutter ratio is about 0dB. This methodology
involves three processes, as shown in Figure 3.2. The first process is the SSP algorithm
that, as discussed in Chapter II, creates the signal features according to the signal
frequency diversity resulting in the improvement of SNR ratio. The second process is
called the Maximum A Posteriori (MAP) estimation. This estimation can enhance the
feature vectors by maximizing a posteriori conditional density that is useful in finding
different types of estimates of random vectors. Since the enhancement is performed
according to the statistical properties of clutter echoes, the processed feature vectors will

present similar statistical parameters such as the mean or variance for clutter echoes but
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not for flaw echoes. Therefore, by calculating the simple variance of the feature vectors

we are able to filter out flaw echoes.

3.3.1 Mathematical Derivation. To derive the mathematical representation, we

assume that the observed signal can be written as

z=w+0

G.7)

where z is the output of the SSP channels, @ represents clutter echoes and 6 represents

flaw echoes. Then due to the fact that the joint probability density function of the

clements of the clutter feature vectors is assumed to be Gaussian distribution, the

following conditional density function can be held.

exp(—%a)TE"a))

f(w)= ___l___
Jen'F]

with a corresponding assumption in Equation (3.7), Equation (3.8) becomes

exp[— %(Z -6z (z- 6’)]

1
6| w) = ————=
f@|w) '___(27z)"|z|

It is more convenient to write the conditional density function in a log form.

1 1 -
Inf(@|lw)= —Eln[(27r)"|2|]-§(z—9)r2 '(z-6)
In order to estimate 6, we maximize f{6@) by the following equation.

dlnf@l®) 0. 1., gysi(z-0)=
0 80[ 2(z 6) =7 (z-0)]=0

= fg[zfz"z ~07sz-Z"270+607276]=0

= (—T) -Sz+ 27 +(E)]6=0

(3.8)

(3.9)

(3.10)

3.11)

(3.12)

(3.13)
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Therefore the estimation of 8 can be obtained as

6=["+C)T"[(TZ7) +272] (3.14)
Since the vector z represents either clutter signal or clutter plus a flaw echo, the vector 6
is expected close to a zero vector when a clutter signal appears, and a non-zero vector
when clutter plus a flaw echo appeares. In order to classify the estimated feature vectors
for either clutter or a flaw echo, we calculate the variance of the estimated feature vectors

as the threshold value.

3.4 Simulated Results

To verify the effectiveness of the previous statistical methods, we perform a computer
simulation. According to the research of Saniie [1], the spectrum of the backscattered
ultrasonic signal is expected an upward shift due to scattering, and a downward shift due
to attenuation. Therefore, in order to generate the grain-scattering signal, 512 Gaussian
shape echoes with a normal distributed amplitude are superimposed on uniformly
distributed positions. These Gaussian echoes have a 7 MHz center frequency and a
bandwidth of 2.5 MHz. The sampling rate is 100 MHz, and due to random interference of
multiple echoes, the spectrum is random spreading from 1MHz to 13MHz. The flaw echo
was simulated by a single Gaussian echo (f=5MHz and BW=2.5MHz) wit_h a desirable
amplitude such that the ratio of the flaw echo to the largest possible clutter echo has a
ratio less than or equal to unity (i.e., 0 dB). Then the superposition of the grain-scattering

signal and the simulated flaw echo at a known position results in the simulated
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signal. Once the simulated signal is obtained, the statistical classifiers are tested with
different clutter signal patterns. A typical processed result is shown in Figure 3.3.

In the design of the SSP channels, three parameters, the number of filter, the
bandwidth of filters, and the center frequencies of filters are critical. These parameters
decide the correlation among the SSP channels and thereby play the key roles in the
investigation of the frequency diversity. Since the transmitted echoes only cover a finite
band of frequency, a finite number of filters can be used for splitting the spectrum. We
have examined the processed results by using 4, 8, and 16 SSP channels, as shown in
Figure 3.4 -3.6. In these figures, the frequency range covered by the filter bank is from 1
MHz to 12 MHz, and each filter has a 1 MHz 3-dB bandwidth. The results show that as
long as the filter bank can cover the entire signal band, an increasing of the SSP filters
did not show much improvement in the processed output. For a given number of filters
on the SSP algorithm, increasing the bandwidth of the filters introduces large overlap in
each frequency band and results in too much correlation. This effect will reduce the
sensitivity of clutter noise to the different frequency bands, and consequently, the ability
of detection will be reduced as shown in Figure 3.7 — 3.9. In these figures, the filter bank
covers from 1 MHz to 12 MHz and the number of filters is 16. The bandwidth of filter is
increased from 1 MHz to 2 MHz. The results show that the performance of the Bayes
classifier is significantly decreased, and this is caused by the disability of extracting the
target information from the signal. However, since the MAP classifier does not use target
information; therefore, on the contrary, the sensitivity of flaw echoes, compared with

clutter echoes, is improved and results in the improvement of the MAP performance.
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To compare the performance of Bayes classifier and MAP classifier, we use the
computer simulated signals with different cutter patterns and flaw locations to test both
the Bayes and the MAP classifiers. To achieve a reliable performance, 20 independently
simulated signals were used. In the test, a total of 8 SSP channels with a 1.5 MHz 3-dB
bandwidth ranging from 1.5 MHz to 13.5 MHz were used. The flaw-to-clutter (F/C) ratio
for all simulated signals was keep about 0 dB. Then, the processed flaw-to-clutter ratio is
examined and summarized in Table 3.1. As shown in this table, the average F/C ratio
enhancement for Bayes classifier is about 5.95 and the standard deviation is 1.41. The
average F/C ratio enhancement for the MAP classifier is 3.19 with a standard deviation of
0.77. This provides evidence that the performance of the Bayes classifier is better than
that of the MAP classifier. The result is expected because the Bayes classifier utilizes not
only the statistical properties of clutter signal but also the statistical properties of flaw
echoes. However, the MAP utilizes the information of the clutter signal only and results

in a poor performance.

3.5 Experimental Results

To illustrate the effectiveness of the SSP algorithm coupled with, the Bayes classifier
or the MAP classifier in the application of ultrasonic flaw detection, an experimental
ultrasonic signal was measured as discussed in Chapter I. The experiment was conducted
by using a steel specimen with an average grain size about 50um. The experimental data
was measured using a Panametrics broadband transducer with a 7 MHz center frequency.

The measurement was made using the contact technique and the data was acquired using



Table 3.1 Flaw/Clutter Ratio Enhancement of Bayes Classifier and MAP Classifier ~

using Simulated Signals
Trial No. Before Enhancement rBayes Classifier MAP Classifier

1 0.98 5.33 1.79

2 0.95 4.52 2.72

3 0.99 4.50 3.52

4 0.85 5.66 3.00

5 0.99 342 1.82

6 1.01 8.80 4.66

7 0.94 6.60 401

8 1.01 5.33 220

9 1.00 5.87 4.16
10 0.89 6.60 3.14
11 0.93 7.15 3.86
12 1.04 7.01 3.50
13 0.92 5.57 3.25
14 1.00 7.20 3.57
15 0.98 7.19 3.50
16 0.99 3.71 2.10
17 1.00 4.03 3.10
18 0.82 7.21 3.02
19 0.99 6.53 334
20 0.85 6.80 3.68
Mean 0.95 5.95 3.19
STD 0.06 1.416 0.77

46
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a 100 MHz sampling rate. The flaw was formed by drilling a hole with 1mm into the
specimen. The measured signal, as shown in Figure 3.10 (a), has peak amplitude flaw-to-
clutter (F/C) ratio slightly less than 0 dB. The SSP algorithm uses 8 channel Gaussian
filters. These Gaussian channels have a 1.5 MHz bandwidth and 1 MHz frequency steps
between adjacent channels starting at 1.5 MHz. The processed result is presented in
Figure 3.10 (b) and (c). The F/C ratio for Bayes classifier is about 2.875 and the F/C
ratio is 1.45 for the MAP classifier.

To obtain a consistent result we use the backscattered echo from the back surface of
the test material to simulate the flaw echo and superimpose it in the experimental grain
signal. The F/C ratio is about or small than 0dB. The results are shown in Table 3-2. In
this table, for Bayes classifier, the average enhancement of F/C ratio is about 2.93 with a

standard deviation of 0.67 and the F/C ratio is 1.527 for the MAP classifier with 0.257

standard deviation.

3.6 Conclusion

In this chapter, we developed two flaw detection algorithms, the Bayes and the MAP
classifiers. Both algorithms were applied to the simulated and experimental data, and the
results are consistent. Overall, the performance of the Bayes classifier is dependent on
the statistical estimation of clutter and flaw echoes, and the performance of the MAP
classifier is dependent on the statistical parameters of clutter. According to the results,

the Bayes classifier presents better performance than the MAP classifier in the ability of

suppressing clutter.



48

(a) Qf
l
0 02 04 06 08 . 12 14 16 1.8 2x107 Sec.
20;
() 10F /U 4
T LT |
ST SRR ey
Oo 0.2 04 06 0.8 1 1.2 14 1.6 1.8 2x107 Sec.
6
4 .
(c) ,
0 02 04 06 08 1 12 14 186 1.8 -2x107 Sec.

Figure 3.10  The Typical Processed Results by using Experimental Data
(@  The Experimental Ultrasonic Signal (F/C=0 dB),
(b)  The Processed Result by using Bayes Classifier (F/C=2.875),
(c)  The Processed Result by using MAP Classifier (F/C=1.45).
(8 SSP Channels, BW=1.5 MHz).



Table 3.2 Flaw/Clutter Ratio Enhancement of Bayes Classifier and MAP Classifier

using Experimental Signals
Trial No. Before Enhancement Bayes Classifier MAP Classifier
1 0.85 2.75 1.51
2 0.90 2.23 1.22
3 0.95 2.62 1.25
4 1.01 3.20 141
5 1.00 3.33 1.57
6 0.98 2.38 1.44
7 0.99 2.60 1.25
8 0.98 4.5 1.85
9 0.99 2.43 1.67
10 1 3.28 2.01
Mean 0.96 2.93 1.527
STD 0.06 0.67 0.257
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CHAPTER 1V

FUZZY DISCRIMINANT FUNCTIONS

In the previous chapter, we presented the SSP algorithm combined with the Bayes
and the MAP classifiers in the application of NDE. In this chapter, we develop a fuzzy
classifier. The fuzzy classifier is obtained by modifying a fuzzy entropy to measure the
existing possibility of flaw echoes in noisy environments. The difference between the
fuzzy classifier and the Bayes or MAP classifiers is that instead of estimating the existing
“probability” we measures the existing “possibility” of flaw echoes. The existing
possibility, defined in the fuzzy space [42], is acquired by measuring the entropy of target
signals. In this chapter, we introduce the fuzzy sets, the fuzzy entropy, and their usage in

the application of NDE.

4.1 Introduction

Since 1965, when Zadeh introduced fuzzy sets, the researchers on the theory of
fuzzy sets have been solving many problems such as artificial intelligence, control,
pattern classification, [43]-[45],etc. Fuzzy sets are characterized by a class of
membership functions which assign a grade ( range between zero and one) to each
member element, and these grades are worked as a pointer to indicate the existing
possibility of signals. It should be noted that the characteristics of the fuzzy sets are
established by the statistical properties of the membership functions. In addition, we

need a discriminant function which can utilize the grades (i.e., feature vector) obtained
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from the membership functions in order to separate the desired signal from background
noise. The system diagram is shown on Figure 4.1. In this system, the backscattered
ultrasonic signal is preprocessed by the SSP algorithm to obtain the feature vector [z, z,,
....» Z). Then the feature vector is applied to the membership functions to yield the fuzzy
set [y, Ky --.o» My]. Finally, a fuzzy discriminant function is able to use the fuzzy set to
indicate the existing possibility of flaw echoes. In-this study, the membership functions
are obtained by investigating the statistical properties of both flaw and grain echoes. The
fuzzy discriminant function is obtained by utilizing a fuzzy entropy. As the entropy in
information theory, the fuzzy entropy can represent a quantitative measurement of signals
in a fuzzy system. Then based on the information of the fuzzy entropy, the fuzzy
discriminant function can make detection.

In the next section, the definition of the fuzzy sets is reviewed. Then a new
definition of a fuzzy discriminant function used for the ultrasonic flaw detection is
developed. In addition, the derivation of the membership functions is also present. In

Section 4.4 both the simulated and experimental data are used to test the fuzzy classifier.

4.2 Fuzzy Sets and Membership Functions for Ultrasonic Signals

L.A. Zadeh [42] introduced the definition of fuzzy sets :
“ Let X be a space of points (objects), denoted by x (i.e., X={x}). A fuzzy set (class) A in X
is characterized by its membership functions f4(x) in the interval [0,1] with the value of

fA(x) at x representing the grade of membership of x in A”. For most of the applications,
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large values denote higher degrees of set membership, and small values denote lower

degree of set membership.

In mathematics, a fuzzy set 4 can be written in the form

fA =(ul =f1(zl):u2 =f2(22):'"sun =fn(zn)) OS:ui <1 (41)
where 4; i = 1...nis the grade of the membership function f;, and z is the input.

From the above definition, we are aware that the usefulness of the mathematical
model of fuzzy sets depends on the capability to construct the appropriate membership
functions. For stochastic signals, the membership function should be designed by their
statistical properties. In this section, designing the membership function for each filter
channel (SSP channels) has become the major task. In order to design the membership
functions, we decomposed the scattered ultrasonic signal and examined the histogram at
the output of the SSP channels which are found to be Gaussian in shape. Hence, this led
us to assume that the distribution of the output from the SSP filters is a Gaussian
distribution ( as studied in Chapter II). To estimate the statistical parameters for the fuzzy

membership functions, we use the sample mean and the sample variance

1 N
m=—)>1z (4.2)

and o} =——1—YZ(z,. -m,)? (4.3)

where z, is the sampled data. It is important to point out that since the power spectrum

amplitude of the ultrasonic signals is not equal on each channel, we need to modify the
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amplitude probability density function such that it can be used as the membership
function and still maintain the signal statistical property. This requirement can be

achieved by using the following equation as the membership function

fi(@)=e o 44)
In this equation, the membership function has a Gaussian shape, but its amplitude has
been normalized to have a maximum value of 1. This equalizes the amplitude on each
channel, and this modification provides the membership grades between 0 and 1. This is
desirable for implementation of the fuzzy membership function. Since the ultrasonic flaw
signal is more concentrated on some frequency bands than clutter signal is, the variance
of the membership function of flaw echo is in general bigger than the variance of the
clutter signal. In other words, if given a signal, z, the output of the target membership
function is py, and the output of the clutter membership function is p, then the value of
ur is always greater than or equal to the value of pi.as shown in Figure 4.2. Therefore, by
using Equation 4.4, the membership function for both clutter and flaw echoes can be
obtained, and the output of the membership function could be treated as a fuzzy set
representing the signal features. In the next section, a fuzzy discriminant classifier will

be defined, which utilizes the fuzzy set to classify the flaw and clutter signals.
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4.3  Fuzzy Entropy

Fuzzy sets only extract the signal’s characteristics by using the properly
predefined membership functions. It still cannot decide whether the signal is a target or
clutter. In order to make a decision, the discriminant function must be developed which
allows making a decision from the information provided by the fuzzy sets. In
information theory, entropy has been used as a measurement to represent the quantity of
information. Therefore, entropy is suitable to serve as the discriminant function. In this
chapter, we have been developing a modified fuzzy entropy to discriminate the signal

from clutter. The first fuzzy entropy [46] was defined by Zadeh as the following:

H= —Z u;p;log(p;) 4.5)
i=1

where uj = fj(x;) is the grade and p; is the probability of occurrence of x;. This fuzzy
entropy highly depends on the probability of occurrence, but in ultrasonic detection
application, the probability of each channel is assumed to be equal. Therefore, Equation
(4.5) is not suitable to the ultrasonic detection problems. S.K. Pal [46] modified the

Equation (4.5) to a higher order fuzzy entropy as :

)
H = (%Jz ] exp(1 -2} )] +[1 -] Jexp(a})) (46)
r i=1

where 7 is the number of elements in the fuzzy set and r is the order. This fuzzy entropy

gives an average measurement. Considering two cases, when ] = 0.9 and « = 0.1, the
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equation inside the braces of Equation (4.6) will be equal. This example therefore reveals
that this fuzzy entropy is not suitable for the ultrasonic detection problems. In ultrasonic
detection problems, two objects possibly exist in the fuzzy space. Either an echo or a
grain signal will be recognized at one location; therefore, the entropy should be modified
to suit for this situation. In this section, we present a revised fuzzy discriminant entropy

which can improve the performance of pattern recognition in ultrasonic nondestructed

testing.

4.3.1 Fuzzy Discriminant Function. Let 4 be a fuzzy set p={u;/z; ,...}, and
suppose that two patterns, p, and p, , exist in the fuzzy space. Therefore, for any object in
fuzzy set 4 must be classified as either pattern p, (i.e., clutter) or pattern p, (i.e., flaw). To

discriminate pattern p, and pattern p,, the fuzzy discriminant function is defined as :

H, Hriexp(1—pr )
I = In{y £ 423 %)
H He,exp(1— 4 ;)

where i is the number of channels, Hy is the fuzzy entropy of flaw echoes, and H, is the
fuzzy entropy of clutter. These two values estimated by the summation of the ratio of
each component in the fuzzy sets can reveal the signal information as shown in Figure 4.2
and Figure 4.3. Observing Figure 4.2, if given a clutter signal, both of the values of
and p are all close to the value of one. By using this reasoning, in Figure 4.3, the range
for H; and H¢ is located in the upper right corner approaching one; therefore, the ratio H
should close to one. If given a flaw echo, the values of p; and p will be located far away

from one as shown in Figure 4.2. Then in Figure 4.3, H. will be located in the lower left
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corner approaching to 0 and H; will be located in the middle of the curve resulting in the
ratio, H , greater than 1. By using this property, the flaw echo is capable of being
detected. In addition, the log term in Equation (4.7) is used to converge the output to a
suitable range. In the next section, we apply both the simulated and experimental data
used in Chapter II to test the fuzzy discriminant function and its performance will be

compared with statistical discriminant functions.

4.4 Simulated and Experimental Results

In order to compare the performance of the fuzzy discriminant function with the
statistical classifiers, we use the same simulated and experimental data in Chapter III to
test the fuzzy classifier. In the SSP algorithm, the same 8 Gaussian channels are used.
The frequency range start from 1.5 to 13.5 MHz, and the bandwidth of the filters is 1.5
MHz. A typical result of using simulated data is shown in Figure 4.4, which is able to
detect the flaw location. The membership functions obtained by using the simulated data
are shown in Figure 4.5. Observing Figure 4.5, we found that the variance of the
membership functions of clutter signals has similar magnitudes on all channels.
However, for flaw echoes, their membership functions present a higher variance on the
low frequency bands. Therefore, we can conclude that most of the flaw energy is
concentrated on the low frequency band. Specifically, on channel 6, 7, and 8, the
membership functions for both flaw and clutter echoes are almost overlapped, which

means that channel 6,7, and 8 are unable to provide the information to separate the flaw
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and clutter echoes. It is necessary to point out that whether we remove channel 6, 7, and
8 from discriminant function the result will not be affected because the ratio obtained on
channel 6, 7, and 8 are all close to one. The overall performance is listed on Table 4.1.

The average of the F/C enhancement is 5.93 with a standard deviation of 1.63.

A typical experimental data is shown in Figure 4.6, and the membership functions
are shown in Figure 4.7 which present a similar result of the simulated result. The overall
performance is listed on Table 4.2, and its F/C ratio enhancement is about 4.53 with a
standard deviation of 2.32. Comparing Table 3.3 and 3.4. we found that the performance
of fuzzy discriminant is similar to the Bayes classifier but is better than that of the MAP
classifier. This is due to the fact that like the Bayes classifier, the fuzzy discriminant
function uses membership functions to estimate the statistical property of clutter echoes
as well as flaw echoes. These estimations contribute a similar effect to both the Bayes
and fuzzy classifiers. In addition, due to the non-linear property of the fuzzy classifier,

the fuzzy classifier presents a higher standard deviation in F/C enhancement than that of

the fuzzy and Bayes classifiers.

In the next chapter, we will present feedforward neural networks. The purpose of
this topic is to develop a neural network that can detect the ultrasonic flaw echoes without
estimating any statistical parameters. Like the learning process in the human brain, the
interested signal patterns are presented to the neural network again and again until it can
recognize signal patterns. The advantage of using neural networks include: (1) Neural
networks is a parallel computing machine, (2) System responses can be optimized, (3)

The parallel structure of neural networks offers a training for recognizing a function
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Table 4.1 Flaw/Clutter Ratio Enhancement of SSP Algorithm
combined with Fuzzy Discriminant using Simulated Data

Trial No. Before Fuzzy
Enhancement Classifier
1 0.98 3.6
2 0.95 7.21
3 0.99 4.81
4 0.85 6.32
5 0.99 3.1
6 1.01 8.34
7 0.94 7.80
8 1.01 442
9 1.00 7.71
10 0.89 5.06
11 0.93 6.9
12 1.04 6.3
13 0.92 6.55
14 1.00 6.57
15 0.98 83
16 0.99 3.81
17 1.00 3.7
18 0.82 5.7
19 0.99 7.15
20 0.85 541
Mean 0.95 5.93

STD 0.06 1.63
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Table 4.2 Flaw/Clutter Ratio Enhancement of SSP Algorithm
combined with Fuzzy Discriminant using Experimental Data

Trial No. Before Fuzzy
Enhancement Classifier
1 0.85 8.8
2 0.90 5.92
3 0.95 3.8
4 1.01 1.46
5 1.00 2.3
6 0.98 1.88
7 0.99 7.05
8 0.98 4.5
9 0.99 4.6
10 1.00 5.01
Mean 0.96 4.53

STD 0.06 2.32
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similar to the human brain, therefore any signal pattern could be learned. (4) No statistical

estimation is necessary.
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CHAPTER V

NEURAL NETWORKS

In this chapter, we develop an ultrasonic flaw detection system by utilizing the
SSP algorithm combined with a three-layer neural network. Neural networks have been
studied since mid 30’s, and many exciting results and applications [47-49] support the
fact that neural networks are powerful tools to solve problems in the signal processing
field. The most critical advantage of using neural networks is their adaptive leaming
capability, which enables neural networks to be taught to interpret possible variations of
target objects. More specifically, the following three reasons address the benefits of
using neural networks. Firstly, neural networks are trained by examples, which means no
mathematical model of signals is to be estimated. Secondly, neural networks provide a
non-parametrical method to approximate unknown systems, which can deal with not only
statistical models but also non-linear models. This non-linearity is a very important
property, which enhances the network’s classification or approximation capabilities
without estimating any statistical parameter. Thirdly, their hierarchical and parallel
structure also provides a speedy performance, which allows neural networks to be used in
real time applications. In this chapter, we apply the SSP algorithm combined with a

three-layer feedforward neural network to the application of ultrasonic flaw detection.
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5.1 Introduction

Neural networks are made up by a number of simple highly interconnected signal
processing units. - These signal processing units are nonlinear mapping networks that
allows training and adaptivity for a particular application. Classified by their
interconnection architecture, neural networks can be classified in two types: feedforward
neural networks and recurrent neural networks. The feedforward neural network is
arranged in a feedforward manner in which neural nodes receive an input from external
environment or other neural nodes, and pass the information to adjacent neural nodes
without any feedback. Once feedforward neural networks have been trained, the
networks compute an output in response to the input pattern. On the other hand, recurrent
neural networks can be distinguished from the feedforward networks in that they have a
feedback loop. In this chapter, a three layer neural network will be studied and combined
with an SSP algorithm to make an ultrasonic flaw detection system.

The basic mathematical description of a three-layer neural network was found in
1987. Huang and Lippmann [50] demonstrated by simulations that a three-layer neural
network could form several complex functions. More recently, several investigators [51-
52] have demonstrated that a three-layer neural network can approximate continuous
functions defined on compact sets. Particularly, in 1989, Cybenko [52] used the
functional analysis method successfully proving that theory. In this chapter, we utilize
the non-linear mapping property of a three-layer feedforward neural network and the SSP
algorithm to develop a methodology that is capable of classifying the ultrasonic flaw

echoes from clutter signals.
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The next section presents the mathematical model of neural nodes and in
particular, the backpropagation training method will be introduced to find the parameters
of the three-layer neural network. Then both the simulated and experimental data will be

applied to test the neural network.
5.2 Elementary Model of Neural Networks

A general three-layer feedforward neural network is shown in Figure 5.1. The
neural nodes in the first layer do not perform any computation but feed signals to the
second layer. The neural nodes in the second layer receive the weighted inputs from the
first layer and then perform a large mapping calculation by using the activation function
to yield the output of the second layer. Then the output neural nodes in the third layer
sum up the output of the second layer to produce the net output. The basic neural node
model consisting connection and activation is shown in Figure 5.2. The input connection
weight wj; indicates the effect of the ith input on the jth node. The cell body is
represented by an activation function. The node sums the weighted inputs and passes the
result through an activation function, ¢f) , which is also called the threshold function and
could be a sigmoid function , a ramping function, hyperbolic tangent function, or a hard-
limiter function as shown in Figure 5.3. The mathematical equation for the neural nodes

can be written as

uj=2wj,.x,. +6, (5.1)

y;=ow;) (5-2)
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where 6 is the external threshold of jth node also called the bias, wji is the input
connection weight from ith input to jth node, x; is the ith input, and Yj represents the jth
output. In this model, these quantities will be represented as real numbers, and the

network response will be completely controlled by, w, @and the activation function ¢(>).

5.3 Neural Network Detector

It has been proved by many researches [51-54] that a three-layer feedforward
neural network can perform a highly non-linear mapping process, which is very suitable
for the application of signal classifications. In this study, we combine SSP algorithm
with a three-layer feedforward neural network to detect the ultrasonic flaw echoes. The

representation of a three-layer feedforward neural network can be written as
< =T
fE)=2 w,p@%+p,) (53)
J=l

where qj, ffj and wj are fixed parameters, and ¢() is the nonlinear activation function.
In this study, we use the hyperbolic tangent function as the activation function, and it can
be written as:

p(r)=tanh(r) (5.4)
In the implementation, the parameter a is the input connection weights, ﬂJ is the biases,
and wj can be thought as the output connection weights.

Therefore, if we can find parameter wj , @j and Aj to perform a particular mapping

function, we can then establish a neural network which can map target signals and noise
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to different places in the signal space. In the following section, we present the

backpropagation learning process, which is the most popular training method and is used

in the training of our ultrasonic applications.
5.4 The Backpropagation Learning Process

The most significant capability of neural networks is their learning property. The
learning process gives neural networks the ability to learn their environment and improve
their performance. This learning process takes place through an iterative process of
adjusting its connect weights. To be specific, we adopt the backpropagation
algorithm[47] to train the neural network for the application of ultrasonic flaw detection.
The backpropagation learning process is accomplished by successively adjusting synaptic
weights based on a set of input patterns and the corresponding set of desired output.

To develop the backpropagation learning algorithm, the net input to the jth neural

node could be written as

JiTvi

net; =Zw..x. +6; (5.5)

where wjj is the connect weight from the ith neural node to the jth neural node. & is the

bias. Then the output of jth neural node is

v, = f;(net)) (5.6)

where fj(-) is the activation function of the jth neural node. The synaptic weights are

adapted by minimizing the error function defined as
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1 2_ 12
—EE[(d—y) 1=5 Ele’] | (.7

where e represents the error term, d is the desired response, and y is the actual output of

the neural network. To minimize the error function, we differentiate the function J with

respect to the synaptic weights
oJ
v, J=— k=12,..., 5.8
" ow " (5-8)

k
It is intuitive that the adjustment of synaptic weights is the direction of steepest descent of
the error surface that is the direction of opposite to the gradient vector. Therefore the

adjustment can be represented as

dw, oJ
Do g2 k=12..m 5.9
a  ow )

where 7 is the learning rate. Then the update equation can be written as

W (n+1) =w,(n) + 7Aw, (n) = w, (n) -7V, J(n) k=12,....m (5.10)
In 1983, Rumelhart [55] added a momentum term to the update equation

w, (n+1) = w, (n)+nAw, (n) + aAw, (n—1) (5.11)
where o is the momentum parameter. The purpose of the momentum term is to damp out
oscillations and to keep the weight correction going in one direction, and thereby speed
up the convergence in the network. It is important to point out that the weights of the
neural network are all initially ramdomly assigned. Therefore the training results could
be limited by a local minimum on the error surface. If a local minimum is reached and

the error at the output is still unacceptable, then an increase in the number of neural nodes

or a change in the initial parameters will help fix the problem. It should be noted that
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after the training, all the connection weights are fixed and their values, like the memory
in human brain, determine the network’s behavior.

To improve the network mapping results, we carefully examined the activation
function (i.e., hyperbolic tangent function) of the hidden neural nodes, and found that the
biases of these nodes play an important role in the mapping process. As shown in Figure
5.3, due to the nonlinear property of the sigmoid function, the output of the sigmoid
function approaches one or zero when the input goes to a positive or negative infinity
respectively. In other words, the output will become a constant value (j.e., either one or
zero), when the magnitude of the input is a large value. This situation is undesirable
because the nonlinear mapping will have failed. Therefore in order to sufficiently utilize
the nonlinear property of the sigmoid function, we only allow the input existing between
the rang of -3 to 3. To reach this criterion, we normalize the input data such that the
value of input data is between 1 and —1. In addition, the selection of biases should also
be initially assigned in the range of -3 to 3 such that the nonlinear curve of the sigmoid
function can sufficiently be used.

In the next section we present the structure of a three-layer neural network and
show how to train the neural network in order to apply it to the application of ultrasonic

flaw detection.

5.5 The Design of the Neural Networks

The system diagram of the neural network used in the ultrasonic application is

drawn in Figure5.4. There are two processes, pre-process and post-process, involved in
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our design. The pre-process is implemented by using the SSP algorithm, and its purpose
is to extract signal features according to the frequency diversity of ultrasonic signals as
discussed in Chapter II. In the post-process, a three-layer feedforward neural network
will separate flaw and clutter signals according to their feature vectors obtained by using
the SSP algorithm. Due to the non-linearity of sigmoid function, the neural network
performs a highly complex nonlinear mapping, and this mapping operation is learned by
repeatedly teaching the neural network both clutter and flaw echo patterns.

To teach the neural network the patterns of flaw and clutter signal, we have
simulated an ultrasonic signal in which a flaw echo was embedded as shown in Figure
5.5(a). This signal was explored to the neural network and the neural network was taught
that the desirable response is shown in Figure 5.5(b). In Figure 5.5(a), the flaw-to-clutter
ratio is about the value of 2 such that the neural network can be impressed by the pattern
of the flaw echo. The value of weights and biases of the neural network is randomly
selected. The number of neural nodes in the first layer is equal to the number of the SSP
channels (i.e., 8 in this study), and the number of neural nodes in the third layer is one
(i.e., the output of the neural network). However nowadays there is still no specific way
to decide the number of neural nodes in the hidden layers, but it can be done based on a
trial-and-error method.

To complete the training processing, the sum-squared error (i.e., SSE, the sum of
the squared differences between the network targets and actual outputs for a given set of
vectors) or the mean-squared error is needed to reach a criterion. If the SSE criterion is
met then the training is complete; otherwise, increasing the number of epochs (one

complete presentation of the entire training set during the learning process is called an
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Figure 5.5  The Simulated Training Data and Desired Response (Hidden
Neural Nodes = 20, MSE = 0.00026, and Epoch = 1500)
(@)  The Simulated Ultrasonic Training Signal,
(b)  The Desired Response,
(c)  The Output after Training Process.
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epoch) becomes necessary. If increasing the number of the epoch still cannot reach the
SSE criterion, then it is necessary to increase the neural nodes in the hidden layer.
However, increasing the number of hidden neural nodes results in a longer training
period. After the training, the neural network responds the training signal as shown in
Figure 5.5(c). In this figure, the F/C ratio has been increased by around 10 —15, which
proclaims that the training was very successful. After the training, the neural network is
expected to respond to a flaw echo if the input is a flaw signal; and if the input is clutter,

the neural network is expected to respond to nothing,

5.6 Simulated and Experimental Results

The objective of combining the SSP algorithm and the neural network is to detect
the flaw location in the application of NDE. Begin with the simulated data, the simulated
data has been used to test the Bayes, the MAP, as well as the fuzzy classifiers. In this
section, the same data were used to test the neural network, and a typical processed result
is shown in Figure 5.6.

According to the results of Figure 5.6, we can learn that a three-layer neural
network combined with a SSP algorithm is capable of detecting the flaw signal. The
neural network responds a pulse for a given flaw echo and small values or negative pulses
for clutter echoes. This is because during the training process, a positive pulse was
assigned to indicate a flaw echo and zero was assigned to indicate clutter signal.
Therefore positive pulses with large amplitude on the output diagram can be classified as

flaw echoes. In addition, in order to study the effect of the number of neural nodes in the
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Figure 5.6 A Typical Processed Result by using Simulated Signal (Hidden
Neural Nodes = 20, MSE = 0.00026, and Epoch = 1500)

(a) The Simulated Ultrasonic Signal,
(b)  The Processed Result by using the Neural Network.
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hidden layer to the system performance, we measured the F/C ratio by using different
number of neural nodes in the hidden layer. An example is present in Figure 5.7. Figure
5.7(a) is the test signal, Figure 5.7(b) is the output produced by using two neural nodes in
the hidden layer, and Figure 5.7(c) is the output of using 20 neural nodes in the hidden
layer. As shown in these figures, the F/C ratio is increased from 2.5 to 12.5. In Figure
5.8 we measured the F/C ratio when the number of hidden neural nodes has been
increased from 2 to 10. The result shows that increasing the number of neural nodes in
the hidden layer we can improve the system performance by increasing the F/C ratio.

During the learning process, we also observed that the mean-squared error is
decreased when the epoch is increased as shown in Figure 5.9. However, the error is
converged when the epoch reached the number of 250. After the 250® epoch, a further
increase of epochs cannot decrease the mean-squared error. Nevertheless, increasing the
number of neural nodes in the hidden layer results in a further reduction of the mean-
squared error as shown in Figure 5.10. In this figure, the mean-squared error was
measured when increasing the number of neural nodes in the hidden layer. Therefore, the
neural network can provide a better performance with more neural nodes in the hidden
layer. The overall performance of using the simulated data is organized in Table 5.1.
According to this table, the neural network can enhance the F/C ratio to an average of
12.12 with a standard deviation of 3.39.

To test the experimental data, we measured a grain signal and imposed a flaw
echo (i.e., simulated by using the backscattered echo from the back surface of the
specimen) in the middle as shown in Figure 5.11(a) to train the neural network. The

desired response is presented in Figure 5.11(b), which is a single flaw echo. The network
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Figure 5.7  The Processed Results of using Different Numbers of Neural
Nodes in the Hidden Layer
(a) The Simulated Signal,
(b)  The Processed Result by using n=2 (MSE=0.002, Epoch=1500),
(c) The Processed Result by using n=20 (MSE=0.0002, Epoch=1500).
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Table 5.1  Flaw/Clutter Ratio Enhancement of SSP Algorithm combined with
Neural Networks using Simulated Signals

Trial No. Before After
Enhancement Enhancement
1 0.98 11.23
2 0.95 6.89
3 0.99 9.28
4 0.85 10.91
5 0.99 8.49
6 1.01 15.99
7 0.94 16.568
8 1.01 11.97
9 1.00 12.39
10 0.89 8.57
11 0.93 12.39
12 1.04 17.50
13 0.92 15.92
14 1.00 14.20
15 0.98 12.99
16 0.99 11.55
17 1.00 5.95
18 0.82 16.81
19 0.99 13.81
20 0.85 9.07
Mean 0.95 12.12
STD 0.06 3.39
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Figure 5.11  The Experimental Training Data and Desired Response (Hidden
Neural Nodes = 20, MSE = 0.00028, and Epoch = 1500)
(@  The Simulated Ultrasonic Training Signal,
(b)  The Desired Response,
(¢)  The Output after Training Process.
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response, after the training, is shown in Figure 5.11(c), in which the F/C ratio is around
15. A typical processed result of the experimental data is shown in Figure 5.12. To
acquire the average performance, 10 experimental data are used, and the results are
shown in Table 5.2. From this table, the F/C ratio is in an average of 12.02 with a

standard deviation of 6.08.

5.7 Comparison of Neural Network with Bayes, MAP, and Fuzzy Classifier

The F/C ratio enhancement of the Bayes, MAP, fuzzy classifier, and neural
network classifiers is summarized in Table 5.3. Comparing the Bayes, MAP, and the
fuzzy classifiers, the neural network offers the highest F/C enhancement. Besides, it also
precisely locates the position of flaw echoes and keeps them in a similar shape of their
original echo.

Another critical issue in the application of ultrasonic flaw detection is to
distinguish two adjacent flaws. In order to separate two adjacent flaw echoes, instead of
responding to a flaw echo we teach the neural network to respond to a value of one if the
input is a single flaw echo and respond to a value of zero if the input is clutter as shown
in Figure 5.13. Therefore the interference between two adjacent flaw echoes can be
eliminated. In Figure 5.13, (a) is the training data, and (b) is the desirable response in
which only at the location of the flaw echo is assigned to be 1 and the other place is
assigned to be zero. Figure 5.13 (c) is the output after the training, which clearly presents
that the neural network is capable of recognizing the flaw echoes as we expected.

However, in the training process, the response value for a flaw echo is around 0.31 which
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Table 5.2  Flaw/Clutter Ratio Enhancement of SSP Algorithm combined with
Neural Networks using Experimental Signals

Trial No. Before After
Enhancement Enhancement

1 0.85 24.55

2 0.90 8.75

3 0.95 6.08

4 1.01 7.62

5 1.00 7.64

6 0.98 5.83

7 0.99 13.98

8 0.98 14.11
9 0.99 15.72
10 1.00 17.81
Mean 0.96 12.02

STD 0.06 6.08
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Table 5.3  Flaw/Clutter Ratio Enhancement by using Bayes, MAP, Fuzzy and Neural
Classifiers

Bayes MAP Fuzzy Neural
Networks
Simulated Signal 5.95 3.19 5.93 12.12

Experimental Signal 2.93 1.53 4.53 12,02
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Figure 5.13  The Training Data for Separating Two Adjacent Flaw Echoes
(Hidden Neural Nodes = 20, MSE = 0.00054, and Epoch = 1500)
(a) The Simulated Ultrasonic Training Signal,
(b) The Desired Response,
(©) The Output after Training Process.
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doesn’t reach the desirable value of 1. This situation suggests that the abruptness of the
desirable response (i.e., Figure 5.13 (b)) might decrease the effective of the training
results.

To test the ability of separating two adjacent echoes, we superimpose two flaw
echoes in a clutter signal as shown in Figure 5.14(a). Then the Bayes classifier, the MAP
classifier, the fuzzy classifier, and the neural network were all applied to this signal, and
the results are presented in Figure 5.14(b)~(e). Figure 5.14(b) is the output using the
Bayes classifier. This result shows that there is only one flaw echo and it is located
between the locations of the two real flaw echoes. This phenomenon is the result of the
additive effect of two adjacent flaw echoes which enhances and thereby creates a strong
energy in the location between the flaw echoes. Figure 5.14 (c) and (d) are the output of
MAP and the fuzzy classifiers respectively. Both of them present a similar result as the

Bayes. However, the neural network is capable to distinguish two adjacent flaw echoes-

as shown in Figure5.14 (e).
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Figure 5.14  The Processed Results of Separating Two Adjacent Flaw Echoes
(Hidden Neural Nodes = 20, MSE = 0.00054, and Epoch = 1500)
(@) The Simulated Ultrasonic Signal,
(b) The Processed Output by using Bayes Classifier,
©) The Processed Qutput by using MAP Classifier,
d) The processed Output by using Fuzzy Classifier,
(e) The Processed Qutput by using Neural Classifier.
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CHAPTER VI
THE COMPARISON OF NEURAL NETWORKS WITH OTHER
DETECTION TECHNIQUES

6.1 Introduction

In recent years, many frequency diverse flaw enhancement techniques[8],[26]
have been used for ultrasonic flaw detection. These techniques include the maximum
method, the median detector, the minimization method, the average method, and the
polarity thresholding. The objective of this chapter is to introduce these techniques and
compare their performances with the performances of the neural network and the
statistical Bayes classifiers. In order to evaluate and compare the performance of all these
techniques, it has been assumed that the flaw echoes cover the same frequency band as
the background grain echoes. This assumption provides an opportunity that not only can
challenge all the enhancement technmiques but also best evaluate their performance,
although in certain experimental situations, flaw echoes may show different frequency
content. To completely cover the above two situations, both the simulated and
experimental data are used to test all flaw detection algorithms. In the following sections,
the mathematical models of the recently proposed enhancement techniques are
introduced. Then the simulated and experimental data are applied to test their
performances and their results are used to illustrate how these techniques work. The
performance comparison with the neural network and the Bayes classifier is given in

Section 6.3 as well.
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6.2 Recently Proposed Techniques

In Chapter II, we explained that the split-spectrum processing can provide a set of
observation feature vectors according to the signal frequency diversity. However, the
patterns of signal features are affected by the interference of the microstructure of the
testing materials on the transmitted ultrasonic echo, and, in general, are decided by the
size and orientation of the reflectors (i.e., grain or flaw). Therefore, flaw echoes and
grain echoes present various statistical properties on their feature vectors and these
differences can be used to classify flaw echoes. When some of the observations deviate
from the statistical pattern of an assumed grain hypothesis, we can measure the
statistical parameters of the feature vectors to obtain the existing possibility of flaw
echoes. Among all statistical parameters, the first order statistical parameter, the
average, is useful to discriminate signals when target and clutter features have different
DC values. Therefore, if the average values of the feature vectors of flaw and grain
echoes are different, the average detector can be combined with the SSP to detect
ultrasonic flaws. The mathematical expression of the average detector is given as the

following:

¢av(n)=§i!z,-(n)l 6.1)

j=1
where z; is the SSP output on channel j, and & is the number of the SSP channels. In
addition, in certain situations, inspecting only some elements of the feature vector can
separate the feature vectors. Therefore, selecting the maximum value, the median value,
or the minimum value of the feature vectors could be useful in these situations. The

mathematical models of the above detectors can be written in the following form:
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Maximum detector:

Omax () = Maximum{fz, (n)}, j=12,...,K] (6.2)
Median detector:

b g () = median['z j@}i=12,...k] (6.3)

Minimum detector:
Omin (m) = minimumfz; (n)} = 12,.... k] (6.4)

Another theory proposed by Bilgutay [26] is the polarity thresholding. This method sets
the output to zero when the output of the SSP algorithm exhibiting a polarity reversal,
otherwise keeps the input as the output. Basically, this method is effective when the flaw
echoes could dominate the grain noise such that all the elements of feature vectors can
have the same polarity. The expression of the polarity thresholding is modeled as

following

0pe(n) =x(n), ifz;(n)>00r z;(n)<0Oforall j=12,...,k.

=0, otherwise

(6.5)

The previous detectors are developed for certain situations; therefore, they might be able
to detect flaw echoes when certain situations are satisfied. In the following section, we
apply the simulated and experimental data to the above methods, and the results are

discussed to present their performances.

6.3 Simulation and Experimental Results

In this section, two types of ultrasonic signals are used to test above techniques as

well as the neural network and the Bayes classifiers. The first type of ultrasonic signal
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assumes that there is a small deviation on the frequency bands between flaw and grain
echoes. Specifically, the centér frequency of flaw echoes is smaller than the center
frequency of grain echoes. This type of ultrasonic signals, in general, presents similar
properties compared to the experimental data; therefore, the experimental data is directly
used as the first type ultrasonic signal. Another type of ultrasonic signal which assumes
both flaw and grain echoes exhibit the same frequency components resulting in a difficult
situation for detection. The simulated clutter signals of the second type ultrasonic signal
are simulated using 1024 superimposed echoes. These echoes have a 7 MHz center
frequency and a 2.5 MHz 3-dB bandwidth. The flaw echo is simulated using a single
echo. This flaw echo is then superimposed in the pseudo-clutter signal with a desirable
amplitude such that the ratio of the flaw echo to the largest possible clutter ratio is about
0 dB. In the SSP algorithm we adopt 8 Gaussian bandpass filters. These bandpass filters
have a 1.5 MHz 3-dB bandwidth and their center frequencies are uniformly distributed in
the range of 1.5 MHz to 13.5 MHz. The output of the bandpass filters is then normalized
by its standard deviation (STD). To inspect the affects of the SSP algorithm on the
simulated signals, we graphically display a decomposed signal before and after the
normalization on the joint time-frequency plane, in which the patterns of flaw and grain
features can be observed. Figure 6.1 shows the decomposed signal of the first type
ultrasonic signal on the joint time-frequency plane. Figure 6.1 (a) is the output of the
Gaussian bandpass, and Figure 6.1 (b) is the signal features after the normalization. The
flaw echo is embedded in the location around 500. As shown in the figure, in the lower
frequency bands, we can observe a small variation at the location around 500, which 1s

the result of the decomposition of a flaw echo on the joint time-frequency plane. Figure
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6.1 (b) shows the result of the normalization, and it is observable that the patter of the
flaw echo has been emphasized over the pattern of grain echoes. This is due to the fact
that the statistical property of flaw and grain echoes are different, so normalization using
the STD can equalize the signal energy on all SSP channels resulting in the suppressing
of grain echoes and the enhancement of flaw echoes. In Figure 6.1 (b) at the location
around 500, we can observe the pattern of a flaw echo which is much varied from the
pattern observed at other locations (i.e., the pattern of grain echoes). Obviously, the
elements of the flaw feature on the lower frequency bands present big magnitudes
compared to the elements of grain features. Therefore, we can expect that if the flaw echo
exhibits different frequency components, the recently proposed techniques including the
maximum detector and the average detector are suitable for detecting the first type flaw
echoes. However, the performances of the mlmmum detector and the polarity
thresholding might be poor. An example of the processed signal using the techniques
discussed in the previous section is given in Figure 6.2. Figure 6.2 (a) is the input signal
and a flaw echo is embedded at the location about 1750. Figure 6.2 (b) is the processed
output using a three-layer feedforward neural network, and the result shows that the
neural network is able to detect the flaw echo and eliminate the grain echoes. Figure 6.2
(c) is the processed output using the polarity thresholding, and its performance is
unacceptable. Figure 6.2 (d) is the processed output using Bayes classifier, and this result
shows that Bayes classifier can locate the flaw position too. Figure 6.2 (e) to (h) are the
processed output using the average, the minimum, the median, and the maximum
detectors respectively. From these results, we can determine the flaw position by

observing the output of the average and the maximum detectors. However the
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Figure 6.2 The Processed Output by using Experimental Data (The flaw and grain
echoes have different frequency components) (Page 1 of 2)
(@)  The Original Signal,
(b) The Processed output using Neural Network,
(¢) The processed output using Polarity Thresholding,
(d)  The Processed output using Bayes Classifier.
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Figure 6.2 Continued (Page 2 of 2)
(¢)  The Processed output using the Average Detector,
(f)  The Processed output using the Minimum Detector,
(g8)  The processed output using the Median Detector,
(h)  The Processed output using the Maximum Detectors.
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performances of the minimum and the median detectors are poor. In order to obtain an
average performance, all flaw detection algorithms are examined by 10 experimental data
with different flaw locations to measure the enhancement of flaw-to-clutter ratio, and the
results are presented in Table 6.1. From this table, we learn that the neural network can
enhance the flaw-to-grain ratio to a factor of 12.02, which is superior when compared to
other flaw detection algorithms. The enhancement of the Bayes classifier is about 2.93,
which is the second best among all these techniques. This table gives the evidences that
the performance of the neural network is the best and is much higher than other
techniques to a factor of 12.

Another type of the ultrasonic sfgnals is obtained using the same frequency
components for both flaw and grain echoes. An average result is presented in Table 6.2.
In this table, the flaw-to-clutter enhancement results from 10 independent simulations
where the flaw echoes were embedded at different locations. The result show that
compared to other flaw detection algorithms, the neural network is outstanding, and the
flaw-to-clutter enhancement can reach to the factor of 3.35.

A typical decomposed signal of the second type signal is displayed in Figure 6.3.
Figure 6.3 (a) is the decomposed signal on the time-frequency plane before normalization
in which the flaw echo is embedded in the location about 500 and is invisible due to the
masking of grain echoes. Figure 6.3 (b) is the signal after the normalization, and it is very
difficult to directly discriminate the flaw and grain echoes. A typical test result is given in
Figure 6.4. Figure 6.4 (a) is the input signal, and Figure (b) to (h) is the processed results
of using the neural network, the polarity thresholding, the Bayes, the average, the

minimum, the median, and the maximum detectors respectively. As shown in this figure,
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Table 6.1 Flaw/Clutter Ratio Enhancement of Various Processing Techniques using
Experimental Signals

Trial No. Neural Polarity Bayes Average  Minimum Median Maximum
Network Detector Detector Detector Detector Detector Detector
1 24.55 0.76 2.75 2.41 1.18 1.71 2.66
2 8.75 1.01 2.23 1.74 0.85 1.69 1.80
3 6.08 0 2.62 1.46 0.83 1.35 1.33
4 7.62 0.89 3.20 1.42 1.21 1.43 1.34
5 7.64 0.74 3.33 1.43 0.50 1.50 1.46
6 5.83 1.22 2.38 1.43 1.44 1.43 1.21
7 13.98 0.72 2.60 1.17 1.13 0.78 1.45
8 14.11 0.58 4.50 1.38 1.10 0.72 1.54
9 15.72 0.3 2.43 1.58 1.10 1.09 1.90
10 17.81 0.92 3.28 1.30 1.28 0.82 1.61
Mean 12.02 0.72 2.93 1.53 1.06 1.25 1.63

STD 6.08 0.35 0.67 0.34 0.27 0.37 0.42
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Table 6.2 Flaw/Clutter Ratio Enhancement of Various Processing Techniques using
Simulated Signals (Flaw and grain echoes have same frequency components)

Trial No. Neural Polarity Bayes Average  Minimum Median Maximum
Network Detector Detector Detector Detector Detector Detector
1 3.63 1.07 1.22 1.13 1.15 1.14 1.15
2 3.56 1.21 0.92 1.19 1.72 1.10 1.08
3 3.98 1.42 1.07 1.41 1.57 1.34 1.09
4 4.01 1.18 1.11 1.34 1.80 1.20 0.98
5 3.02 1.02 1.08 1.46 1.66 1.54 1.06
6 1.82 1.24 0.87 1.19 1.52 1.23 0.98
7 3.75 1.17 0.92 1.24 1.45 1.10 0.96
8 4.36 1.36 0.96 1.12 1.57 1.10 1.03
9 2.50 0.94 1.10 1.06 1.27 1.14 1.04
10 2.85 1.21 0.94 1.27 1.68 1.21 1.03
Mean 3.35 1.18 1.02 1.24 1.54 1.21 1.04

STD 0.79 0.15 0.12 0.13 0.20 0.14 0.05
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Figure 6.4 Continued (Page 2 of 2)
()  The Processed output using the Average Detector,
(f)  The Processed output using the Minimum Detector,
(g8) The processed output using the Median Detector,
(h)  The Processed output using the Maximum Detectors.
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the neural network clearly locates the position of the flaw echo; however, other
techniques failed to detect the flaw echo. Inspecting the signal in Figure 6.3 (b), we find
that since the flaw echo has the same frequency bands as grain echoes, the enhancement
of using the SSP algorithm is limited. Therefore the statistical parameters are unable to
separate the flaw and grain echoes resulting in the failure of the Bayes classifier.

This result suggests that the Bayes classifier can properly work when the flaw and the
clutter echoes have a good statistical separation situation [1]. This happens in the first
type ultrasonic signal; however, in the second type signal situation, the estimations of the
probability density functions of flaw and grain are highly dependent on the selection of
filters’ parameters and the signal’s frequency components. If these parameters were
unable to build a statistical separation situation, then the Bayes algorithm would be
unable to detect the flaw echoes. The statistical situation also affects the performance of
the maximum, the median, the minimum, and the average detectors [8]. In the first type
signal, the flaw echo presents a strong statistical deviation on lower frequency bands that
help the maximum and the average detectors to gain a better performance. However, The
conditions in the first type ultrasonic signal are no longer existed in the second type
signal, therefore both the maximum and the average methods failed. To improve their
performances in the second type signal situation we need to properly select the SSP
channels such that we can have a statistical separation situation. However this is hard to
acquire in the experimental situation. The polarity thresholding can properly work only
when the flaw echo can dominate the grain echoes [26], and this does not happen in the

above two cases, so in both types of ultrasonic signals, the results are very poor.
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6.4 Conclusion

This chapter presents a comparison result of the SSP combined with several classified
techniques including the neural network, the Bayes classifier, the polarity thresholding,
the average, the minimum, the median, and the maximum detectors in the application of
ultrasonic flaw detection problems. The result shows that the neural network is the best
detector compared to other techniques by testing both the simulated and experimental
data. In the comparison, the neural network demonstrates the ability to recognize flaw
and grain echoes no matter what their frequency components were. However, other
techniques could detect flaw echoes only when certain conditions are satisfied. This
result gives the fact that the neural network is able to leamn and recognize objectives in a
highly noisy environment, and its performances are better than that of the statistical
methods. The experimental result shows the flaw-to-clutter ratio enhancement can reach
the factors of 12 and 3 for using the neural network and the Byes classifier respectively,
and other techniques can only reach the factors smaller than 2 when the flaw-to-clutter

ratio of the input is about 0dB.
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CHAPTER VII

SUMMARY AND CONCLUSION

In this thesis, we have applied the SSP algorithm combined with nonlinear
classifiers including the Bayes classifier, the MAP classifier, the fuzzy discriminant
classifier, and the neural network for the ultrasonic flaw detection application. The SSP
algorithm utilizes the inherent property of ultrasonic signals on the frequency domain to
enhance the SNR of flaw echoes. This algorithm also provides the signal features on the
joint time-frequency plane, which are used by the nonlinear classifiers for detection
purpose. In the implementation of the SSP filters, the affecting factors include the
number, the bandwidth, and the center frequencies of the SSP channels. In addition, the
overlap among the SSP channels decides the correlation of the SSP channels. These
parameters are very sensitive to affect the result of the SSP algorithm. In our design, the
number and the bandwidth of the SSP channels are selected to cover the entire frequency
bands of the transmitted broadband ultrasonic echoes. The signal correlation on the SSP
channels is obtained by carefully adjusting the filters’ parameters as well as iﬁspecting
the frequency property of the grain and flaw echoes, and filters are selected to optimize
the system performance. The signal properties and the signal models processed by the
SSP algorithm have been studied and presented in Chapter II.

In Chapter III, we developed two statistical classifiers, the Bayes and the MAP
classifiers. Basically, the Bayes classifier estimates the PDF of both grain and flaw
echoes, and then utilizes the maximum likelihood ratio as the discriminant function to

detect the flaw echoes. Therefore, our main concern is to estimate the signal’s PDF. If
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the estimation is able to create a statistically separable environment, then the Bayes
classifier is able to classify the flaw echoes from grain echoes. The experimental results
show that using Bayes classifier the flaw-to-clutter ratio can be enhanced to a factor of
2.9. The MAP classifier works like the Bayes classifier, but instead of estimating the PDF
for both grain and flaw echoes MAP classifier only estimates the PDF of grain echoes.
Then the maximum of the posteriori conditional density is used to enhance the signal’s
features, which basically modifies the feature vectors according to the estimated PDF.
Since the signal features have been modified by the maximizing operation, the variance
of the feature vector is used as an indicator to detect the flaw echoes. The experimental
results show that the flaw-to-clutter enhancement of the MAP classifier can reach a factor
of 1.527. Comparing the performances of the Bayes and the MAP classifiers, we
conclude that the Bayes classifier is better than the MAP classifier. This result is due to
the fact that the MAP classifier only utilizes the grain information; however, the Bayes
classifier estimates not only the grain information but also the flaw information.

In Chapter IV, a novel fuzzy classifier is introduced. According to the fuzzy
theory, we build a class of membership functions to assign the degree (i.e., grade) of set
membership to the signal features (i.e., fuzzy set). These membership functions are
established by investigating the signal statistical properties. Therefore, the fuzzy set could
be used to indicate the existing “possibility” of target signals (i.e., flaw echoes). The
fuzzy set is then processed by the fuzzy classifier, which is obtained by modifying the
fuzzy entropy to measure the quantity of information. According to the grades of the
fuzzy set the fuzzy classifier is able to decide whether the input signal is a grain or a flaw

echo. The experimental results show that the fuzzy classifier can enhance the flaw-to-
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clutter ratio to a factor of 4.53 that is a better performance compared to that of the
statistical classifiers.

In the implementation of the previous techniques a prior knowledge of grain and
flaw echoes need to be estimated. However, this estimation depends on the assumption of
signals’ PDF. Therefore, the estimation results might be biased, which is undesirable. In
Chapter V, a three-layer feedforward neural network is used to perform the classification
task. Without estimating any mathematical model of the ultrasonic signals the neural
network can learn the patterns of flaw and grain echoes. This recognition ability is
learned through a backpropagation learning process. In addition, the results show that the
neural network performance can be improved by using more neural nodes in the hidden
layer. However, this may increase the time of training. The experimental results show
that using the neural network the flaw-to-clutter ratio enhancement can reach a factor of
12.02. From all experimental results, we conclude that the three-layer neural network is
better classifier among all discussed techniques. In Chapter VI, a performance
comparison of the Bayes classifier, the neural network, and the recently proposed
techniques including the order statistical filter and the polarity thresholding is presented.
According to the results, the performance of the neural network is superior, and it can
detect the flaw echo embedded in the grain echoes that occupied the same frequency
bands as flaw echoes.

In this thesis, we have applied various nonlinear classifiers to the ultrasonic flaw
detection problems, and found that the three-layer neural network is a better classifier to
detect the flaw echo in a highly noisy environment. We recommend the following future

research work based on the finding of this study:
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Utilize other time-frequency representations to display signal features for
improved target detection.

Train the neural network to recognize the size and orientation of flaw echoes.
Train the neural network to recognize 2-D objects in ultrasonic images.
Improve the training strategy such that the training period can be reduced.
Implement the neural network by using modern VLSI technology.

Evaluate time-frequency neural network techniques for both industrial and

medical applications.
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