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ABSTRACT

Ultrasonic imaging techniques have been widely used for industrial and medical
applications. There have been several challenging problems involved in these techniques
such as detection of multiple interfering target echoes (e.g. related to cracks, defects,
multiple layers) in the presence of scattering noise, and classification of grain echoes in
order to characterize the materials nondestructively. Conventional imaging techniques
lack the capability of resolving such echoes which are closely located in time and
frequency domains in the presence of scattering noise. Neural networks are powerful
tools for overcoming this challenging task due to their trainability and adaptability
capabilities. This thesis presents neural network models io detect and characterize
multiple target echoes in close proximity of each other for material evaluation. The
neural network models are attractive, as they do not require any solution methodologies,
or any mathematical models of the scattering functions in advance. Several problems
dealing with ultrasonic imaging systems have been fully explored utilizing neural
networks: i) deconvolution neural networks as a mean of detecting target echoes in the
presence of grain scattering noise, ii) grain power spectrum neural networks as a mean of
characterizing flaw echoes to classify different type of materials, iii) neural network
filters as a mean of order statistic processing of multi-channel scattering signals.

In order to detect flaw echoes, deconvolution methods using neural networks are
developed. Three novel design procedures have been developed in implementing

deconvolution using neural network algorithms. The first method is called the

xiii



deconvolution neural network (DNN), the second method is named the autoassociative
deconvolution neural network (ADNN), and the third method is referred to as the
probabilistic deconvolution neural network (PDNN). The DNN trains the network by
employing the brute force and by exposing the network to a set of target echoes with and
without noise. The ADNN processes the data for signal-to-noise ratio enhancement using
an autoassociative neural network, and then applies the DNN. The PDNN consists of two
processing stages. The first stage estimates parameters using Gram-Charlier
approximation to describe the probability density functions corresponding to target
echoes and scattering noise. Then, in the second processing block, these parameters are
used to classify and detect multiple target echoes. Results obtained in the performance
analysis of these algorithms indicate that multiple target echoes can be deconvolved and
resolved accurately in the presence of noise.

A well-known method detecting flaw echoes in large grains is to utilize split-
spectrum processing coupled with order statistic filters. A procedure has been developed
utilizing neural networks to achieve sorting processing. In particular, minimum order
statistic neural network (MinNNet), median order statistic neural network (MedNNet)
and maximum order statistic neural network (MaxNNet) have been fully explored. These
neural network filters find the minimum, the median or the maximum of input data
respectively. Such neural networks can be used in sorting split-spectrum backscattered
echoes in order to detect flaw in high grain scattering noise. Both simulated and
experimental results indicate that neural network order statistic filters offer desirable

performance on sorting data and detecting flaw echoes.
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A design procedure for a novel application of neural networks has been developed
to discriminate the frequency signatures inherent to ultrasonic microstructure scattering
signals consisting of multiple unresolvable echoes of random amplitude and arrival time.
This method is called the grain power spectrum neural network (GPSNN) which is
trained to classify grain scattering signals for the nondestructive testing of materials. The
materials tested for grain size discrimination are stee] examples with grain sizes of 14 and
50 microns. The experimental grain signals are obtained using a broadband transducer
with a 6.22 MHz center frequency. The GPSNN has 32 input nodes, 13 hidden neurons
determined adaptively, and one summing output node. The adaptive hidden neuron
algoﬁthm avoids problems of overfitting or underfitting. In addition, Hinton diagrams
have been utilized to display the optimality of GPSNN weights. A set of 4,490 training
sequences is utilized to train the neural network. A new set of 12.572 testing sequences is
acquired to test GPSNN performance. A compar.ative study of GPSNN with other
designs of neural networks using ultrasonic scattering sequence and autocorrelation are
also examined. Overall, GPSNN achieves an average recognition performance of over
98%. This high level of recognition suggests that the GPSNN is a promising method for
ultrasonic nondestructive testing. Furthermore, this method is applicable to tissue
characterization in ultrasonic medical imaging.

Based on analytical and experimental observations, one can conclude that
backpropagation neural network models are encouraging and potentially useful

techniques for nondestructive testing and quality control. Results presented through the
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thesis clearly suggest that neural networks can be used as an effective means for

ultrasound signal processing.

Xvi



CHAPTERII

INTRODUCTION

1.1 Ultrasonic Imaging System and Neural Networks

The detection of closely located target echoes in large-grained materials and the
characterization of these echoes for material evaluation are important tasks in
nondestructive testing [61, 63, 64, 66, 82, 83]". Conventional imaging techniques lack
the capability of resolving such echoes that are closely located in time and frequency
domains, especially in scattering noise. Nonlinear imaging techniques like neural
networks are important and useful tools for detection and characterization of such
ultrasonic signals {12, 38, 65, 78, 79]. This thesis presents neural network models using
backpropagation learning algorithm to detect multiple interfering target echoes, and
characterize these echoes for material evaluation [65, 78, 79]. The neural network
models are attractive because they do not require any solution methodologies or
mathematical models of the scattering functions. Once the neural network is trained,
decision on testing data is a real-time processing operation which is highly desirable in
ultrasonic applications. In this investigation, adaptive hidden neuron algorithm is
introduced to improve the performance of the backpropagation learning algorithm [65.
78, 79]. This objective is achieved in the decision process of finding the optimal number
of hidden neurons. Hinton diagrams are employed to explain why these neural networks

work successfully for the problems of ultrasound imaging systems [49]. The statistical

" Corresponds to numbered references in the bibliography.
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properties of hidden neurons were examined further in order to analyze the
appropriateness of neural networks for order statistic signal processing.

In order to detect target echoes in noisy environments, neural networks are used to
implement the deconvolution methods [79]. In a linear time-invariant system, the output,
y(n), is related to the input, x(n), by impulse response function of the system, h(n), using
the convolution operation: y(n) = h(n) * x(n). The deconvolution process is defined as

finding a good estimate of h(n) from the knowledge of y(n) and x(n). The solution to this

Y
problem in frequency domain is given as H,_  (o)= % The transfer function Heg(o)

is unbounded where X(w) tends to zero. In this study, several methods based on
utilization of deconvolution have been employed to solve this type of problem. One
solution to this problem is to use neural networks that behaves like a deconvolution filter
where the output is zero in the absence of a target and unity impulse in the presence of a
target. These neural networks prevent the estimated transfer function Hesi(w) from being
unbounded. This type of neural networks is stable, since it has the advantage of using
time-domain convolutions rather than the frequency-domain divisions  which is
influenced by bad zeros of X(®) and bad poles of Y(o).

In this study, three neural network models have been developed in implementing
deconvolution using backpropagation learning algorithm. The first network model is
called the deconvolution neural network (DNN), the second network method is named the
autoassociative deconvolution neural network (ADNN), and the third network design is
referred to as the probabilistic deconvolution neural network (PDNN) [65, 73, 78, 79].

The target echoes with and without noise were included in the training phase of DNN.



-
2

The purpose of the training was to teach the DNN to give an output value of zero when
the target is not presented or unity impulse when the target is presented as an input. The
ADNN improves the signal-to-noise ratio of the noisy signal using an autoassociative
neural network (ANN), and then applies that improved signal to DNN for the detection of
target echoes. The PDNN consists of two processing stages. The first stage estimates the
Gram-Charlier coefficients of the target echoes and the scattering noise [39, 79]. And the
second processing block uses these parameters to detect multiple interfering target
echoes. Experimental results show that multiple target echoes which are close to each
other can be deconvolved and determined correctly in the presence of scattering noise.
Another solution for detecting target echoes in grain scattering noise is to use the
split-spectrum processing with order statistic filters. Order statistic filtering has been
extensively employed in signal and image processing areas [63, 64, 82]. Some of the
order statistic filters that have been utilized widely in ultrasonic imaging systems are
minimum, median, and maximum order statistic filters. These filters find the minimum,
median, and maximum element in an input signal respectively [46, 87]. One of our
objectives in this thesis is to develop and analyze the performance of three neural network
order statistic filters to replace the conventional ones that are used in the split-spectrum
processing. These neural network models are called minimum order statistic neural
network filter (MinNNet), median order statistic neural network filter (MedNNet) and
maximum order statistic neural network filter (MaxNNet). These filters find the
minimum, the median or the maximum of input data respectively. Such neural network

filters can be employed in sorting backscattered echoes in order to detect flaw echoes in
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noisy environments. In the design process of the neural network filters, backpropagation
learning algorithm and adaptive hidden neuron algorithm were used. If we assume that
there are m different input values need to be sorted by these neural networks, there are m!
(very large number) different signal patterns of input that give the same output. Therefore
one may expect that neural networks may not offer highly accurate results. In spite of this
disadvantage, neural network filters provide good approximation which appears to be
ultrasonic flaw detection from statistical point of view. The training set of data consists
of uniform random numbers as an input to the neural network and the output contains of
minimum, median and maximum rank of these random numbers for MinNNet, MedNNet,
and MaxNNet respectively. After the neural networks were trained, we used the neural
network weights to derive the probability density function of the output to find out if the
optimal solution has been reached or not. This pdf gives us some analytical point of view
why the neural network filters are capable of sorting the input data. Another method to
explain the operation of these neural networks is to utilize Hinton diagrams to examine
the neural network weights [49]. Experimental results indicate that order statistic neural
network filters can be used to sort the input data and detect the target echoes in noisy
environments.

The importance of evaluating the microstructure of materials ultrasonically has
been long recognized. In particular, it is highly desirable to estimate grain size or classify
materials based on the scattering properties of their microstructure [63, 82, 83].
Backscattered grain echoes are random signals that bear information related to both the

grain size and frequency of sound. In ultrasonic grain size characterization a model for
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the grain signal consists of the convolution of components representing the contribution
of the measuring system impulse response (i.e., the interrogating ultrasonic wavelet) and
the grain scattering function. This function contains information related to many random
physical parameters such as grain size, shape, orientation, boundary characteristics, and
chemical constituents. Consequently, the grain scattering signal becomes random and
exhibits a great deal of variability in the time domain. Therefore, spectral analysis is
often adopted as an alternate method for signal characterization [46, 55, 87].

In the Rayleigh scattering region (the wavelength, A, is larger than the average
grain diameter, A) the scattering coefficients vary with the third power of the gram
diameter and the fourth power of the frequency, while the absorption coefficient increases
linearly with frequency [46]. The high frequency component of the interrogating
ultrasonic wavelet backscatters with higher intensity than the lower frequency
components. This situation results in a higher expected frequency than that of the
original interrogating wavelet. In this study, we have developed the design procedure for
a neural network to discriminate the frequency signatures inherent in ultrasonic grain
scattering signals. This method, called the grain power spectrum neural network
(GPSNN), offers practical advantages such as real-time processing, adaptability and
training capability. GPSNN deduces the relationship between the measurement power
spectrum and classification output without knowing the scattering model, physical
parameters, or the solution methodology. With the neural network, as each set of input
vectors is applied to the neural network, the hidden layers configure themselves to

recognize certain frequency features of the input .vectors related to the scattering



properties of the materials. After the GPSNN is fully trained, each hidden neuron
represents certain frequency characteristics of the total input space. Therefore, when the
power spectrum of a new grain scattering signal is applied to GPSNN, each neuron is able
to respond to the presence of a particular subset of frequency information which it was
trained to recognize. The GPSNN has 32 input nodes, 13 hidden neurons determined
adaptively, and one summing node. A set of 4,490 training sequences is utilized to train
the neural network. A new set of 12,572 testing sequences is used to test GPSNN
performance. The samples tested for grain size discrimination are steel with grain sizes
of 14 and 50 microns. GPSNN achieves an average recognition performance of over 98%
which tells us that GPSNN is an effective method in nondestructive testing. Furthermore,
GPSNN can be adopted in ultrasonic medical imaging problems such as tissue
characterization.

All these novel neural network models atl'e encouraging and suggest that they are
potentially useful for nondestructive testing and quality control. Overall, neural networks
can be used as an effective means for ultrasound signal processing. Next section provides

the theoretical background for backpropagation learning algorithm.

1.2 Backpropagation Learning Algorithm

The supervised backpropagation learning algorithm is the most broadly accepted
learning technique for design of neural networks [15, 21, 49]. This algorithm is used to
train the deconvolution neural networks, the grain power spectrum neural network, and

the order statistic neural network filters. These neural networks perform a distinguished



nonlinear mapping which can be stated in terms of a given input/output data sets. These
data sets are called the learning examples.

A neural network structure is given in Figure 1.1. In backpropagation learning
algorithm, after an input pattern, Xpi (i = 1, ..., N), is applied to the input layer, it is
propagated through upper layers until an output is generated at the output layer. Then it is
compared to the desired output, and the error signal is computed for each output unit.
The error is propagated backward to nodes in the intermediate layers. However the
effect of the error propagated on nodes depends roughly on the contribution node made to
the total error. Based on the error signal received, connection weights, w,,, are updated
for convergence for all the training patterns. The significance of this process is that, as
the network trains, nodes in the intermediate layers organize themselves to recognize
different features of the total input space. As a result all hidden-layer units in the neural
network are associated with specific features of the input pattern. A neural network is
called a mapping network if it is able to compute some functional relationship between its
input and output. It is an advantage to have a system like this, because if we do not
know how to describe the functional relationship between the input and the output in
advance, neural networks can achieve this information by utilizing examples of the
correct mapping [15, 21, 49, 65, 78, 79 ].

A set of p-vectors are examples of a functional mapping

y=f(x):xeR",y e R". (1.1



and set of p-vectors are given as

G (2,7, ),

x‘T =[xll’x12""’xw]’yjr =[)’,1,y,2,...,ij], (1.2)

The output of each neuron at the hidden layer can be calculated as follows

h
net =ZW,, X, (1.3)

where N is the total number of input neurons, w,-,-" is the weight from i th input node to the

J th hidden node.

Activation function of this node is given as
. h h
i, =F (net,"). (1.4)

where F",-(O) is hyperbolic tangent activation function and given in Figure 1.2. The

hyperbolic tangent activation function is defined as

F’ (n) = tanh(n). (1.5)
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Input Layer

Figure 1.1 A General Neural Network Structure

Figure 1.2 Hyperbolic Tangent
Activation Function
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net ,.° =§w,q°ipj, (1.6)

where L is the total number of hidden neurons and the activation of this node is
ay = F.°(net,°). (1.7)

where F7i(e) is linear activation function and given in Figure 1.3. The linear activation

function is defined as

Fe(n)=n. (1.8)

Figure 1.3 Linear Activation Function

The following presents steps for training the neural network:
1. Apply an input vector to the network and calculate the corresponding values.

2. Compare the actual outputs with the correct outputs and determine a measure of the

€ITor.
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3. Determine in which direction (+ or -) to change each weight in order to reduce the
error.
4. Determine the amount by which to change each weight.
5. Apply corrections to weights.
6. Repeat items 1 through 5 with all the training vectors until the error for all vectors in
the training set is reduced to an acceptable value.

In order to update the output layer weights, we must calculate the error, E;, as the

following
1 M
E, =5 2p4

ppk=(ypk —ag), (1.9)

where M is the total number of output neurons, E, is the p th error, y, is the desired
output and ap is the actual output for the £ th output neuron and p is the number of
patterns in the training set.

To determine the direction in which to change weights, we calculate the negative

of the gradient of E, with respect to the weight, wy;,

¢E, " .
W =—(ypk —ap,‘)Fk (net ,, )1,,1. (1.10)
&

w, " (m+1)=w,°(m) + (¥, —a, ) F," (net ,°)i,. (1.11)
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where 77 is called the learning rate parameter. One can see from the Equation (1.11) that
the transfer function, F, must be differentiable. For that reason, we use the linear
activation function at the output layer. Figure 1.3 shows a linear activation function.

The error given in Equation (1.9) should be related to the output values on the

hidden layer. From Equations (1.3) and (1.4), i,; depends on the weights of hidden layer.

(1.12)

By utilizing the chain rule on Equation (1.12), one gets

Ey gy ety 3, et
o, T T et A4, ohet," ow,"’

It P

(1.13)

We substitute Equations (1.3) through (1.8) in Equation (1.13) to get relationships

between updates of the hidden weights and the error propagated back
0 M .
Aw,*)=nF Y (net,")x,, kz;(y,,k —a,)F,° (net ,*Yw,°. (1.14)

The known errors on the output layer are propagated back to the hidden layer to

determine appropriate weight changes on this layer



A
pp/h = F;h (nelpjh)Z(ypk —apk )P;(() (ne[pka )wkju
k=1

h h
w,"(m+1)=w."(m)+np, "x,. (1.15)

For the hidden layer activation function, a hyperbolic tangent activation function is
chosen. Figure 1.2 shows the hyperbolic tangent activation function. There are some
other activation functions such as log-sigmoid activation functions that can be used
instead of hyperbolic tangent functions. F igure 1.4 shows a log-sigmoid function. Log-

sigmoid function is defined as

(1.16)

Fmy = l+e™ -~

From Figure 1.4, one can see that the neural network hidden neuron outputs are limited
with positive values between 0 and 1. In the field of ultrasound signal processing, we
need negative activation values besides the positive values to detect the target echoes.
The process of choosing the right activation function for the hidden layers is
problem dependent. Some promising techniques which greatly improve the performance
of the neural network are given in Chapter 2. It appears that a neural network trained
with these techniques not only allows an escape from a local minimum, but also has a
better ability to recognize noisy target echoes that have never been presented to the neural

network during the training process.
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Figure 1.4 Log-sigmoid Function

1.3 Preview of the Remaining Chapters

The significance of examining the microstructure of materials ultrasonically has
long been recognized. Detection of flaws and classification of materials based on their
scattering properties are the issues that have been investigated in this thesis using neural
networks. Chapter 2 begins this investigation by introducing the deconvolution neural
networks to detect mulitiple target echoes which are interfered with each other in noisy
environments. These neural networks were trained with one, two and three echoes with
and without noise. Performance evaluation of these neural networks was further
investigated through simulated echoes. To enhance the performance of deconvolution
neural networks, autoassociative neural networks have been developed. These neural
networks are utilized to improve the signal-to-noise ratio, and then the improved signal is
applied to DNNs. The adaptive hidden neuron algorithm is introduced to find out the

optimum number of hidden neurons. Experimental results that are depicted in Chapter 2
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indicate that the adaptive hidden neuron algorithm improves the backpropagation learning
algorithm and causes it to escape from the local minimum and reach the global minimum.

Chapter 3 approaches the deconvolution problem by estimating the Gram-Charlier
coefficients of the target echoes and the scattering noise. The Gram-Charlier coefficients
are utilized to construct the probabilistic deconvolution neural networks to achieve a high
probability of detection for a reasonably low signal-to-noise ratio.

Chapter 4 presents another technique that can be used for detection of target
echoes. This technique is called split-spectrum processing. The purpose of Chapter 4 is
to develop minimum, median, and maximum order statistic neural network filters to
replace the conventional ones in split-spectrum processing. Hinton diagrams and
probability density functions of the output neurons are utilized to explain why these
neural network filters can be successfully used in split-spectrum processing.

A novel neural network structure has been investigated to discriminate the
frequency signatures of ultrasonic microstructure scattering signals in Chapter 5. Chapter
5 starts with exploring the scattering functions for ultrasonic imaging systems and
introduces the grain power spectrum neural network to differentiate two different grain
signals using their frequency signatures. Finally, Chapter 6 summarizes the thesis work

and introduces the future work.
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CHAPTER II

DECONVOLUTION NEURAL NETWORKS FOR ULTRASONIC TESTING

This chapter presents two novel neural network models in order to implement
deconvolution using backpropagation learning algorithm. The first model is called the
deconvolution neural network (DNN), and the second model is named the autoassociative
deconvolution neural network (ADNN). The DNN utilizes the target echoes with and
without noise, and generates an output value of zero or unity impulse whether the flaw is
absent or present in the input data. The ADNN employs the autoassociative neural
network for signal-to-noise ratio enhancement, and then applies the enhanced signal to
deconvolution neural network for detection of target echoes. Testing results of these
neural network models verify that target echoes which are interfered with each other can

be detected and determined accurately in the presence of noise.

2.1 Introduction

This study presents design techniques for deconvolution neural networks utilizing
the backpropagation learning algorithm in order to detect multiple target echoes in noisy
environments [4, 17, 34, 35, 50, 52, 60, 74]. A study of this type can be useful for
detecting ultrasonic flaw echoes in scattering noise, and used as an equalizer in high
additive noise communication channels.

In the field of communication systems, the communication channel is modeled as

an ideal low-pass filter. However, this model is physically unfeasible and difficult to



























































































































































































































































































































































































































