DETECTION AND CLASSIFICATION OF ULTRASONIC ECHOES USING NEURAL

NETWORKS

BY

MEHMET SULEYMAN UNLUTURK

Submitted in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy in Electrical and Computer Engineering
in the Graduate College of the
Illinois Institute of Technology

Approved

Adviser

Chicago, Illinois .

ACKNOWLEDGMENT

The author wishes to express his sincere gratitude to his major professor, Dr. Jafar
Saniie for his guidance and assistance through all phases of this research. Dr. Saniie

contributed a substantial amount of his time and effort on this thesis, and his help is

greatly appreciated.
The author is very grateful to Dr. G. Williamson, Dr. G. Atkin, and Dr. P. Greene,

who devoted the time to serve as the thesis committee.

This thesis is dedicated to author’s wife, Sevcan Unluturk, and author’s daughter,

Buse Unluturk.

M.S.U.

i

TABLE OF CONTENTS

ACKNOWLEDGMENT .ooooooteeeeeeeeeeeeeeeeeeseeeoe oo

LISTOF TABLES e

LISTOF FIGURES oo

ABSTRACT e
CHAPTER

I INTRODUCTIONoiuiummrmnememeceneeeeeeeeeesee oo

1.1 Ultrasonic Imaging System and Neural Networks

1.2 Backpropagation Learning Algorithm_____

1.3 Preview of the Remaining Chapters______

II. DECONVOLUTION NEURAL NETWORKS FOR
ULTRASONIC TESTING .co.eceemeeeceeeeeeeeseeeeooeoooooooo

[II. PROBABILISTIC DECONVOLUTION NEURAL NETWORK ...

3.1 INtroductioneeeueeueueeeeuencieeeeeeeeeeeeeeeee
3.2 Gram-Charlier SEriese.ooeeeomomememeeoooooooo
3.3 Orthogonal Property of Hermite Polynomials
3.4 Convergence of Gram-Charlier Seriesoooovooooooo
3.5 Probabilistic Deconvolution Neural Networks
3.6 Testing Results of PDNNcoooommmoomoe
3.7 CONCIUSION cceoeeeeeeeeeeeeeeeeeeeeeeeeeee e

v

16

16
19
26

-

31
34
37
42

47

47
50
54
58
58
59
60

CHAPTER Page

IV. ORDER STATISTIC FILTERS ..o 65
4.1 INtrodUCHION. ..o 65
4.2 The PDF of Order Statistic Filtersooooovomoooeeoo . 67
4.3 The PDF of a Neural Network Order Statistic Filter 70
4.4 The Design of a Neural Network Filterooooooooo. 78
4.5 The Performance of Neural Network Filtersooooo........ 86
4.6 Neural Network Filters for Detectionoooooooeoeneeo 115
4.7 CONCIUSION. .o e - 119

V. NEURAL NETWORKS FOR ULTRASONIC GRAIN SIZE

DISCRIMINATION ..ottt 121

5.1 IntrodUuCHioNccooommninieiiteeeceeeeeeeeeeeeeeeeee 121

5.2 Design of GPSNN ..o 123

5.3 Experimental Resultscc.oouiomieeeeeeeeaeeeeeee 127

5.4 Time Signature ReCOgnitionce.ceeeeeemeveemeeeeooeeooeo 134

5.5 ConCIUSION ..ot 135

VL. SUMMARY AND CONCLUSIONootioeomeeeee 142
BIBLIOGRAPHY ...ttt e 145

\!

Table

o
P

2.2

3.1

4.1

4.2

4.3

5.1

52

5.3

54

55

LIST OF TABLES

Page
Training Results for DNN Using Experimental Data 30
Training Results for ANN Using Experimental Data 33
Training Results for PDNN ccocoommmoeo 59
Training Statistics for MInNNetoocovvmmemoeooo 85
Training Statistics for MedNNetocooomeevooo 85
Training Statistics for MaxNNetooocoovoveeio 86
Training Statistics for GPSNN Using Experimental Data 132
Summary of the Testing Results for the GPSNN ... 137
Training Statistics for GANN Using Experimental Data 138
Training Statistics for GACNN Using Experimental Data 138
Summary of the Testing Results for the GACNN ... 141

vi

LIST OF FIGURES

Figure

........

2.1 Block Diagram of the Deconvolution Neural Network (DNN) oo,

2.2 System Model of Target Echo Detectionocooovoemoveooooooo

2.4 Adaptive Hidden Neuron Algorithm for the Optimal Design of DNN .

2.5 (a) One Echo is Located at Location 57 without Any Noise

........

(b) Output of DNN, and Detected Echo is at Location 57ooooooonono .

(c) One Echo is Located at Location 57 with SNR =12 dB ...oooooo ..

(d) Output of DNN, and Detected Echo is at Location 57oovooeonn..

2.6 (a) Two Echoes are Located at Locations 57 and 60 with SNR = 12 dB

(b) Output of DNN, and Detected Echoes are at Locations 57 and 60 ..

(c) Three Echoes are Located at Locations 57, 58, and 61

WIth SNR =11 dB ..o
(d) Output of DNN, and Detected Echoes are at Locations 57, 58

and 61 ..o

2.9 (a) Two Echoes are Located at Locations 57 and 61 with SNR =4 dB

(b) Output of DNN, and Detected Echoes are at Locations 54 and 61 ..
(©) Output Of ANN ..o e e

(d) Output of DNN is Shown after the Output of ANN is
Applied to DNN (SNR improvement) , and Detected Echoes are at

Locations 57 and 61coueueeeeimeeeeeeeeeeeeee e

vii

........

10

14

20

25

28
28
28
28

34
35

35
35

35

Figure
2.10 (a) Echo is Located at Location 57 with o = 253, f. = 4.8 MHz, ¢ = 82°,

Do = 0.36 secs, A =0.47 UNItS ..eereneeeneeeeeeeoo

2.11 (a) Echo is Located at Location 57 with a = 25.3, f. = 4 MHz, ¢ = 82°,

Do, = 0.36 secs, A = 0.47 UNitS ...c.ovmrereeeeeeeeeeeeee

(c) Echo is Located at Location 57 with o0 = 25 3,fe =3 MHz, ¢ = 82°,
N, = 0.36 secs, A = 0.47 UNItS ..oouemrveeeeeeeeeeeeeeoooo

2.13 (a) One Echo is Located at Location 57 without Any Noisecoeuueeenn...

(b) Output of Wiener filter, and Echo is Detected at Location 57
(c) One Echo is Located at Location 57 with SNR=12dB_

2.14 (a) Two Echoes are Located at Locations 57 and 60 (SNR=12dB)

(b) Output of Wiener filter, and Echoes are Detected at Locations

58ANA 61 oo
(c) Three Echoes are Located at Locations 5 7, 59, and 61

WIth SNR = 11 dB ..o e
(d) Output of Wiener filter, and Only One Echo is Detected

At LoCation S8 ...

3.2 (a) Gaussian FunCtionooo.oueueeiueooeoeeeeeeeeeeeeeeeeoooo

(b) First derivative of a Gaussian FUNCHONoeoeeeomvmeeooooeoo
(c) Second derivative of a Gaussian Functioncooovoovooooooo
(d) Third derivative of a Gaussian FUnCtionoooovvevoovvooooooo
(e) Fourth derivative of a Gaussian Functionco..ooeeveoveoeveeeeoo
(f) Fifth derivative of a Gaussian FUNCtiONoeveoveenveeeeeeoeooooo
(g) Sixth derivative of a Gaussian FUNCtioncoocooeveoveemeeeooeoe

viii

Page

38
38
38

39
39

40

43
43
43
43

48

51
51
51
51
51
51

51

Figure

ANA 99 e

3.4 (a) Two Echoes are at Locations 97, 100 with SNR =8 dB ...
(b) Output of PDNN, Detected Echoes are at Locations 97
AN 100 e
(c) Three Echoes are at Locations 97, 99, and 101 with SNR=8dB
(d) Output of PDNN, Detected Echoes are at Locations 97, 99

AN TOT e

4.1 (a) The normalized sort function for Minimum OS F ilter,

(b) The normalized sort function for Median OS Filter,

(c) The normalized sort function for Maximum OS Filter
4.2 The Input and Hidden Layers of the Neural Network Filter
4.3 The Output Layer of the Neural Network Filteroooooooooooooo
4.4 One Hidden Neuron with its Hyperbolic Tangent Transfer Function
4.5 The Neural Network Order Statistic Filter ...
4.6 Hinton Diagrams for MinNNetccoooommmmovoeeo
4.7 Hinton Diagrams for MEdNNeto.ovouoeeeeeomeoeeeeeemeeoo
4.8 Hinton Diagrams for MaxNNetooooommemmeeeeoeeoo

4.9 MinNNet: The normalized pdf’s for Hidden Neurons (a) #1, (b) #2, (c) #3,
and (d) #4 Before the application of Hyperbolic
Tangent Transfer FUNCHONc...oveuivivminiceieeeeeeeeeeeee

4.10 MinNNet: The normalized pdf’s for Hidden Neurons (a) #5, (b) #6, (c) #7,
and (d) #8 Before the application of Hyperbolic
Tangent Transfer Functionccooovoeiooeooooeeoeee

1X

62

62
62

62

74

76

80

83

84

87

88

Figure

4.11 MinNNet: The normalized pdf’s for Hidden Neurons
(a) #9, (b) #10, (c) #11, and (d) #12 Before the application of Hyperbolic

Tangent Transfer FUNCtioncooeeeeueeueoeooeemoeeooooo

4.12 MinNNet: The normalized pdf’s for Hidden Neurons
(a) #13, (b) #14, and (c) #15 Before the application of Hyperbolic
Tangent Transfer Functionoeeeeueeueemmeecoveoeeeeeoooooooo

4.13 MinNNet: The normalized pdf’s for Hidden Neurons (a) #1, (b) #2, (c) #3,
and (d) #4 After the application of Hyperbolic
Tangent Transfer FUNCHONc.ovovueuerummeeeeeeeeeeoeeeeeeoeoooo

4.14 MinNNet: The normalized pdf’s for Hidden Neurons (a) #5, (b) #6, (c) #7,
and (d) #8 After the application of Hyperbolic
Tangent Transfer FUNCHONc.cceeeummumeuemeeeeeeeeeeeeeeeeeoeoooo

4.15 MinNNet: The normalized pdf’s for Hidden Neurons (a) #9, (b) #10,
(c) #11, and (d) #12 After the application of Hyperbolic
Tangent Transfer Functioneoeueeveeeumcoeoeeoeeeooo

4.16 MinNNet: The normalized pdf’s for Hidden Neurons (a) #13, (b) #14,
and (c) #15 After the application of Hyperbolic
Tangent Transfer FUNCHONc.oeovueveueureeeeeeeeoneeeeeeoeeeoooooooooo

4.17 MinNNet: Histograms for (a) Input data, (b) MinNNet,
and (c) Minimum Rankcccooeomomommmmummmeeieeeeeeo

4.18 MedNNet: The normalized pdf’s for Hidden Neurons (a) #1, (b) #2, (c) #3,
and (d) #4 Before the application of Hyperbolic
Tangent Transfer FUNCHONcvuvueueuevecueeeceeceeeeeeeeeeeoeoooooooooo

4.19 MedNNet: The normalized pdf’s for Hidden Neurons (@) #5, (b) #6, (c) #7,
and (d) #8 Before the application of Hyperbolic
Tangent Transfer FUNCHONcovoveueueueeieeeeecceeeeeoeeeeoooooo

4.20 MedNNet: The normalized pdf’s for Hidden Neurons (a) #9, and (b) #10
Before the application of Hyperbolic
Tangent Transfer FUNCHONocovvvevemreenieieeeeeeeeeeeeeeeeeeeeooooo

4.21 MedNNet: The normalized pdf’s for Hidden Neurons (a) #1, (b) #2, (c) #3,
and (d) #4 After the application of Hyperbolic
Tangent Transfer FUNCHONcoovoveuoeeenieieeeeeeeeeeeeoo

Page

89

90

93

94

95

96

97

98

99

Figure

4.22 MedNNet: The normalized pdf’s for hidden neurons (a) #5, (b) #6, (c) #7,
and (d) #8 After the application of Hyperbolic
Tangent Transfer Functioneceeeevuovoeooecmeeoeoeo

4.23 MedNNet: The normalized pdf’s for Hidden Neurons (a) #9, and (b) #10
After the application of Hyperbolic Tangent
Transfer FUNCHONeo.ceeeeeeeeeeeeeeeeeeeeeeeeeooooo

4.24 MedNNet: Histograms for (a) Input data, (b) MedNNet,
and (c) Median Rankcccoooememmmoioeee

4.25 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #1, (b) #2, (c) #3,
and (d) #4 Before the application of Hyperbolic
Tangent Transfer FUnctione...ueuueooveoeeoeeoeeeoeeeooo

4.26 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #5, (b) #6, (c) #7,
and (d) #8 Before the application of Hyperbolic
Tangent Transfer Functioneceoueeuevvoooocoeooveemeeeeeoo

4.27 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #9, (b) #10,
(c) #11, and (d) #12 Before the application of Hyperbolic
Tangent Transfer Functionoeuvueoecumeommeomeeoeeeoooooo

4.28 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #13, (b) #14,
(c) #15, and (d) #16 Before the application of Hyperbolic
Tangent Transfer FUnctiono..ooooomeeeooomoeeooooo

4.29 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #1, (b) #2, (c) #3,
and (d) #4 After the application of Hyperbolic
Tangent Transfer FUNCHONv.vuueeeeeeeeeeeeeeeeeeeeeeeoeoe oo

4.30 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #5, (b) #6, (c) #7,
and (d) #8 After the application of Hyperbolic
Tangent Transfer FUNCHONc.oueueuvceneeeeeeeeeeeeeeeeeeoeoeoooooo

4.31 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #9, (b) #10,
(c) #11, and (d) #12 After the application of Hyperbolic
Tangent Transfer FUNCHONc.veueuieiuieieeeeeeeeeeee e

4.32 MaxNNet: The normalized pdf’s for Hidden neurons (a) #13, (b) #14,
(c) #15, and (d) #16 After the application of Hyperbolic
Tangent Transfer FUNCHONo.vomeneeeieeieeeeeeeeeeeeeeeeoo

X1

Page

104

105

106

107

108

109

110

111

Figure
4.33 MaxNNet: Histograms for (a) Input data, (b) MaxNNet,

and (c) Maximum Rankc.ocoooovovoiivieeoe

4.34 (a) Testing Results of MaxNNet, MedNNet and MinNNet
for random numbers that were generated between, part(a) [0.8 1],

part (b) [0.1 0.3],
(b) Testing results of MaxNNet, MedNNet, and MinNNet

for random numbers that were generated between [0.10.9]

4.35 The Block Diagram of SSPoovveomeoeeomeoeeoooo

4.36 Frequency Range of Bandpass Filters is 2.875-11.625 MHz
with the Bandwidth of 2 MHz. Echo is at 430 and Detected
at 442 by Neural Network Filters (a) Noisy Signal with a Single Echo
(b) The Output of MaxNNet (c) The Output of MedNNet

(d) The Output of MinNNetoco.ouomimmmeoiieeieeeeeo

5.1 Block Diagram of the Ultrasonic Grain Power Spectrum

Neural Network (GPSNN)cormimmurmimeeieceeeeeeeeeeeeeeooeooooooooo

5.2 Density Functions of the Output of GPSNN for Type-1 and Type-2

Grain Signalsooeeeeieceeeeeeeeee e

5.3 Examples of Backscattered Grain Signals, (a) Type-1 Signals, and

(b) Type-2 Signalso.oecumireeieececeeeeeeeeeeeeeee e

5.4 Power Spectrum of Grain Signals Shown in F 1gUre 5.3 e,

5.5 Hinton Diagram Displaying the Estimated Weights of GPSNN,

(a) W" weights, and (b) W° WeightS ...oooeooeeoevemoooooooo

5.6 Density Functions of the Output of GANN for Type-1 and Type-2

Grain Signals ...

5.7 Density Functions of the Output of GACNN for Type-1 and Type-2

Grain Signalsoociooimeeeeceeeeeee e

XIi

Page

114

117

ABSTRACT

Ultrasonic imaging techniques have been widely used for industrial and medical
applications. There have been several challenging problems involved in these techniques
such as detection of multiple interfering target echoes (e.g. related to cracks, defects,
multiple layers) in the presence of scattering noise, and classification of grain echoes in
order to characterize the materials nondestructively. Conventional imaging techniques
lack the capability of resolving such echoes which are closely located in time and
frequency domains in the presence of scattering noise. Neural networks are powerful
tools for overcoming this challenging task due to their trainability and adaptability
capabilities. This thesis presents neural network models io detect and characterize
multiple target echoes in close proximity of each other for material evaluation. The
neural network models are attractive, as they do not require any solution methodologies,
or any mathematical models of the scattering functions in advance. Several problems
dealing with ultrasonic imaging systems have been fully explored utilizing neural
networks: i) deconvolution neural networks as a mean of detecting target echoes in the
presence of grain scattering noise, ii) grain power spectrum neural networks as a mean of
characterizing flaw echoes to classify different type of materials, iii) neural network
filters as a mean of order statistic processing of multi-channel scattering signals.

In order to detect flaw echoes, deconvolution methods using neural networks are
developed. Three novel design procedures have been developed in implementing

deconvolution using neural network algorithms. The first method is called the

xiii

deconvolution neural network (DNN), the second method is named the autoassociative
deconvolution neural network (ADNN), and the third method is referred to as the
probabilistic deconvolution neural network (PDNN). The DNN trains the network by
employing the brute force and by exposing the network to a set of target echoes with and
without noise. The ADNN processes the data for signal-to-noise ratio enhancement using
an autoassociative neural network, and then applies the DNN. The PDNN consists of two
processing stages. The first stage estimates parameters using Gram-Charlier
approximation to describe the probability density functions corresponding to target
echoes and scattering noise. Then, in the second processing block, these parameters are
used to classify and detect multiple target echoes. Results obtained in the performance
analysis of these algorithms indicate that multiple target echoes can be deconvolved and
resolved accurately in the presence of noise.

A well-known method detecting flaw echoes in large grains is to utilize split-
spectrum processing coupled with order statistic filters. A procedure has been developed
utilizing neural networks to achieve sorting processing. In particular, minimum order
statistic neural network (MinNNet), median order statistic neural network (MedNNet)
and maximum order statistic neural network (MaxNNet) have been fully explored. These
neural network filters find the minimum, the median or the maximum of input data
respectively. Such neural networks can be used in sorting split-spectrum backscattered
echoes in order to detect flaw in high grain scattering noise. Both simulated and
experimental results indicate that neural network order statistic filters offer desirable

performance on sorting data and detecting flaw echoes.

X1V

A design procedure for a novel application of neural networks has been developed
to discriminate the frequency signatures inherent to ultrasonic microstructure scattering
signals consisting of multiple unresolvable echoes of random amplitude and arrival time.
This method is called the grain power spectrum neural network (GPSNN) which is
trained to classify grain scattering signals for the nondestructive testing of materials. The
materials tested for grain size discrimination are stee] examples with grain sizes of 14 and
50 microns. The experimental grain signals are obtained using a broadband transducer
with a 6.22 MHz center frequency. The GPSNN has 32 input nodes, 13 hidden neurons
determined adaptively, and one summing output node. The adaptive hidden neuron
algoﬁthm avoids problems of overfitting or underfitting. In addition, Hinton diagrams
have been utilized to display the optimality of GPSNN weights. A set of 4,490 training
sequences is utilized to train the neural network. A new set of 12.572 testing sequences is
acquired to test GPSNN performance. A compar.ative study of GPSNN with other
designs of neural networks using ultrasonic scattering sequence and autocorrelation are
also examined. Overall, GPSNN achieves an average recognition performance of over
98%. This high level of recognition suggests that the GPSNN is a promising method for
ultrasonic nondestructive testing. Furthermore, this method is applicable to tissue
characterization in ultrasonic medical imaging.

Based on analytical and experimental observations, one can conclude that
backpropagation neural network models are encouraging and potentially useful

techniques for nondestructive testing and quality control. Results presented through the

Xv

thesis clearly suggest that neural networks can be used as an effective means for

ultrasound signal processing.

Xvi

CHAPTERII

INTRODUCTION

1.1 Ultrasonic Imaging System and Neural Networks

The detection of closely located target echoes in large-grained materials and the
characterization of these echoes for material evaluation are important tasks in
nondestructive testing [61, 63, 64, 66, 82, 83]". Conventional imaging techniques lack
the capability of resolving such echoes that are closely located in time and frequency
domains, especially in scattering noise. Nonlinear imaging techniques like neural
networks are important and useful tools for detection and characterization of such
ultrasonic signals {12, 38, 65, 78, 79]. This thesis presents neural network models using
backpropagation learning algorithm to detect multiple interfering target echoes, and
characterize these echoes for material evaluation [65, 78, 79]. The neural network
models are attractive because they do not require any solution methodologies or
mathematical models of the scattering functions. Once the neural network is trained,
decision on testing data is a real-time processing operation which is highly desirable in
ultrasonic applications. In this investigation, adaptive hidden neuron algorithm is
introduced to improve the performance of the backpropagation learning algorithm [65.
78, 79]. This objective is achieved in the decision process of finding the optimal number
of hidden neurons. Hinton diagrams are employed to explain why these neural networks

work successfully for the problems of ultrasound imaging systems [49]. The statistical

" Corresponds to numbered references in the bibliography.

9

properties of hidden neurons were examined further in order to analyze the
appropriateness of neural networks for order statistic signal processing.

In order to detect target echoes in noisy environments, neural networks are used to
implement the deconvolution methods [79]. In a linear time-invariant system, the output,
y(n), is related to the input, x(n), by impulse response function of the system, h(n), using
the convolution operation: y(n) = h(n) * x(n). The deconvolution process is defined as

finding a good estimate of h(n) from the knowledge of y(n) and x(n). The solution to this

Y
problem in frequency domain is given as H,_ (o)= % The transfer function Heg(o)

is unbounded where X(w) tends to zero. In this study, several methods based on
utilization of deconvolution have been employed to solve this type of problem. One
solution to this problem is to use neural networks that behaves like a deconvolution filter
where the output is zero in the absence of a target and unity impulse in the presence of a
target. These neural networks prevent the estimated transfer function Hesi(w) from being
unbounded. This type of neural networks is stable, since it has the advantage of using
time-domain convolutions rather than the frequency-domain divisions which is
influenced by bad zeros of X(®) and bad poles of Y(o).

In this study, three neural network models have been developed in implementing
deconvolution using backpropagation learning algorithm. The first network model is
called the deconvolution neural network (DNN), the second network method is named the
autoassociative deconvolution neural network (ADNN), and the third network design is
referred to as the probabilistic deconvolution neural network (PDNN) [65, 73, 78, 79].

The target echoes with and without noise were included in the training phase of DNN.

-
2

The purpose of the training was to teach the DNN to give an output value of zero when
the target is not presented or unity impulse when the target is presented as an input. The
ADNN improves the signal-to-noise ratio of the noisy signal using an autoassociative
neural network (ANN), and then applies that improved signal to DNN for the detection of
target echoes. The PDNN consists of two processing stages. The first stage estimates the
Gram-Charlier coefficients of the target echoes and the scattering noise [39, 79]. And the
second processing block uses these parameters to detect multiple interfering target
echoes. Experimental results show that multiple target echoes which are close to each
other can be deconvolved and determined correctly in the presence of scattering noise.
Another solution for detecting target echoes in grain scattering noise is to use the
split-spectrum processing with order statistic filters. Order statistic filtering has been
extensively employed in signal and image processing areas [63, 64, 82]. Some of the
order statistic filters that have been utilized widely in ultrasonic imaging systems are
minimum, median, and maximum order statistic filters. These filters find the minimum,
median, and maximum element in an input signal respectively [46, 87]. One of our
objectives in this thesis is to develop and analyze the performance of three neural network
order statistic filters to replace the conventional ones that are used in the split-spectrum
processing. These neural network models are called minimum order statistic neural
network filter (MinNNet), median order statistic neural network filter (MedNNet) and
maximum order statistic neural network filter (MaxNNet). These filters find the
minimum, the median or the maximum of input data respectively. Such neural network

filters can be employed in sorting backscattered echoes in order to detect flaw echoes in

4

noisy environments. In the design process of the neural network filters, backpropagation
learning algorithm and adaptive hidden neuron algorithm were used. If we assume that
there are m different input values need to be sorted by these neural networks, there are m!
(very large number) different signal patterns of input that give the same output. Therefore
one may expect that neural networks may not offer highly accurate results. In spite of this
disadvantage, neural network filters provide good approximation which appears to be
ultrasonic flaw detection from statistical point of view. The training set of data consists
of uniform random numbers as an input to the neural network and the output contains of
minimum, median and maximum rank of these random numbers for MinNNet, MedNNet,
and MaxNNet respectively. After the neural networks were trained, we used the neural
network weights to derive the probability density function of the output to find out if the
optimal solution has been reached or not. This pdf gives us some analytical point of view
why the neural network filters are capable of sorting the input data. Another method to
explain the operation of these neural networks is to utilize Hinton diagrams to examine
the neural network weights [49]. Experimental results indicate that order statistic neural
network filters can be used to sort the input data and detect the target echoes in noisy
environments.

The importance of evaluating the microstructure of materials ultrasonically has
been long recognized. In particular, it is highly desirable to estimate grain size or classify
materials based on the scattering properties of their microstructure [63, 82, 83].
Backscattered grain echoes are random signals that bear information related to both the

grain size and frequency of sound. In ultrasonic grain size characterization a model for

n

the grain signal consists of the convolution of components representing the contribution
of the measuring system impulse response (i.e., the interrogating ultrasonic wavelet) and
the grain scattering function. This function contains information related to many random
physical parameters such as grain size, shape, orientation, boundary characteristics, and
chemical constituents. Consequently, the grain scattering signal becomes random and
exhibits a great deal of variability in the time domain. Therefore, spectral analysis is
often adopted as an alternate method for signal characterization [46, 55, 87].

In the Rayleigh scattering region (the wavelength, A, is larger than the average
grain diameter, A) the scattering coefficients vary with the third power of the gram
diameter and the fourth power of the frequency, while the absorption coefficient increases
linearly with frequency [46]. The high frequency component of the interrogating
ultrasonic wavelet backscatters with higher intensity than the lower frequency
components. This situation results in a higher expected frequency than that of the
original interrogating wavelet. In this study, we have developed the design procedure for
a neural network to discriminate the frequency signatures inherent in ultrasonic grain
scattering signals. This method, called the grain power spectrum neural network
(GPSNN), offers practical advantages such as real-time processing, adaptability and
training capability. GPSNN deduces the relationship between the measurement power
spectrum and classification output without knowing the scattering model, physical
parameters, or the solution methodology. With the neural network, as each set of input
vectors is applied to the neural network, the hidden layers configure themselves to

recognize certain frequency features of the input .vectors related to the scattering

properties of the materials. After the GPSNN is fully trained, each hidden neuron
represents certain frequency characteristics of the total input space. Therefore, when the
power spectrum of a new grain scattering signal is applied to GPSNN, each neuron is able
to respond to the presence of a particular subset of frequency information which it was
trained to recognize. The GPSNN has 32 input nodes, 13 hidden neurons determined
adaptively, and one summing node. A set of 4,490 training sequences is utilized to train
the neural network. A new set of 12,572 testing sequences is used to test GPSNN
performance. The samples tested for grain size discrimination are steel with grain sizes
of 14 and 50 microns. GPSNN achieves an average recognition performance of over 98%
which tells us that GPSNN is an effective method in nondestructive testing. Furthermore,
GPSNN can be adopted in ultrasonic medical imaging problems such as tissue
characterization.

All these novel neural network models atl'e encouraging and suggest that they are
potentially useful for nondestructive testing and quality control. Overall, neural networks
can be used as an effective means for ultrasound signal processing. Next section provides

the theoretical background for backpropagation learning algorithm.

1.2 Backpropagation Learning Algorithm

The supervised backpropagation learning algorithm is the most broadly accepted
learning technique for design of neural networks [15, 21, 49]. This algorithm is used to
train the deconvolution neural networks, the grain power spectrum neural network, and

the order statistic neural network filters. These neural networks perform a distinguished

nonlinear mapping which can be stated in terms of a given input/output data sets. These
data sets are called the learning examples.

A neural network structure is given in Figure 1.1. In backpropagation learning
algorithm, after an input pattern, Xpi (i = 1, ..., N), is applied to the input layer, it is
propagated through upper layers until an output is generated at the output layer. Then it is
compared to the desired output, and the error signal is computed for each output unit.
The error is propagated backward to nodes in the intermediate layers. However the
effect of the error propagated on nodes depends roughly on the contribution node made to
the total error. Based on the error signal received, connection weights, w,,, are updated
for convergence for all the training patterns. The significance of this process is that, as
the network trains, nodes in the intermediate layers organize themselves to recognize
different features of the total input space. As a result all hidden-layer units in the neural
network are associated with specific features of the input pattern. A neural network is
called a mapping network if it is able to compute some functional relationship between its
input and output. It is an advantage to have a system like this, because if we do not
know how to describe the functional relationship between the input and the output in
advance, neural networks can achieve this information by utilizing examples of the
correct mapping [15, 21, 49, 65, 78, 79].

A set of p-vectors are examples of a functional mapping

y=f(x):xeR",y e R". (1.1

and set of p-vectors are given as

G (2,7,),

x‘T =[xll’x12""’xw]’yjr =[)’,1,y,2,...,ij], (1.2)

The output of each neuron at the hidden layer can be calculated as follows

h
net =ZW,, X, (1.3)

where N is the total number of input neurons, w,-,-" is the weight from i th input node to the

J th hidden node.

Activation function of this node is given as
. h h
i, =F (net,"). (1.4)

where F",-(O) is hyperbolic tangent activation function and given in Figure 1.2. The

hyperbolic tangent activation function is defined as

F’ (n) = tanh(n). (1.5)

¥pi Yok YeM

Output Layer

Input Layer

Figure 1.1 A General Neural Network Structure

Figure 1.2 Hyperbolic Tangent
Activation Function

10
net ,.° =§w,q°ipj, (1.6)

where L is the total number of hidden neurons and the activation of this node is
ay = F.°(net,°). (1.7)

where F7i(e) is linear activation function and given in Figure 1.3. The linear activation

function is defined as

Fe(n)=n. (1.8)

Figure 1.3 Linear Activation Function

The following presents steps for training the neural network:
1. Apply an input vector to the network and calculate the corresponding values.

2. Compare the actual outputs with the correct outputs and determine a measure of the

€ITor.

11

3. Determine in which direction (+ or -) to change each weight in order to reduce the
error.
4. Determine the amount by which to change each weight.
5. Apply corrections to weights.
6. Repeat items 1 through 5 with all the training vectors until the error for all vectors in
the training set is reduced to an acceptable value.

In order to update the output layer weights, we must calculate the error, E;, as the

following
1 M
E, =5 2p4

ppk=(ypk —ag), (1.9)

where M is the total number of output neurons, E, is the p th error, y, is the desired
output and ap is the actual output for the £ th output neuron and p is the number of
patterns in the training set.

To determine the direction in which to change weights, we calculate the negative

of the gradient of E, with respect to the weight, wy;,

¢E, " .
W =—(ypk —ap,‘)Fk (net ,,)1,,1. (1.10)
&

w, " (m+1)=w,°(m) + (¥, —a,) F," (net ,°)i,. (1.11)

12

where 77 is called the learning rate parameter. One can see from the Equation (1.11) that
the transfer function, F, must be differentiable. For that reason, we use the linear
activation function at the output layer. Figure 1.3 shows a linear activation function.

The error given in Equation (1.9) should be related to the output values on the

hidden layer. From Equations (1.3) and (1.4), i,; depends on the weights of hidden layer.

(1.12)

By utilizing the chain rule on Equation (1.12), one gets

Ey gy ety 3, et
o, T T et A4, ohet," ow,"’

It P

(1.13)

We substitute Equations (1.3) through (1.8) in Equation (1.13) to get relationships

between updates of the hidden weights and the error propagated back
0 M .
Aw,*)=nF Y (net,")x,, kz;(y,,k —a,)F,° (net ,*Yw,°. (1.14)

The known errors on the output layer are propagated back to the hidden layer to

determine appropriate weight changes on this layer

A
pp/h = F;h (nelpjh)Z(ypk —apk)P;(() (ne[pka)wkju
k=1

h h
w,"(m+1)=w."(m)+np, "x,. (1.15)

For the hidden layer activation function, a hyperbolic tangent activation function is
chosen. Figure 1.2 shows the hyperbolic tangent activation function. There are some
other activation functions such as log-sigmoid activation functions that can be used
instead of hyperbolic tangent functions. F igure 1.4 shows a log-sigmoid function. Log-

sigmoid function is defined as

(1.16)

Fmy = l+e™ -~

From Figure 1.4, one can see that the neural network hidden neuron outputs are limited
with positive values between 0 and 1. In the field of ultrasound signal processing, we
need negative activation values besides the positive values to detect the target echoes.
The process of choosing the right activation function for the hidden layers is
problem dependent. Some promising techniques which greatly improve the performance
of the neural network are given in Chapter 2. It appears that a neural network trained
with these techniques not only allows an escape from a local minimum, but also has a
better ability to recognize noisy target echoes that have never been presented to the neural

network during the training process.

14

Figure 1.4 Log-sigmoid Function

1.3 Preview of the Remaining Chapters

The significance of examining the microstructure of materials ultrasonically has
long been recognized. Detection of flaws and classification of materials based on their
scattering properties are the issues that have been investigated in this thesis using neural
networks. Chapter 2 begins this investigation by introducing the deconvolution neural
networks to detect mulitiple target echoes which are interfered with each other in noisy
environments. These neural networks were trained with one, two and three echoes with
and without noise. Performance evaluation of these neural networks was further
investigated through simulated echoes. To enhance the performance of deconvolution
neural networks, autoassociative neural networks have been developed. These neural
networks are utilized to improve the signal-to-noise ratio, and then the improved signal is
applied to DNNs. The adaptive hidden neuron algorithm is introduced to find out the

optimum number of hidden neurons. Experimental results that are depicted in Chapter 2

15

indicate that the adaptive hidden neuron algorithm improves the backpropagation learning
algorithm and causes it to escape from the local minimum and reach the global minimum.

Chapter 3 approaches the deconvolution problem by estimating the Gram-Charlier
coefficients of the target echoes and the scattering noise. The Gram-Charlier coefficients
are utilized to construct the probabilistic deconvolution neural networks to achieve a high
probability of detection for a reasonably low signal-to-noise ratio.

Chapter 4 presents another technique that can be used for detection of target
echoes. This technique is called split-spectrum processing. The purpose of Chapter 4 is
to develop minimum, median, and maximum order statistic neural network filters to
replace the conventional ones in split-spectrum processing. Hinton diagrams and
probability density functions of the output neurons are utilized to explain why these
neural network filters can be successfully used in split-spectrum processing.

A novel neural network structure has been investigated to discriminate the
frequency signatures of ultrasonic microstructure scattering signals in Chapter 5. Chapter
5 starts with exploring the scattering functions for ultrasonic imaging systems and
introduces the grain power spectrum neural network to differentiate two different grain
signals using their frequency signatures. Finally, Chapter 6 summarizes the thesis work

and introduces the future work.

16

CHAPTER II

DECONVOLUTION NEURAL NETWORKS FOR ULTRASONIC TESTING

This chapter presents two novel neural network models in order to implement
deconvolution using backpropagation learning algorithm. The first model is called the
deconvolution neural network (DNN), and the second model is named the autoassociative
deconvolution neural network (ADNN). The DNN utilizes the target echoes with and
without noise, and generates an output value of zero or unity impulse whether the flaw is
absent or present in the input data. The ADNN employs the autoassociative neural
network for signal-to-noise ratio enhancement, and then applies the enhanced signal to
deconvolution neural network for detection of target echoes. Testing results of these
neural network models verify that target echoes which are interfered with each other can

be detected and determined accurately in the presence of noise.

2.1 Introduction

This study presents design techniques for deconvolution neural networks utilizing
the backpropagation learning algorithm in order to detect multiple target echoes in noisy
environments [4, 17, 34, 35, 50, 52, 60, 74]. A study of this type can be useful for
detecting ultrasonic flaw echoes in scattering noise, and used as an equalizer in high
additive noise communication channels.

In the field of communication systems, the communication channel is modeled as

an ideal low-pass filter. However, this model is physically unfeasible and difficult to

17

approximate in practical systems. The physical nature of the transmission medium (or
channel) causes the received symbol to be affected by the presence of the adjacent
symbols. This overlap between adjacent symbols is called intersymbol interference (ISI)
[38]. Since the deconvolution neural networks are nonlinear imaging processors, they
can be used to recover the transmitted symbols. This scheme is referred to as an
equalization scheme. Other neural network techniques that have been implemented to
solve the problem of ISI are presented in [38] and [12]. In [38] authors employed the
recurrent neural networks (RNNs) with a reasonable size to find the inverse of a
communication channel. Other notable neural network type is radial basis function
network that can recover the corrupted symbols in case of a known channel [12]. Results
from testing of these neural networks show significant performance improvements.
Investigation that has been presented in this chapter is different than those that are
given in [38] and [12]. Our deconvolution neural network technique is mainly concerned
with multiple interfering echoes corrupted by uniform random noise. Methods presented
in this chapter are capable of finding solutions for the problem of deconvolution without
knowing anything about the physical parameters of the transmission channel, and further
they have real-time processing, adaptability and training capabilities. In target detection,
the measurement signal is determined in terms of input (i.e., wavelet), the impulse
response function h(n) (target) and noise v(n) as y(n) = h(n) * x(n) + v(n) where *
represents the convolution operation. Then the deconvolution becomes a process of
finding a good estimate of h(n) from the knowledge of y(n) and x(n). To find the target

impulse response function, h(n), the backpropagation learning algorithm is used in

18

designing the deconvolution neural network (DNN). Neural networks are, in their most
general sense, a collection of various layers of nodes which can be connected in a variety
of configurations [15, 21, 49]. They have found applications in many areas including
ultrasound [65, 78, 79] for detection and characterization. Each node consists of the
weighted sum of the nodes in the preceding layer passed through the hyperbolic tangent
function. A set of desired output values is then compared to the actual output of the
neural network for every set of input values. The weights are then appropriately updated
using the gradient of the output error with respect to the weight being updated (see
Chapter 1).

An adaptive hidden neuron algorithm is included in the design of the
deconvolution neural network (DNN). This adaptive hidden neuron algorithm is
promising for determining the optimal number of hidden neurons. The next section
provides design techniques concerned with the deconvolution neural network (DNN) in
order to achieve a high probability of detection for a reasonably low signal-to-noise ratio.
In addition, Hinton diagrams are used to describe how these DNNs operate [49, 52, 78,
79]. In Section 2.4, the autoassociative neural network is introduced to improve signal-
to-noise ratio, followed by the deconvolution neural network (autoassociative
deconvolution neural network, ADNN). In Section 2.5, the performance of DNN has
been evaluated using simulated data. In Section 2.6, DNN was compared with the least

squares filter which is called the Wiener filter [36, 55] due to its robustness to the noise.

19

2.2 Design of Deconvolution Neural Networks

The deconvolution neural network (DNN) is implemented using the
backpropagation algorithm and by exposing the network to a set of target echoes. The
block diagram of DNN is shown in Figure 2.1. In detection problems, the received

signal, r(n), is given as (see Figure 2.2)

u(n) * Za,é‘ (n—n) + v(n) = Target + Noise
r(n) = i (2.1)

v(n) = Noise

where u(n) is the detection wavelet, v(n) is the noise, and a; is the amplitude (or
reflectivity which corresponds to the size of the target) of the target impulse, §(n-n,),
detected at n; (i.e., location of the target). Our objective in this study is to detect the
location of the target at the output of the deconvolution neural network. To prevent the
deconvolution neural network from making a false decision, data normalization is
performed to eliminate the effect of signal offsets and measurement scales.

Normalization is given as

1
= [T 200 - p)? 2.2)

| FirstSet | Experimental Data
| SecondSet | | LastSet |
x(n)
1
2 Target Impulse
Response
M Deconvolution
Neural Network

Figure 2.1 Block Diagram of the Deconvolution Neural Network (DNN)

where p and ¢ are the estimated mean (i.e., signal offset) and the estimated standard
deviation (i.e., measurement scale).

The input signal to the deconvolution neural network (see Figure 2.1) is created
using a sliding window. The size of the sliding window is M, and the step between two

successive windows is one sample. The first set is taken from the beginning of the data.

v(n), Noise

Detection
Wavelet, u(n) Target Impulse z(n)
Response o + ’
Sai8(n-n;) ~

Measured
Echoes, r(n)

Figure 2.2 System Model of Target Echo Detection

The second set is one sample to the right of the first set, and this is repeated until the
window covers the entire N samples of the measured signal. Then, the training matrix for

the deconvolution neural network can be formed as

[x(l) x(2) - x(N—M+1)1I
o] @3)
LxM) x(M+1D) - x|

where each column represents one set of normalized input data with an array length of M.
Note that a total of N-M+1 set of input data are presented to the deconvolution neural
network. Figure 2.3 shows a deconvolution neural network. The output vector of a

deconvolution neural network (see Figure 2.3), ¥, can be calculated as

y = W° tanh(W" X) (2.4)

7

where X is defined in Equation (2.3), W" and W® are the weight matrixes for the hidden

layer and the output layer respectively:

., b h h n
Wi Wi oo Wy * Winm
h h h h
Wo o Wo, o sor Wo. o e W
— h 21 22 2 M
We = [wy,® o wy® e wy o], W= @.5)
h h h h
LWt WLt W Wi

Backpropagation learning algorithm is used to estimate W" and W® for the optimal design

of DNN. Then, the output vector, y, is defined as

y=lyM,....y(D),... (N = M +1)] (2.6)

where y(k) {k =1, 2, ..., N-M+1} is equal to 1 if the input of the deconvolution neural
network represents the target and noise class, otherwise y(k) is equal to 0 if the input of
the deconvolution neural network represents the noise class only.

In deconvolution neural network design, a key issue is determining the number of
hidden neurons. Improper selection of hidden neurons results in overfitting and
underfitting problems. Overfitting (i.e., too many neurons) performs satisfactory for
design data, but fails significantly for test data. Underfitting (i.e., too few hidden
neurons) causes unsatisfactory convergence (i.e., DNN is not fully trainable). To aV(;id

problems of overfitting and underfitting an adaptive hidden neuron algorithm for

determining the number of hidden neuron is required (see Figure 2.4). The adaptive
hidden neuron algorithm starts with three hidden neurons and adaptively increases the
number of hidden neurons until convergence is guaranteed. This approach avoids both
problems of overfitting and underfitting [9, 32, 85]. Note that the performance of the
adaptive hidden neuron algorithm depends on the new data. New set of data should be
independent of the training data. If the testing data is appeared to be excessively the same
as the training data, the performance of the DNN is successful; on the other hand, it is
disaster for the data that represents the rest of the population. Ability to accomplish the
error goal (sum-squared-error, SSE) is limited by the extent of the new data. The SSE is
computed by summing the squared differences between the actual output of the neural
network and the desired output value. This error is used in updating the neural network
weights using a backpropagation algorithm.

In reality, it might be difficult to collect that many new set of data to reach the
performance goal (sum-squared-error). Using sliding window technique (see Figure 2.1)
could create as many samples as possible for the training of deconvolution neural
networks. Finally, the number of hidden neurons is increased by one when the SSE does
not meet the appropriate criterion after every 5000 epochs (an epoch is defined as a single
sweep through all sample vectors). With the addition of one neuron to the neural
network, the weights for existing neurons are kept the same, and the weights to the new
hidden neuron from the input neurons and output neuron are initialized to small random

numbers. Then, the training process is repeated to estimate the weights of the neural

Deconvolved Output

x(1) x(i) x(M)

Measured Data

Figure 2.3 Canonic Form for the Deconvolution Neural
Network

3 Hidden Neurons

Merge Testing Set Train ;
" 5
Into Training Set]
1 YES
Test With YES Is Sum NO Epochs !
New Data Square Error Less Than ;
Acceptable? 50007 ;
NO ’
NO Add One Neuron }_i
Is Error YES

i
—1 Acceptable? —®
_/

Figure 2.4 Adaptive Hidden Neuron Algorithm for the Optimal Design of DNN

network. If the SSE criterion is met, the trained neural network is tested with a new set of
data which should be independent of the training set. If the testing SSE is met, then the
training is complete, otherwise, the testing set is merged into the training set and the

training is restarted. As a result, overfitting and underfitting are ruled out using adaptive

hidden neuron algorithm.

2.3 Results and Discussion

The main objective for using DNN is to detect target impulses using ultrasonic
measurements. The experimental data is obtained using 5 MHz broadband transducer
with a 50 MHz sampling rate for data acquisition. The total number of training vectors
are equal to 3615 with an array length of 39 points which is the same as the number of
input neurons (M = 39). The training matrix (see Equation (2.3)) consists of samples of
one, two and three echoes with and without noise. And the noise is created using a
uniform random number generator that generates numbers between 0 and 1. The optimal
number of hidden neurons is found to be 46 using the adaptive hidden neuron algorithm.

Signal-to-noise ratio (SNR) is defined as

ax(fz(m)) |

SNR = 20log (2.7)
L v(n)lJ

where z(n) is the multiple wavelets, and v(n) is the noise. The above definition of SNR is
appropriate in this research since our objective is finding the whereabouts of the echoes
by looking at the signal amplitudes. The SNR that was used in the training of
deconvolution neural network was between 8-16 dB. Table 2.1 summarizes these
training results for the DNN. Note that the total number of training vectors that was
applied to DNN for training was 3615 and they were applied 215535 times to estimate the
optimal number of hidden neurons and their weights in order to accomplish the SSE of

0.02.

27

Figure 2.5a presents an echo whose location is at 57 without noise. The output of
the deconvolution neural network is presented in Figure 2.5b. Detected echo is at
location 57. Figure 2.5c shows a testing result for one echo located at 57 with signal-to-
noise ratio 12 dB. Echo is detected at location 57 in Figure 2.5d. Figure 2.6a depicts two
interfering echoes located at 57 and 60 with signal-to-noise ratio (SNR) of 12 dB.
Detected echoes are at locations 57 and 60 in Figure 2.6b. Figure 2.6c presents the
testing result for three interfering echoes located at 57, 59 and 61 with signal-to-noise
ratio 12 dB. Echoes are detected at locations 57, 59 and 61 in F igure 2.6d. These results
demonstrate that deconvolution neural network (DNN) can be used as an echo detector
.when the backscattered signal has SNR of 12 dB. Note that for better testing results for
lower SNRs, the training SNR should be lowered than 8 dB.

The success of deconvolution neural network may be obscured if it is not known
how it works. In this chapter, Hinton Diagrar;ls are presented to explain the optimal
characteristics of the deconvolution neural network. The purpose of Hinton diagrams is
to display the weights of the deconvolution neural network. In the Hinton diagrams the
size of each square is proportional to the value of the weight. The plus, +, sign indicates
a positive magnitude weight, and no sign indicates a negative magnitude weight. Hinton
diagrams display the graphical distribution of weights suggesting that all hidden nodes
contribute to the decision. In other words, optimal design of deconvolution neural
network has been achieved. This implies that when an input signal is different from the

desired echo (e.g., noise) the output is close to zero, and when the input matches the

C)

50

(b)

100

0.6

0.4}

0.2}

50

100

28

(©)
3
2}
1}
0]
-1}
-2
0 50 100
(C))
0.4
0.2
0
-0.2
0 50 100

Figure 2.5 (a) One Echo is Located at Location 57 without Any Noise, (b) Output of
DNN, and Detected Echo is at Location 57, (c) One Echo is Located at Location 57

with SNR

= 12 dB, (d) Output of DNN, and Detected Echo is at Location 57

(@ (©
4 6 ,
4} ‘i
2r i 'z
! |
o] M
2} i
“o 50 100 “ 50 100
b (d)
® 0.8
06}
0.5}
0.4}
0 W 2 \
. ol / V\/\(\/\N ,
0 50 100 2 50 100

Figure 2.6 (a) Two Echoes are Located at Locations 57 and 60 with SNR = 12 dB, (b)
Output of DNN, and Detected Echoes are at Locations 57 and 60, (c) Three Echoes
are Located at Locations 57, 59. and 61 with SNR =[] dB, (d) Output of DNN, and
Detected Echoes are at Locations 37,59, and 61

29

Table 2.1 Training Results for DNN Using Experimental Data

DNN
Number of Sample Vectors 3615
Sum-Squared-Error 0.02
Number of Inputs 39
Number of Outputs 1
Number of Hidden Neurons 46
Epoch 215535
SNR 8-16 dB

desired echo, the output is an impulse function. Figure 2.7 depicts the Hinton diagram of
the deconvolution neural network. The first row shows the weights from the first hidden
neuron to the inputs, the second row depicts the weights from the second hidden neuron
to the inputs and so on. Note that the number of hidden neurons is equal to 46 in DNN.
The reason to have that many hidden neurons is that the adaptive hidden neuron
algorithm determined the number of hidden neurons as 46 to reach the training SSE of
0.02. Furthermore, some of these weights are close to zero (see Figure 2.7). This does
not necessarily mean that the input is unimportant. Several small weights for that input
can sum up to a significant effect. A small weight affects a hidden neuron only slightly.
But, if that hidden neuron has a big weight connecting to the output neuron, it has a big

influence on the output signal. Results obtained from experimental data indicate that the

DNN needs that many hidden neurons even some of them are smaller compared to the

rest of the weights in the hidden layer (see Figures 2.5 and 2.6).

2.4 Autoassociative Deconvolution Neural Network

This section introduces the autoassociative deconvolution neural network in order
to improv¢ signal-to-noise ratio (SNR) before applying the deconvolution neural network
to the noisy signal. The block diagram of the autoassociative deconvolution neural
network (ADNN) is depicted in Figure 2.8. The number of output neurons in the
autoassociative neural network is equal to that of input neurons which is 39 for our
research. The training matrix, X (see Equation (2.3)), has the samples of one, two and
three echoes with and without noise. After training of this neural network, if a testing
resembles one that is used in the training phase, the neural network generates an output
which is close to a training output. This means that if a testing input is identical to one of
the training patterns and is corrupted by noise, the network filters the noise and outputs
the desired echo [28, 41, 44, 49, 51]. Table 2.2 summarizes training results for the
autoassociative neural network. It should be noted that 3615 training data sets were
applied 33985 times to estimate the optimal number of hidden neurons which was 9 and

their weights in order to satisfy the SSE of 0.02. The training SNR for ANN was between

8-16 dB.

™!
(a8]

O : N e
* s s @0vw
*O@Fe 0
c@0us
c@HO®O
aB80m
e v
sl -Duoo
ewes 9000
D@+ 0D
LN -}
[NN N]
sfiUssesnw
[N AN
Dentioee
D@00 ¢ o
o@D
eB00cwoD
00 ee
Heos@e®
HEOeav e
BEHOOW . -
® 9000

Qs @ e 3 Qg e

as@ e -0 a

L]

e

[]

.

(]

Do
veooopD0o
s@QOe. 00
voeQde.000
@00+ ¢ .
cJHlrDe s e
veoBHowws
NOewwbew
Hoeweesovoe
O Rl BRI
Ge=sos00OGOY
eDWO--UDS®
seBO0ODeODOU S
Do @sovD
[ICIE ST R
e csvoenyw
OOHs + 9 e 0

+ ® o 80 &

- s @ =& s @

e o o o B 6@ * o s s @ o

s ® ® @ - 8 8 8 - ° e & ¢ o ® B @ S e S e ¢ s s O s @ s s

= e 8 s ® 9 + e B ® o & &

« ® @ ¢ o ® @ @ ® ° o s ® @ @ 6 e s e O & o = @

e 8 s s = @ e

« e o o o »

- e ® @ ® * ® ® s o @ °© s o s & & = s ° o @ 8 % o v &

e @ s e @ - s ® 8 6 ® & & W ® - e ® @ @ v s e e s * s s @

e e & 8 8 8 ¢ & s 8 s o 0 o @

« s e s 8 s @ & o =

c 8 @ ¢ o e @ v o s 8 s @

® o ® & & » ® & s & o 8 " s e =

¢ e o 8 o & e o mM @ v s =

s & e & o o

c e e @ o

c s ® s 4 & o = @

s 8 o o « »

-

e = o 8 e o + 8 o % 8 @ » ° & ® ¢ 8 o @ e - ® & = @

@ ¢ & 4 e 4 o 8 s 6 B ¢ o o o+ a o

Figure 2.7 Hinton Diagram for the Hidden Layer

Table 2.2 Training Results for ANN Using Experimental Data

ANN
Number of Sample Vectors 3615
Sum-squared-error 0.02
Number of Inputs 39
Number of Outputs 39

|93]

L)

Number of Hidden Neurons 9
Epoch 33985

SNR 8-16dB

We have evaluated the performance of ADNN using ultrasonic experimental data.
Figures 2.9a and 2.9b display two interfering echoes located at locations 57 and 61 with
signal-to-noise ratio 4 dB and the output of the deconvolution neural network
respectively. Detected echoes are at locations 54 and 61. Figure 2.9¢ displays the output
of ANN after the signal that is given in Figure 2.9a was applied to ANN. Figure 2.9d
depicts the output of DNN after the output of ANN is applied to DNN. Echoes are
correctly detected at locations 57 and 61. These experimental results demonstrate that
SNR enhancement improves the performance of the deconvolution neural network for

echo detection significantly.

A A AW I pr A

| FirstSet | Experimental Data
| Second Set |\ | LastSet |
x(n)
1 Y
L —OyOr
2 2
j ! |
L L,
Autoassociative
Neural Deconvolution
M Network M | Neural Network

Figure 2.8 Autoassociative Deconvolution Neural Network
2.5 Performance Evaluation of DNN

The performance of a deconvolution neural network has been evaluated using

simulated data set which is modeled as

u(n) = AcosRrf.(n—n,)+¢@)e =" (2.8)

35

(a) (c)

3 2
2 L
1
W
0 L
. 2
1o 50 100 0 50 100
(b) (d)
0.4 0.6
0.2 r k 0.4 I
0 '\/\M\Mw\[\w\f 0.2
0.2t 0
-0.
-0.4 5 50 100 20 50 100

Figure 2.9 (a) Two Echoes are Located at Locations 57 and 61 with SNR = 4 dB, (b)
Output of DNN, and Detected Echoes are at Locations 54 and 61, (c) Output of ANN,
(d) Output of DNN is Shown after the Output of ANN is Applied to DNN (SNR
improvement), and Detected Echoes are at Locations 57 and 61

36

where u(n) is the simulated detection wavelet (see Figure 2.2), A is the amplitude (= 0.47
units), f. is the center frequency (= 4.8 MHz), n, is the delay (= 0.36 sec), ¢ is the phase
(= 82°), and « is the bandwidth factor (= 25.3). This model represents a back-scattered
echo corresponding to the properties of the materials. The goal of this investigation is to
measure the performance of the deconvolution neural network when the above parameters
are changed. Received signal in this case is composed of two terms (see Figure 2.2), and

then the Equation (2.1) is rewritten as

r(n)=z(n)+ v(n),
2(n) = u(n) * 2.a,6(n-n,),

r(n) = AcosRnrf.(n—n,)+ ¢)e"""‘"°’z * Zaié'(n-n,)+ v(n) 2.9

where v(n) is the noise.

Figure 2.10a shows a simulated testing echo located at location 57 (a = 25.3, f, =
4.8 MHz, ¢ = 82°,n, = 0.36 secs, A = 0.47 units). The result is an impulse at location
57 in Figure 2.10b. Figures 2.10c and 2.10e depict the testing results when the phase of
the simulated echo is changed only (¢ = 114° and 172° respectively). Echoes are detected
at locations 56 and 55 in Figures 2.10d and 2.10f respectively. Equation (2.8) can be
rewritten as

u(n) = Acos(2zf,(n—n,))e """ cosg - AsinRrf.(n—n,))e """ sing (2.10)

37

The effect of the second term in Equation (2.10) is observed in the output of
deconvolution neural network as a second impulse which has a negative amplitude in
Figures 2.10d and 2.10f. Figure 2.11 shows the performance of the deconvolution neural
network when the center frequency of the simulated echo is changed only. In Figure
2.11a the simulated echo is located at location 57 and has a center frequency of 4 MHz.
Echo is detected at location 59 in Figure 2.11b. Figure 2.11c has a simulated echo
located at location 57 and has a center frequency of 3 MHz. Echo is detected at location
59 in Figure 2.11d. One can notice that the performance of the deconvolution neural
network deteriorates as the frequency of the simulated echo changes. To overcome that
problem, one should train the deconvolution neural network with the samples from these
frequencies. Next section displays the results when Wiener filter deconvolution is
applied to the ultrasound signals. Then, the results of Wiener filter were compared with

the results of DNN.

2.6 Comparison of DNN with Wiener Filter Deconvolution

Experimental results reveal that the DNN is an effective technique for
deconvolving closely located multiple ultrasound target echoes in noisy environments. In
this section, DNN is compared with Wiener filter deconvolution which has been widely
used in signal and image processing systems [36, 55]. This deconvolution filter gives the
best linear mean square estimate of the target impulse response function from the
observations. In this study, we evaluated the performance of Wiener filter deconvolution

for detection of ultrasound echoes in presence of noise.

(@ (c) (e)

3 3 2
2 !
2 1
1 13 r
0 0 0
-1 -1 ‘1
-2 2 2
-30 -3 3
50 100 0 S0 100 0 50 100
(b) (d)
0.6 0 o ®
04 0.2 0.4

02| O_MJ 02/
] o T

S0 100 0 S0 100 "0 G4 100

Figure 2.10 (a) Echo is Located at Location 57 with « = 25.3, f. = 4.8 MHz, ¢=82%n,=
0.36 secs, A = 0.47 units, (b) Output of DNN, and Detected Echo is at Location 57, (c)
Echo is Located at Location 57 with & = 25.3, f. = 4.801 MHz, ¢ = 114°, n, = 0.36
secs, A = 0.47 units, (d) Output of DNN, and Detected Echo is at Location 56, (e)
Echo is Located at Location 57 with @ = 25.3, f. = 4.801 MHz, ¢ = 172°, n, = 0.36
secs, A = 0.47 units, (f) Output of DNN, and Detected Echo is at Location 55

@)

0 50 100

(b)

0.6 _I

0.4

0.2

0 50 100

Figure 2.11 (a) Echo is Located at Location 57 with o =253, f,
0.36 secs, A = 0.47 units, (b) Output of DNN, and Detected Ec
Echo is Located at Location 57 with o = 25 3, f
0.47 units, (d) Output of DNN, and Detected Ec

(c)

100

50

100

=4 MHz, ¢ = 82° n, =

ho is at Location 59, (c)

=3 MHz, ¢ =82° n, = 0.36 secs, A =
ho is at Location 59

40

Deconvolution based on the Wiener filter requires knowledge of the
characteristics of the noise process in terms of its spectral density. The measured echoes,
r(n), can be explained in terms of the discrete process z(n), and the noise v(n) as: r(n) =
z(n) + v(n), where z(n) = u(n) * y(n), u(n) is the detection wavelet and y(n) is the target

impulse response function (see Figure 2.12).

Detection Wavelet v(n), Noise
u(n) y(n) z(n r(n) -
Target Impulse + Measured Echoes
Response

Figure 2.12 Block Diagram for Target Echo Detection

The estimation of z(n), z(n), is subject to error as follows,

£= D (m)—=(m)’ 2.11)

n=—w

Equation (2.11) can be minimized by applying an optimal linear operation, h(n), (i.e.

Wiener filter) on the r(n). This means that the output of the h(n) is the estimator of z(n)

2(m) = r(m)* h(n) 2.12)

41

We assume that the noise, v(n), and the desired discrete process, z(n), are uncorrelated
(i.e., they are also orthogonal since their mean is zero). Hence, the optimum H(z) (i.e..

H(z) is the Z transform of h(n)) can be obtained by solving [55] the following equation

S=(2)
H(z)=—=—— 2.13
@ S_(z)+S,,(2) 2.13)

where S(z) and S,.(z) are the power spectral density functions of the discrete process,

z(n) and the noise, v(n), respectively. This filter is called the Wiener filter. Then the

“optimal target impulse response, ;(n) , in terms of the Wiener filter is given as

» R 8.)
"D=ve\s@+s..@ @19

The Wiener filter has a desirable behavior. When there is no noise in the environment.

H(z) becomes one and the target impulse response is the ratio of %% On the other hand,

poor signal-to-noise ratio makes the H(z) approach zero and results in reducing the value
of the optimal estimate of the target impulse response.

Figure 2.13a shows one target echo that is applied to the Wiener filter and Figure
2.13b displays the optimal target impulse response. One target echo is deconvolved at
location 57 in case of no noise. In case of noise (SNR = 12 dB), single target echo (see

Figure 2.13c) is applied to the Wiener filter and the detected echo is at location 57 which

42

is shown in Figure 2.13d. Two target echoes which are located at locations 57 and 60
(SNR = 12 dB) are applied to the Wiener filter (see Figure 2.14a). And the result is
depicted in Figure 2.14b and two echoes are detected at locations 58 and 61. Figure 2.14¢
shows three target echoes which are located at locations 57, 59, and 61 (SNR = 11 dB).
The result is depicted in Figure 2.14d. One echo is clearly detected at location 58,
however it is hard to observe the other two echoes in Figure 2.14d. Figures 2.5 and 2.6
depict the results of DNN for the same echoes. By looking at Figure 2.14, Wiener filter is
failed at deconvolving closely located multiple target echoes in presence of noise. On the
other hand, DNN is quite successful in detecting the same multiple target echoes. One
can conclude that DNN technique is superior to Wiener filter deconvolution by

comparing Figures 2.6 and 2.14.

2.7 Conclusion

Two novel design procedures have been developed in this chapter. DNN is the
first method that deconvolves multiple interfering target echoes in noisy environments.
ADNN is the second method that enhances the signal-to-noise ratio, and then applies the
DNN. Results obtained from testing the DNNs and ADNNSs are encouraging and
potentially useful for nondestructive testing and quality control. These neural network
models have the capability of solving deconvolution problems successfully and do not

need any information about the type of transmission channel. After the training phase of

(a) (c)

3 3
2
2 L
1 L
1 L
0
1t 0]
21 -1t
-3 . 2
0 50 100 0 50 100
(b) @
1 0.4)
0.5} 0.2
0
0
0 50 100 02 50 100

Figure 2.13 (a) One Echo is Located at Location 57 without Any Noise, (b) Output of
Wiener filter, and Echo is Detected at Location 57 (¢) One Echo is Located at Location
57 with SNR = 12 dB, (d) Output of Wiener filter, and Echo is Detected at Location 57

(a) ()

4 6
2t 4t
2; {
0]
0 "\
-2F
-2t
4
0 50 100 -40 50 100
(b)
0.4 0.6 (d
0.2} 0.4¢}]
0.2;
% ‘/\ | M\n P
q\ 0 ‘/*,’ v f AA/M
-0.2¢ w
-0.2}
0.4 -
0 50 100 0'40 50 100

Figure 2.14 (a) Two Echoes are Located at Locations 57 and 60 (SNR = 12 dB), (b)
Output of Wiener filter, and Echoes are Detected at Locations 58 and 61, (c) Three
Echoes are Located at Locations 57, 59 and 61 with SNR = 11 dB, (d) Output of
Wiener filter and Only One Echo is Detected at Location 58

45

these neural networks, the testing is a real-time processing which is desirable for
ultrasonic imaging systems.

The key issue in the design of the neural networks is to use the adaptive hidden
neuron algorithm. This algorithm is promising for determining the optimum number of
hidden neurons. Problems of overfitting and underfitting can be avoided by including the
adaptive hidden neuron algorithm in the design procedures. Experimental resuits show
that the adaptive hidden neuron algorithm can be used efficiently with the
backpropagation learning algorithm.

We employ Hinton Diagrams to explain how these neural networks work. Hinton
diagrams display the graphical distribution of weights suggesting that all hidden nodes
contribute to the decision. Experimental results and Hinton diagrams show that the
optimal designs of DNN and ADNN have been achieved.

Testing results which were created using simulated echoes depict that changes in
phase and frequency lessen the performance of the DNNs. To overcome that problem,
DNNs should be trained with the samples of these echoes. Sometimes, finding that many
samples could be a problem. Using sliding window technique could create as many
samples as possible for the training process.

DNN has been compared with the Wiener filter deconvolution. Wiener filter has
been widely used for detection in presence of noise. Experimental results reveal that the
DNN does a superior job in deconvolving the multiple target echoes in grain scattering

noise than that of Wiener filter deconvolution. Finally, we can say that DNNs and

46

ADNNSs can be utilized effectively in the detection process of target echoes which are

interfered with each other in the presence of measurement noise.

47

CHAPTER 111

PROBABILISTIC DECONVOLUTION NEURAL NETWORK

In this chapter, probabilistic deconvolution neural network (PDNN) has been
developed as a third method to solve the deconvolution problem. The advantage of
utilizing PDNN is that the complexity and the total number of weights are less compared
to those of DNN (see Chapter 2), while the performance of PDNN is the same as that of
DNN. The PDNN consists of two processing stages. The first stage estimates Gram-
Charlier coefficients [40] corresponding to target echoes and scattering noise. Then, in
the second processing block, these parameters are applied to resolve multiple echoes.
Results obtained in testing the PDNN show that multiple interfering echoes can be

detected accurately in the presence of noise.

3.1 Introduction

The performance of PDNN is limited by the presence of microstructure noise [21,
61, 63, 64, 66, 82, 83]. Although the input signal (see Figure 3.1) to PDNN contains
information related to flaw structure, this information is often masked by unwanted

echoes caused by microstructure scattering. Let’s represent this input signal as an m-

component multivariate random vector X = [x(1),x(2),...,x(m)] (m is 39 in our research
which represents the length of the target echo). Then, there are two classes from which

our input signal is drawn. These classes can be defined as

48

H, = noise,
H, = target echoes + noise.

N AAVIVAN VIV

| _FirstSet | Experimental Data
| SecondSet | | Last Set |
Input Signal
x(n) 1

2 Gram-Charlier c3
Estimation of Ca

3 pdf Cs —
Coefficients Ce _

39 | (c3,ca,cs5, co) PDNN |

Figure 3.1 Probabilistic Deconvolution Neural Network

The prior probability of an unknown sample being drawn from class k is hy (k = 0, 1).
The cost making a wrong decision for the class k is vi. Note that in many ultrasound
signal processing problems, the prior probabilities, hi, and the cost probabilities, vy, are

taken as being equal, and hence can be ignored. The training matrix consists of n,

49

samples known to be from class Hy, and n, samples known to be from class H;. The

problem is to find a neural network structure for determining the class from which an
unknown signal is taken. If we know the probability density functions e (X) for all

classes, the Bayes optimal decision rule [63, 64, 67, 82, 83] is to classify X into class /

if
v, f1(X) >h,v,f,(j’) (3.1

where j=/

A major problem with Equation (3.1) is that the probability density functions of
the classes are unknown. We use Gram-Charlier series expansion to estimate these
unknown probability density functions. In this case the training matrix has the Gram-
Charlier coefficients (see Figure 3.1). Our objective in this chapter is using these
coefficients for classification. If the neural network has been previously configured and
trained on known Gram-Charlier coefficients, then to determine the class of the unknown
signal, we need only to feed its Gram-Charlier coefficients. Since Gram-Charlier
coefficients are used as an input to PDNN, PDNN is also named the parametric neural
network [6, 14, 47, 57, 69]. The advantage of using a parametric neural network is that
the number of weights in PDNN are less and the structure of PDNN is simplified

compared to DNN (see Chapter 2). Next section introduces the Gram-Charlier series

30

expansion using basis functions in order to approximate the probability density functions

of the unknown classes, Hy (k =0, 1).

3.2 Gram-Charlier Series

The Gram-Charlier series expansion of the probability density function of a

random variable with mean p and variance o’ can be represented as

1 < nf x—
P = L Seon(224], (32)
o o

1=0

where ®(x) is a Gaussian probability density function and ®P(x) represents the i-th
derivative of ®(x). For normalized data where (=0, &= 1, co= 1), the above equation

can be simplified to
px) = (dx) + c3¢(3)(x) + c4d>(4)(x) + csd)(s)(x) + c6¢"6)(x) +)’ (3.3)

where ¢; coefficients are related to the central moments of p(x). In a sense, derivatives of
the Gaussian function in Equation (3.3) provide us the different frequency information of
the input signal (see Figure 3.1). Some derivatives of the Gaﬁssian function are
presented in Figure 3.2. Furthermore c;®"’s are orthogonal functions presenting unique

information about the target and noise distribution. This leads us to conclude that PDNN

51

0.4 L] 'Y 1] 4 T
30_2- / \ i
0 il 1 1 3
050 : 190 290 390 49 590 800
0.5 1 1 Ny 2 1 l
050 190 290 390 490 590 600
05 ' : : '
10 190 200 390 400 500 600
13 3 T i
o — .
-1 I : L ! [
20 190 290 390 490 590 600
2 1 ' Il : 1
5? 190 290 390 490 590 600
-5' ’ 1 1 * *
100 190 290 390 490 SQO 600
s o
= 10' 1 : L L 1 I
0 100 200 300 400 500 600

Figure 3.2 (a) Gaussian Function, (b) First Derivative of a Gaussian Function, (¢) Second
Derivative of a Gaussian Function, (d) Third Derivative of a Gaussian Function, (e)
Fourth Derivative of a Gaussian Function, (f) Fifth Derivative of a Gaussian Function,
(g) Sixth Derivative of a Gaussian Function

based on decomposition of pdf by Gram-Charlier series is well suited for ultrasonic flaw

detection. To derive the c;‘s, let’s define the B(x) as

B(x)= N (3.4)

and consider the successive derivatives of B(x) with respect to x. We have

dp (x)

& = _xlB (X),
d2
2= -5
d’B(x) ;)
T - (Bx-x")p(x), (3.5)

and so on. The result is a polynomial in x multiplied by B(x). Then we introduce the
polynomial A(x) which is called Tchebycheff-Hermite polynomial [40]. This polynomial

is defined as

_yr B

(= @B (x). (3.6)

From Equation (3.6), Ag(x) = 1. Let’s change the argument in Equation (3.4), we have a

new equation as

W
LI

1 (lxz+tx-ll) —lrz)
xX—t)= = 2 ’ 3'7
B(x—1) i B (x)e’ (3.7)
and by Taylor’s theorem we could write the Equation (3.7) as
= l) ,d (x) w4 -
pla-n=3 " 200 _$L = 4,(x) B (x). (3.8)
=0 ! =0 ¢
It follows that
(2) 2, A L
A(x)=x' —ﬁx 222!x 3331 +-- (3.9)
i !
where ¥} = (k) =G d Y The Hermite polynomial is used as basis functions to
approximate the unknown density function in Gram-Charlier series expansion.
The first 6 polynomials are
A4, =1, 4, =x,
Ay =x*-1,4,=x*-3x,
A, =x*-6x*+3, 4, = x° —10x* +15x,
Ag = x® —15x* +45x* -15. (3.10)

54
The Hermite polynomials are orthogonal to each other with respect to the kernel, B(x).

Next section first proves this orthogonal property and then derives the coefficients, c, in

terms of central moments of p(x).

3.3 Orthogonal Property of Hermite Polynomials

Hermite polynomials have an important orthogonal property that is defined as

Oom#=n

nlm=n 3.11)

TA,,, (x)4,(x) B (x)dx = {

To prove the orthogonal property of polynomials given in Equation (3.11), one can

integrate by parts and using Equation (3.6), (n=m)

T4, 4,8y = <1y Ja, LR 4,

i dn-l o dAm dn-l ()
ZA,,,A,,,B(x)dx:(—l) [Am#] +(=1) ':fdx dx’f_,x dx, (.12)

-0

where the term in brackets goes to zero. For the last term in Equation (3.12), let’s use the

equation given below

(V]
W

i it

By the help of Equation (3.13), the last integration in Equation (3.12) becomes

n-1
m(—1)""' TA,,,_, %aﬁr, (3.14)

If we continue taking integral by parts, we find either zeroorm ! if m = n.
Suppose now that a probability density function can be written as a series of

derivatives of B(x). (Later on, conditions under which such an expansion is valid are

given.) Then, we have

p(x) = Zoc, A,(x) B (x). (3.15)

Multiplying by A«(x) and integrating from - to o and using the relationship given in

Equation (3.11), namely orthogonal property, we get

56

1]‘ -
c, = P(x)A, (x)dx. (3.16)
Because of the orthogonal property, Gram-Charlier coefficients are independent, not
correlated with each other, and represent the statistical differences between noise and
backscattered echoes. As a result, Gram-Charlier coefficients are used for the problem of

classification. Substituting the value of A(x) given in Equation (3.9) into Equation

(3.16), we find

1 el el
c =;—! Ar—ﬁl\r_z-l-—zz.z!/\,_‘,—"' . 3.17)
In particular, for moments,

1
c=lLe=A,c =5(A2—1),

1 1
g A5 e =5 (A —6A,43),

c;, = 6
1
Cs =Y2—0(A5_10A3)’
1
Cs =ﬁ(As —15A, +45A, -15). (3.18)

As a result, we find the expansion for the probability density function

]

1 1 1
plx) = ,B(x){lﬁug(/\2 -4, +g/\3A3 +2—4(A4 —6A, +3)4, +j (3.19)

If the p(x) is in standard measure which means that its variance is unity and its mean is

equal to zero, the series become

1 1
p(x)=p (X){1+gA3A3 54 (Aa—3)4, +} (3.20)

1 n
m, =~ 2 [x@]",

=]
- 3
Ay =m;—3mym, +2m,°,
- 2 4
Ay =my—4mym, + 6m,m,* —3m*,

A5 =ms—5mm, +10m,m? - 10m,m* +4m,°

A = mg —6mgm, +15m,m?* — 20m,m> +15m,m,* —5m® . (3.21)

Equation (3.20) is the so-called Gram-Charlier series [40]. In this chapter it has assumed
that the probability density function possesses a convergent Gram-Charlier series. Next
section introduces the Cramer theorem to give out the conditions under which Gram-

Charlier series is convergent.

3.4 Convergence of Gram-Charlier Series

Cramer [40] stated that if p(x) is a function which has continuous derivative such

that

2 1,
](ip‘;—x)) e ? dx, (3.22)

the integral in Equation (3.22) converges and p(x) tends to zero as | x| tends to infinity,
then p(x) may be developed in series given in Equation (3.15) and ¢,’s are calculated
using the integral given in Equation (3.16). These coefficients are used as an input to

PDNN to detect the target echoes. The design technique is introduced in the next section.

3.5 Probabilistic Deconvolution Neural Networks

The block diagram for PDNN is shown in Figure 3.1. Note that the length of the
target echo, n, is 39 points. Training of PDNN is achieved using a sliding window from
two classes of signals (see Chapter 2 for a sliding window technique). One class
represents the noise and the other one represents the target plus noise. The coefficients c;
fori > 6 are small compared to other ¢; fori < 6. Therefore, the coefficients c;, Cs, Cs,
and c¢ are used as features for classification using neural networks trained by a
backpropagation algorithm. The output of the neural network is 1 representing target plus
noise or 0 representing noise only. In neural network design, a key issue is determining

the number of hidden neurons. Adaptive hidden neuron algorithm was utilized in the

th

9

decision of selecting the optimal number of hidden neurons which was 58 for PDNN (see
Chapter 2 for more information about adaptive hidden neuron algorithm). Training
results for PDNN are illustrated in Table 3.1. It should be noted that a total of 3615
training sets was applied to PDNN 275100 times to reach a sum-squared-error of 0.02.
For adequate training, training set consisted of samples from one, two and three echoes
with and without noise. Training SNR was between 8-16 dB. Some testing results along
with the figures are presented in the next section. Furthermore, Hinton diagrams are

introduced to explain how PDNN operates.

Table 3.1 Training Resulits for PDNN

PDNN
Number of Sample Vectors 3615
Sum-Squared-Error 0.02
Number of Inputs 4
Number of OQutputs 1
Number of Hidden Neurons 58
Epoch 275100
SNR 8-16dB

3.6 Testing Results of PDNN
The performance of PDNN is evaluated using simulated data. F igure 3.3a depicts

a testing result for one echo located at location 97. (SNR = 3 dB). Detected echo is at

60

location 97 in Figure 3.3b. Figure 3.3c shows two interfering echoes located at locations
97 and 99 with signal-to-noise ratio 8 dB. Echoes are detected at locations 97 and 99 in
Figure 3.3d. Figure 3.4a presents two echoes which are located at locations 97 and 100
with SNR of 8 dB. Echoes are detected at locations 97 and 100 in Figure 3.4b. Figure
3.4c shows three echoes located at locations 97, 99 and 101. SNR is 8 dB. Echoes are
detected at locations 97, 99 and 101 in Figure 3.4d. Results show that PDNN is able to
correctly detect the multiple interfering echoes in noisy environments (SNR = 3 dB).
This performance is accomplished with a total number of 290 weights, however DNN has
1840 weights in its structure to reach the same performance. Using Gram-Charlier
coefficients lessens the number of weights tremendously. Figure 3.5 depicts the Hinton
diagram of PDNN. Note that the number of hidden neurons is 58 which was acquired by
adaptive hidden neuron algorithm. Results obtained testing PDNN (see Figures 3.3 and

3.4) prove that the optimal design of PDNN has been accomplished.

3.7 Conclusion

In Chapter 2, deconvolution neural networks are utilized to detect multiple flaw
echoes in noisy environments (SNR = 8 dB). For lower SNRs, the ANN has been
developed to remove the noise from the input signal. And, then the improved signal is
applied to DNN for better detection (SNR = 4 dB). The purpose of Chapter 3 is to
introduce a single neural network model that achieves the same performance as that of
DNN and ANN with less number of weights. The PDNN has been developed utilizing

the Gram-Charlier coefficients of flaw and scattering noise. Employing Gram-Charlier

61

(a) (c)
6 S5
O s
4 -5
0 50 100 150 0 50 100 150
(b) (d)
1 1.5
0.5+ 1+]
0 ‘AML 0.5}]
'0.5 8 0 ‘FFJW\M r\—\/-v-——v‘\u
-1 -0.5
0 50 100 150 0 50 100 150

Figure 3.3 (a) One Echo is at Location 97 with SNR =3 dB, (b) Output of PDNN, and
Detected Echo is at Location 97, (c) Two Echoes are at Locations 97 and 99 with SNR
=8 dB, (d) Output of PDNN, and Detected Echoes are at Locations 97 and 99

62

(a) (©

0 S0 100 150 0 S0 100 150

(b) (d)

0 S0 100 150 0 S0 100 150

Figure 3.4 (a) Two Echoes are at Locations 97, 100 with SNR = 8 dB, (b) Output of
PDNN, Detected Echoes are at Locations 97 and 100, (c) Three Echoes are at
Locations 97, 99, and 101 with SNR = 8 dB, (d) Output of PDNN, Detected Echoes
are at Locations 97, 99 and 101

3

-Umtalﬂc .
-acccaoﬂaeuc UGIBD 0:]

Figure 3.5 Hinton Diagram of PDNN

64

coefficients in the design of PDNN offer practical advantages such as the total number of
input neurons becomes 4 instead of 39 which is the length of the target echo. One can
still use the same neural network model even if the length of the echo is different than 39.
Results show that the PDNN is trainable and adaptable for any size of flaws and
deconvolves them successfully in noisy environments.

Utilizing adaptive hidden neuron algorithm with backpropagation learning
algorithm in the training phase of PDNN searches for the optimal number of hidden
neurons in the hidden layer. This searching algorithm avoids overfitting and underfitting
problems and helps the PDNN to escape from local minimums and reach the global

Hinton diagrams have been examined to find out if PDNN has the optimal
weights or not. Examination of these figures and experimental results reveal that PDNN

can be employed effectively for the problems of ultrasonic imaging systems.

CHAPTERIV

ORDER STATISTIC FILTERS

This chapter presents another technique that utilizes the split-spectrum processing
in order to detect target echoes in noisy environments. We developed neural network
filters to substitute the conventional filters that are used in the split-spectrum processing.
These filters are called minimum neural network order statistic filter (MinNNet),
maximum neural network order statistic filter (MaxNNet), and median neural network
order statistic filter (MedNNet) which find minimum, maximum, and median rank of the
input signal respectively. The purpose of this chapter is to evaluate the robustness of
these neural networks using simulation and experimental data. Results obtained in the
performance analysis of these filters indicate that neural network order statistic filters can
be efficiently utilized in split-spectrum processing to detect flaw echoes in grain

scattering noise.

4.1 Introduction

Order statistic filtering has been widely used in the field of signal and image
processing [46, 62, 63, 64, 82, 87]. The main idea behind an order statistic filter is that
finding the m-th largest element in an input signal. Different values for m result in
various members of order statistic filters [82]. Some of the members, such as minimum,
median, and maximum filters, have been used extensively in signal and image processing.

In this chapter, three novel neural network models are introduced to find

minimum, median, and maximum of the input signal. To solve the sorting problem by

66

using neural networks, backpropagation learning algorithm (see Chapter 1) and adaptive
hidden neuron algorithm (see Chapter 2) are utilized in the construction of the neural
network filters. Our primary concern lies in the preparation of the training matrix that is
used in the training phase [5, 20, 24]. If the length of the input data is n, there are n!
different signal patterns of the input data that gives the same output. It is difficult to
train a neural network filter with that many input data. As a result, the neural network
filter might not provide 100 % accurate results. In spite of this drawback, neural network
filters provide good approximation other than exact values for the sorted result and
perhaps from statistical point of view, this might be sufficient for the problem of sorting.
In certain application, it is desirable to develop a novel neural network model of high
processing speed which can be used in finding the estimates of minimum, median, and
maximum of the input signal. To achieve this, simulation data is used in the training
phase. The training set of data consists of uniform random numbers as an input to the
neural network. The output is minimum, median or maximum rank of input numbers.
After the training phase, the neural network filter weights are used to derive the
probability density function (pdf) of the output. This provides us some analytical point
of view why neural network filters are able to find good estimates of ranks. In addition to
pdf method, Hinton diagrams are also utilized to examine the optimality of neural
network weights [15, 21, 49].

The remainder of this chapter is arranged as follows: Section 4.2 introduces the
pdf of the order statistic filters. Section 4.3 derives the probability density function for

neural network filters. Section 4.4 presents the design technique for the neural network

67

filter, and explains how a neural network filter operates using probability density
functions of the hidden layer neurons and Hinton diagrams. Section 4.5 presents the
performance evaluation of the neural networks and the testing results. Section 4.6 utilizes
the neural network filters in split spectrum processing (SSP) to detect the target echoes in

noisy environments.

4.2 The PDF of Order Statistic Filters

The order statistic filter accepts an array of n real numbers as an input and outputs
the m-th rank of these numbers. The m-th rank is equal to one of the n real numbers that
is less than or equal to n-m real numbers and greater than or equal to m-1 values. The

order statistic (OS) filter can be defined as

x(In)=OSmpul(x19xzs'"ax,.), for I1<m<n 4.1)

where x; (1= 1,....,n) is the unordered real number in the array, n is the total number of
real numbers in that array, and m is the rank of the ordered array of real numbers that
becomes the output, Xm), of the order statistic filter. The values for m and n could be any
number, but in our design of neural network order statistic filters, n is 40, m is 1, 20 and
40 for MinNNet, MedNNet, and MaxNNet respectively. The output of these neural
networks are the estimates of their respective ranks. These outputs are not the exact
values of one of the neural network input values (see Equation (4.1)). However, from the

statistical point of view, these estimates might be successfully used instead of the actual

68

values of the ranks. In areas where the target can be differentiated from the noise
statistically, the neural network filters might give superb responses, and their
approximations of the desired values as well as the speed of their responses might detect
the target accurately in highly noisy environments.

Order statistic filters have been used extensively in both image and signal
processing, such as they are used for noise power estimation of sonar signals for rejection
of bad data (outliers) [87]. They also have been utilized in processing image [46], radar,
speech [55], and ultrasound signals because of their noise suppression and feature
preservation properties.

Order statistic filters involve finding the relationship between the input and the
output of statistical behavior of the data. This is particular interest in the ultrasonic defect
echoes in high level of scattering noise [64]. Let’s assume x;‘s are independent and
identically distributed (i.i.d.) with the probability distribution function Fx(e), and the
probability density function fx(e). The distribution function for the output of the OS filter

is given by [64]

!
FX(., (x(m)) = (m - l):l(.n — m)! FX""I (x(m))(l - E\’ (x(m)))""" fX (x(m))dx(m) (4'2)

for 1 <m < n, where x(m) represents a real number from the ordered array, and X is the
random variable for the unordered input of the order statistic filter, and Xy, is the random

variable for the ordered array. The density function can be found by taking the derivative

69

of Equation (4.2)

n!
S ¥ Fm) = (m-D(n—m)

L iy YA = F Gy D™ S (i) (4.3)

for] <m <n. Equation (4.3) describes the statistics of the output of a general OS filter
when the density function of the input signal is i.i.d. This equation demonstrates that the
input density function, fx(e), is weighted by another function that is known as sort

function [64] and it is given by

n!

(m—1)!(n—m)!

8im (2) = " (1=-2)"" 4.4)

for 0 <z <1, where
z2=Fy(X(m)) 4.5)

The expected value for the output of the order statistic filter is

1
E{x)= IF g, () (4.6)

X

The function, gm)(®), acts as a weighting function to emphasize a particular region of the

70

inverse distribution function over the integration as given in Equation (4.6). Figure 4.1
shows the normalized sort functions for the minimum, the median and the maximum
order statistic filters. This figure presents that the order statistic filtering operation filters
out the signal samples outside the region marked by the filter, while it favors the ones that
fall into the region. This is beneficial when there are some statistical differences between
target and noise classes which can be acquired by neural network filters. Next section

deals with deriving the pdf for a neural network filter.

4.3 The PDF of Neural Network Order Statistic Filters

Once the weights of the neural network order statistic filters are known, it is
helpful deriving the pdf of them. Using these pdf’s, one can decide if the ideal design of
a neural network filter has been found or not. The remainder of this section mainly
concerns of finding the pdf’s of the neural network order statistic filters. From Figure

4.2, one can write N equations as follows assuming there are N hidden neurons in the

hidden layer
= tanh(w,,” 4 - g
Y = WX +w, x4+ 4w, x,,)
h h h
Yy = tanh(w,,"x; + wy, " x, + - +w,,,"x,,)

h h h
Yy, =tanh(w,"x, + w,"x, + - +w,, X))

Y =tanh(wy"x, + w,,"x, +-+w,,,"x,,) “4.7)

71

; (a)

T T T !

|

0.5F _{
0 L L L 1 L 1 v’

(b)

0.5
0 . : : i
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(o]

1 T T T (I) T T

05" J
O 1 L 1 ! 1 L !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 4.1 (a) The normalized sort function for Minimum OS Filter, (b) The normalized
sort function for Median OS F ilter, (c) The normalized sort function for Maximum OS

Filter

where i = 1, ..., N. To find the pdf of y,;, which is one function of M random variables.

we introduce auxiliary variables yj, ys, ..., ym-1 which are defined below

h h h
yu =tanh(w,"x, + wy, Xy+edwy,, " X,,)

Y =%
Y, =X,
Y1 =Xy (4.8)

After finding the pdf of y;;, the pdf’s for the rest of the hidden neurons are similar to that
of y11. Above equations are to find pdf of y;; and similar procedures are used to find the

pdf of ya, ..., ¥i1, - YNI-

Input Layer Hidden Layer

X1 N\ Wuh N\ Yu
. a

Y21

Figure 4.2 The Input and Hidden Layers of the
Neural Network Filter

The Jacobian transformation (4.8) is given as follows

2y, 2y,
o x, g Xy
J(xp,x5,00,%,,) = :
l v 2y, 2y,
o x, d Xy
l 0
Iy, A 2y
J=| 0 0 |= =w,, (I-y,") 49
Iy, Iy, 23" M !
ox, Oxy

then the joint density function of (4.8) can be found as

fx(xnxz"":xM)_f.v(xl’xz,'”’xu) (4.10)

lJ(x,,xz,---,xM)l - ,ww"(l—ynz)

f}'l,}',.-.}f,,,, (Vus Va2 Yao) =

Since x;’s are assumed to be i.i.d., their joint density function can be written as

S (X250, = f,\', (x,)fxz (x,)"’fxu (xu) (4.11)

then, the probability density function of y;; can be found by integrating the joint density

function that is given in (4.10)

0 () f, (o Fr, (5a0)
fyn(yll)=.[["'"ffl xlzvf"lh(xl-—y 2;' l dxldxz'--dxM_l (412)
M 11

74

which can be numerically calculated.

Then, the pdf of yi; (i=1, ..., N) results in

1) S, (Xu
S, Va) = .”I J‘fXI = |v{th((J:2—)y j:;lu S)dxldxz"'dxu-l (4.13)

After finding the pdf’s for the hidden layer output neurons, we can proceed to the output
neuron to find the pdf of the neural network filter, and the output of the neural network

filter is presented as (see Figure 4.3).

Output Layer
yu
Wi
Y2
y
N
Figure 4.3 The Output Layer of the Neural
Network Filter
Y=Ew 'y, +w yy e w vy
y=uy Uty 4.14)

Then, the pdf of uy, is formed as

1 uy,
fU,,(uu)= - fy,,(a) “4.15)
,W“ wll
Then, the pdf for uy; is represented as
1 u,
Jo,) =175 11, (=) (4.16)
IW“ wll

wherei=1,..,N

Assuming u;;’s are independent random variables, the pdf of the neural network

filter is presented as

() =fu“(un)*fulz(ulz)"“"*fuw(uw) 4.17)

where * represents the convolution operation. Equation (4.17) which depicts the formula
for the pdf of neural network filter is not as simple as the pdf of an order statistic filter
that is presented in Equation (4.3) due to the non-linearity property of the hyperbolic
tangent transfer function. One can try an alternative approach to find a simple expression
for the pdf of a neural network filter to prove that the ideal structure of a neural network

filter has been found. Using Figure 4.4, one can write N equations as below

76

h h A
Iy =W X R W, XWX,

h A A
21y T Wy Xy + Wy Xyt tW,,, X,

h h h
Z, =W, X +W‘—2 x2+--—+w,M Xas

Zy = w,\,,"xI +w~2"x2+~-+w,w"xu 4.18)

where x;’s are i.i.d. uniform random variables and using the central limit theorem results

in the probability density function of the hidden neuron output as

1 Y z=n)
fz,,(z.x)Equ—”eE{ & J (4.19)

where the mean n; is given as

X1 Wil

XM Hyperbolic Tangent Transfer Function

Figure 4.4 One Hidden Neuron with its Hyperbolic Tangent Transfer Function

n,=E{z,} =w,"E{x,} +w,," E{x,}+-+w,,"E{x,,}

r’l = q{wllh + w12h+”'+th}
n=E{x}=Ef{x,} == E{x,,) (4.20)

77

and the variance, ciz, is found as

0. =0, +0, +-+0,,°

14

2 h h h
g, =0'2{W2,| +W2,2 +"'+W2,M }

1

o? = E{(x, - n)?} 4.21)

where i =1, .., N, and j = 1, .., M. The output after the hyperbolic tangent transfer

function, u;j, is defined as (see Figure 4.4)
u, = tanh(z,) (4.22)

From Equation (4.22), one can write the probability density function of the hidden layer

neurons as

1
fU,, (u,) = ll—u 2|fz,,(zn = arctanA(u,,))
1]

arctan h(u) = — o] ~— (4.23)
! 2 \l+uy,

where i = 1, ..., N. The effect of the hyperbolic tangent function can be elaborated by
looking at the two pdf’s that are given in Equations (4.17) and (4.23). These two
equations can be used to investigate the optimality of the neural network filters. It can be
further addressed by using the histograms of their output data. By examining these
histograms, one can decide if the correct weights are found or not. In the next section, the

neural network order statistic filter structures are introduced and the probability density

78

functions, the histograms of the output data, and the Hinton diagrams are presented to

explain how they work.

4.4 The Design of a Neural Network Filter

Figure 4.5 displays the structure for the order statistic neural network. As
mentioned before, the number of inputs is chosen to be 40 (M = 40, but M could be
chosen to be any number). The neural network filter is a fully connected feedforward
neural network. When an unordered uniform random numbers are presented as an input
to the neural network, each output of the hidden neurons is weighted sum of the input
nodes passed through a hyperbolic tangent function. Then, the output rank of the neural
network is the weighted sum of all the hidden neurons. This actual output rank of the
neural network is then compared to the desired rank for every set of input values which
are uniform random numbers. Furthermore, the neural network error is defined as the
difference of these outputs. Then, the weights of the neural network are updated using
the gradient of this output error.

An adaptive hidden neuron algorithm is also applied to the neural network filters
during the process of training. The purpose of this algorithm is finding the optimal
number of hidden neurons [15, 21, 49] (see Chapter 2 for adaptive hidden neuron
algorithm).

The training matrix is prepared using uniform random numbers between 0 and 1.
Each column in the training matrix represents one set of these random numbers with a

length of 40. Note that the size of the training set could be any number. The bigger the

79

number, the better estimation of target ranks is achieved by the neural networks. The

training matrix is defined as
}—xl Xl 0 Xk _}
x x -+ ot x -+ *
X=[3 M Mokt | (4.24)
Xv Xam 7t Xoppex J

where one column of x;’s are chosen randomly from subsets of [0,1], and K could be any
number. The values for the boundaries of these subsets are chosen randomly, and the
total number of training vectors that are in each subset are also selected randomly. The
training matrix is not adequate if it only holds numbers from one subset whose
boundaries are equal to 0 and 1. Because if a testing vector that has numbers from certain
subsets of [0, 1] is given to a neural network filter as an input, the outcome would be a
failure. To overcome this inadequate training problem, the training matrix should have
enough samples from distinct subsets of [0,1]. The output of the neural network (see

Figure 4.5) can be found as

y = W° tanh(W"* X),

; =[y(),...,»(T)] (4.25)

where T is the total number of columns in X, y(@) {i = 1,...,T} is the estimate of the rank,

m, of i-th column in the training matrix, W°, and W" are weight matrixes for output and

hidden layers respectively:

h h h

Wy W2 Win

h h h

w. w .- W

0 A 21 2 20
we=[w,"-w,%w, %), W ={ }’
h h hJ

'—wu W o Wy

Sorted Output

X1 Xi
Random Numbers

Figure 4.5 The Neural Network Order Statistic Filter

XM

80

(4.26)

81

where L = 15, 10 and 16 for MinNNet, MedNNet, and MaxNNet respectively.

Training statistics of the neural network filters are given in Tables 4.1, 4.2 and
4.3. Note that MedNNet reaches a lower error (sum-square error, SSE, which is the sum
of the square of differences between the actual and the desired ranks), 0.49, than that of
the other two order statistic neural network filters MinNNet, and MaxNNet which are
2,44 and 2,98 respectively. And also MedNNet has less hidden neurons, 10, than those in
MinNNet and MaxNNet which are 15 and 16 respectively. Total of 3615 sample vectors
were applied to MinNNet, MedNNet, and MaxNNet 62225, 35685, and 65395 times
respectively to update their neural network weights to find their optimal solutions. In the
next paragraph, Hinton diagrams and pdf’s are used to explain why MedNNet does a
better sorting than the others. -

Hinton diagrams of these filters are presented in Figures 4.6, 4.7 and 4.8 for
MinNNet, MedNNet, and MaxNNet respectively to display their weights. When a
column vector of random numbers are given to these neural network filters, the output is
the estimate of the rank which is the closest number to one of their input random
numbers. Note that the graphical distribution of weights in MinNNet and MaxNNet in
Figures 4.6 and 4.8 display almost no random information (especially MaxNNet), but in
Figure 4.7, the weights of MedNNet show some randomness buried in themselves. This
might be the reason for the success of MedNNet over MinNNet and MaxNNet. The
performance of these neural network filters can also be explained by examining the

characteristics of the hyperbolic tangent transfer function. The MinNNet and MaxNNet

82

O -BwoBecsne
seaspfesootpefe sf

BeoDODO @0 « HHA
0@EDowos00HE

Ha8d

oo-oJe@mew offin

BOBO0 e eceJceHB®

sBHBsoco0BcOBEE
sowmesemew @B

B..-IIB-.IEEEI
o.wD@EB 1o BPOHED
.a..s.ana-sﬁ%am
BeolaoePJuooe B w
O@®o0.«00O0@H B
@@ o000 0Renld
kam.cau.as.aaana
temDenoooos{fe -
setleomeon 0 @ife
Howeoeos00O - B BW
.OB-OI-.DIBB BE
cEou@e - -OQUDHBHB®
ele - s @MEO0 - BH® - @
uasaus-caaunﬁﬁa
val -momae e sfiHE

w_
De@oowcl@O - WH ,ﬂ
¥

— 3
et

..Dcmmcu.amm
vseBOoveD00 [
32
: }

s8EB8
s Zig 8

s@Eeoo . e«
ol -8 BWe@Bo.
pmoBQUevesdoO®
sioon - oeseHH

e » -

nal

(oo]
&

-

Lt

G.a.lcl-clamm
DoBeD®B» e s
epDesoomesw ol
ce e HODOO@ e olf)

i{enfesi{aminef
e
=

1cT

(B {ecos]

H e
Oeoseso@oa@im
OOo-0e -0+ « 0@HA
WeooOeBeoffiell
eoc.sp@aeno -8 FHiw
OD«oDsv0®-@@Ha«H
ssD-cHas D@HNBAHAR

8 BEHT=HF
B e

Figure 4.6 Hinton Diagrams for MinNNet

maecE.GDaD
s HOBHODOO
HEfAbelo - oM
» O » HiHS « B
00«08l «He
OsDea00000
oe0B0-00@ o

w -DUDBS DD
HfdHe0000®
s0EBEedJ00

OH e« - QOo0O|e

Joffle o8B« Hw

He OOBOBO

acanuaanma
slfmeme@e{]o
ofJe 0B
o[- s@BBODB®
Ho o« BO00OBO
He ocOJO@EE -0
vOBo-oco0@00
HO0#H - OB00 0
fHe o JBOOHEME
8 Ofe 8B 0 olm
Bl e 8 00BWOH
e -Bed @l
sfHol s offloe @
88 o 0B@E0:. 0o
HHe s s OO O
Oe«BOC)® e
HoDamHo B
gJooepQ-.0-
tHEJ * B oo e »
HOB®sBOO0
Oooe«000s(]

B0

H
Ofl =0« He O/l
o o HBBEB -0

Figure 4.7 Hinton Diagrams for MedNNet

oo000000090a0000000000000oogogogoouoanaa
0 O O O A

UL U 0000000000000000

DUDDDCDDDDDDDDEDDDDUDDDDDDDDDDDGDDDCDC]DD
I AEEEEEEEEREN S SN ES B NEEEERENEERENEER NN

U0000Caoo0000000000000000000000000000000

e A S R R R R R RS e e om uasei s awaales
lﬂlail'ﬂvillllil.----l.l.--l---l------ﬂ-
DDDDDDDDDUDDDGDDDDDDDDDDDDDDDDDDDDDDDDCID
a-ﬂusl--.------an.--e--.al-mlll-n---lm--
EB..B.UHEI.--E---laﬂaa-l-------BI-BBBEII
.a...-...@g.nugg-------E.JBIGBEIEBII--ll
su-am.-.a.-a-...---maaus---a--u--aau----
B &8 -~ s BI-E-BE-Sa-llIUQl-8-.--.B.3--- e s a
BE8H -8 ~-888 * 28+ -G He c B FETeESHE @ aBeosw @

Figure 4.8 Hinton Diagrams for MaxNNet

84

Table 4.1 Training Statistics for MinNNet

Number of Sample Vectors 3615
Number of Inputs 40
Number of Outputs 1
Number of Hiddens 15
Epochs 62225
Error Goal 244

Table 4.2 Training Statistics for MedNNet

Number of Sample Vectors 3615

Number of Inputs 40
Number of Outputs 1
Number of Hiddens 10
Epochs 35685
Error Goal 0.49

have internal values that are on the theoretical minimum or maximum of the hyperbolic
tangent functions. On these regions, there is less learning which means less contribution
to the neural network weights. This might result in all the weights in MinNNet and
MaxNNet filters to have similar magnitudes (see Figures 4.6 and 4.8). On the other hand,
the MedNNet internal values fall into the middle region of the hyperbolic tangent

function which is the linear region. In this region of hyperbolic tangent function, the

86

weights are updated until they reach to the optimal weights.

Table 4.3 Training Statistics for MaxNNet

Number of Sample Vectors 3615

Number of Inputs 40
Number of Outputs 1
Number of Hiddens 16
Epochs 65395
Error Goal 2.98

4.5 The Performance ot; I;I;ural Network Filters

Performance evaluation of the neural network filters is achieved by examining the
pdf’s of their hidden layer neurons. Probability density functions tell us that where the
emphasize of the neural network hidden neurons is located at. If this emphasize is in the
middle of the hyperbolic tangent transfer function for all the hidden neurons of MedNNet,
we might say that the MedNNet does a good estimation on the median rank of the input
signal. If the emphasize is in the minimum or the maximum region of the hyperbolic
tangent transfer function for all the hidden neurons, then the MinNNet or the MaxNNet
does a good estimation on finding their corresponding ranks. To find the output pdf of a
neural network filter, we apply the simulated data and find the histogram of the actual pdf
versus the desired pdf of the neural network. These histograms show us that how much

the estimated rank is close to the expected rank and also help us

1] 3 1] 1]

L A A L

0.2 04 0.6 0.8 1

1 T > T T T T
0 -
-1 L : : ——/

-1 -0.8 -0.6 -0.4 -0

!] /]

0.2 0.4 0.6 0.8 1

: (
— —
b
L
;
(x
’

a)
-1 -0.8 -0.6 -0.4 -0. 0.2 04 0.6 0.8 1
)
0
1 1 ’ 1 L/
2
)
2
)

(
-1 08 06 04 -0

c

0

1 T T T Y Y Y
. N
__/

_1 1 . l 2 :
-1 -0.8 -0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.9 MinNNet: The normalized pdf’s for Hidden Neurons (a) #1, (b) #2, (c) #3, and
(d) #4 Before the application of Hyperbolic Tangent Transfer Function

AV

(@)
0 /
_1 L] i) - 1 I3 ! 1 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
1 (b)
. /ﬁ(|
_1 1 1] * ! i L 1 L]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
(©)
1 1Y 1 1 1 1 i ,
0 j(1
¢
_1 1 !] - 4 i : 1 : i
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
(d)
1 T "
_1]] [> ! L] 1 .
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

88

Figure 4.10 MinNNet: The normalized pdf’s for Hidden Neurons (a) #5, (b) #6, (c) #7,
and (d) #8 Before the application of Hyperbolic Tangent Transfer Function

89

(a)

0 0.2 0.4 0.6 0.8 1
b)

0

-1 L 1 3
-1 -0.8 -0.6 0.4 -0.2
-0.

—
(
'z/]

L It)

02 04 06 08 1

-1 -0.8 -0.6 -0.4

Figure 4.11 MinNNet: The normalized pdf’s for Hidden Neurons (a) #9, (b) #10, (c) #11,
and (d) #12 Before the application of Hyperbolic Tangent Transfer Function

90

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.12 MinNNet: The normalized pdf’s for Hidden Neurons (a) #13, (b) #14, and (c)
#15 Before the application of Hyperbolic Tangent Transfer Function

91

predicting how well the outcomes are for the future testings of the neural network filters.
The normalized pdf’s that are given in Equation (4.19) are depicted for MinNNet in
Figures 4.9 through 4.12. These are the normalized pdf’s before the application of
hyperbolic tangent transfer function. The normalized pdf’s after the application of
hyperbolic tangent function are presented in Figures 4.13 through 4.16 (see Equation
(4.23)). Figure 4.17 shows the true histogram of the minimum rank for 2500 testing
vectors as well as the actual histogram of the MinNNet along with the histogram of the
input uniform random numbers. One can conclude from these figures that the ideal
weights for the MinNNet were achieved. Same process was repeated for MedNNet.
Figures 4.18 through 4.20 show the normalized pdf’s of hidden neurons before the
application of hyperbolic tangent function. It can be observed that the normalized pdf’s
are in the middle region of the hyperbolic tangent functions for all 10 hidden neurons.
Figures 4.21 through 4.23 depict the figures of the normalized pdf’s after the application
of hyperbolic tangent. The influence is still in the middle region of the hyperbolic tangent
transfer function for all the hidden neurons. Figure 4.24 shows the histograms of input,
actual MedNNet and true median rank. The actual pdf is very close to that of true median
rank. This shows that the MedNNet does a better sorting than that of MinNNet as well as
MaxNNet. Figures 4.25 through 4.28 expose the normalized pdf’s for the hidden neurons
of MaxNNet before the application of hyperbolic tangent function. The effect of these
normalized pdf’s for most of the hidden neurons is close to the maximum region of the

hyperbolic tangent function. Figures 4.29 through 4.32 display the

92

(a)
1 ' 1 13 ’ / g ' 14 '
0 j(
-1 I J 1 - 1 1 L] 13
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1
(b)

-1 -0.8 -0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1

(c)
0 /
_1 L 1 2 - : L] ! L
-1 -0.8 -0.6 0.4 0.2 0 0.2 04 0.6 0.8 1
(d)
1 1§ . / 1 i
o
_1] 1 2 1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1

Figure 4.13 MinNNet: The normalized pdf’s for Hidden Neurons (a) #}, () #2, (c) #3,
and (d) #4 After the application of Hyperbolic Tangent Transfer Function

L 1 1

0 0.2 0.4 0.6 0.8 1

(a)

1 LO 1 . 3 /
0 -
-1 -0.8 -06 -04 -0.2

(b)

)

-1 -0.8 -0.6 -0.4 0 0.2 0.4 0.6 0.8 1
1 . T
0 /(
-1]] 1] .
0

/

-1 -0.8 -0.6 -0.4 0.2

¥] \
2 0
(c)
2 0 0.2 0.4 0.6 0.8 1
(d)
0 Q.2 0.4 0.6 0.8 1

Figure 4.14 MinNNet: The normalized pdf's for Hidden Neurons (a) #5, (b) #6, (c) #7,
and (d) #8 After the application of Hyperbolic Tangent Transfer Function

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.15 MinNNet: The normalized pdf’s for Hidden Neurons (a) #9, (b) #10, (c) #11,
and (d) #12 After the application of Hyperbolic Tangent Transfer Function

0 /
_1] ! ! “ 1 :]] i1
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8
(b)
1 T T T T I/r / T
0 / —
-1 1]] - 2 1 1 1
-1 -0.8 -0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8
(c)
1 T 1 1 1 '/ / N\ 1
-1 1 : 1 ! : !
- -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Figure 4.16 MinNNet: The normalized pdf’s for Hidden Neurons (a) #13, (b) #14, and (c)
#15 After the application of Hyperbolic Tangent Transfer Function

96

(a)
1500 . - . r . i . :

10007
S00f

o} ;
]
]

~——l :

0.1 02 03 04 05 06 07 08 09 1

(b)
3000 L i +] b i
2000+
1000
0 L : 1 1 L] 1 b
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1
()
3000 T — (T
2000 -
1000 ~ -
0 3] - ! 1
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Figure 4.17 MinNNet: Histograms for (a) Input data, (b) MinNNet, and (c) Minimum

97

(a)
. SN T

-1 -0.8 -0.6 0.4 0.2
1 1 i 1 i
; /(
-1 -0.8 -0.6 -0.4 0.2

1 I] ¥]

. j(
-1 1 1 * L] |3 i

-1 -0.8 -0.6 0.4 -0.2 04 0.6 0.8 1

04 0.6 0.8 1

04 0.6 0.8 1

1 T ; T ‘

0
L : ' /

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

0 o2
(b)
0 o2
(©
0 02
(@)

Figure 4.18 MedNNet: The normalized pdf's for Hidden Neurons (a) #1,. (b) #2, (c) #3,
and (d) #4 Before the application of Hyperbolic Tangent Transfer Function

98

-1 -0.8 -0.6 04 -0.2 0 0.2 04 0.6 0.8

Figure 4.19 MedNNet: The normalized pdf’s for Hidden Neurons (a) #5, (b) #6, (c) #7,
and (d) #8 Before the application of Hyperbolic Tangent Transfer Function

(a)

O
wn
|

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6

0.8

o
()
i

O
n
T

-1 08 06 04 04 o8

0.8

99

Figure 4.20 MedNNet: The normalized pdf’s for Hidden Neurons (a) #9, and (b) #10

Before the application of Hyperbolic Tangent Transfer Function

100

0 /
-1 1 1 1 |1 1 L 1)]
- -0.8 -0.6 04 -0.2 0 0.2 0.4 0.6 0.8 1
] (®
0 %
-1 1 1 1 : L - L L] 1
- -0.8 -0.6 04 -0.2 0 0.2 04 0.6 0.8 1
] ()
. j(
_1 1 1 1 & 1 L L 1 L
- -0.8 -0.6 0.4 -0.2 0 0.2 04 0.6 0.8 1
(d)
1 14 1 1 1] 1 3 11]
0 T
_1 3 1 1 L L 1 ! L]
- -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.21 MedNNet: The normalized pdf's for Hidden Neurons (@) #1, (b) #2, (c) #3,

and (d) #4 After the application of Hyperbolic Tangent Transfer Function

101

(a)

e
-1-114/

0.4 0.6 0.8

0 0.2
(b)

0 0.2
(c)

0 0.2

-1 -0.8 -0.6 -0.4 -0.2

1 . l ,

0 'l
-1 | ! 1 2 -

-1 -0.8 -0.6 -04 -0.2 0.4 0.6 0.8 1

1 T T T T
: }(
-1 : L L . L :

0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2

Figure 4.22 MedNNet: The normalized pdf’s for Hidden Neurons (a) #5, (b) #6, (c) #7,
and (d) #8 After the application of Hyperbolic Tangent Transfer Function

(a)

o
LS
T

O
3

-1 08 -06 -04 02 0 02 04

(b)

0.6

0.8

o
[$2]
T

-1 08 -06 -04 -02 0 02 04

0.6

0.8

102

Figure 4.23 MedNNet: The normalized pdf’s for Hidden Neurons (a) #9, and (b) #10

After the application of Hyperbolic Tangent Transfer Function

(@)
1 500 + i t 1] + 1 13

10004 | [[
500} -
0 1 (]) 1| 1 f 1
2 o

3 0.4 0.5 0.6 Q0.7 0.8 0.9 1

(b)

1000 T ; T T T T T T
500+ -
0 I . r— j.:‘l ! 1 !
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
(©
1000 T . T T i + T T
S00F -
A BB N =
0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Figure 4.24 MedNNet: Histograms for (a) Input data, (b) MedNNet, and (c) Median Rank

(a)

——

.

- -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
1 (b)
-1 — 1 1 1 / L ' ! :
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8
(c)
1 Kl T T T T g T T
ol~ —
_1 1 1] : il :]
-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8
(d)
1 K T T 7 -
of —
-1 1 1 L : 2 I i 1 :
-1 -0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8

Figure 4.25 MaxNNet: The normalized pdf’s for Hidden Neurons
and (d) #4 Before the application of Hyperbolic Tangent Transfe

104

(a) #1, (b) #2, (c) #3,
r Function

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.26 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #5, (b) #6, (c) #7,
and (d) #8 Before the application of Hyperbolic Tangent Transfer Function

106

; (@)
. T T /I T T ’
-1 1 ! 1 j ! L 1 2 I
- -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
(b)

Figure 4.27 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #9, (b) #10, (c) #11,
and (d) #12 Before the application of Hyperbolic Tangent Transfer Function

107

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0:6 0.8

-1 -0.8 -0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.28 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #13, (b) #14, (c)
#15, and (d) #16 Before the application of Hyperbolic Tangent Transfer Function

108

-1 - - L

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

(d)
1 T i i
0 el
/ l

-1 i]] L 1 1 !

-1 -08 -06 -04 02 0 02 04 06 08 1

Figure 4.29 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #1, (b) #2, (c) #3,
and (d) #4 After the application of Hyperbolic Tangent Transfer Function

109

-1 -0.8 -0.6 -04 -0.2 0 0.2 04 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2 0] 0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Figure 4.30 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #.5, (b) #6, (c) #7,
and (d) #8 After the application of Hyperbolic Tangent Trapsfer Function

— e

-0.6 -04 -0.2 0 0.2 04 0.6 0.8
(b)
el
,_/ !

-0i8 -OiS ~0:4 -0.2 6 0[2 0f4 0i6 0i8 1
(©)

-0.8 -0.6 04 -0.2 0 0.2 0.4 0.6 0.8 1
(d) |
N

-0.8 -0.6 -04 -0.2 0 0.2 0.4 0.6 0.8 1

and (d) #12 After the application of Hyperbolic Tangent Transfer Function

110

Figure 4.31 MaxNNet: The normalized pdf’s for Hidden Neurons (a) #9, (b) #10, (c) #11,

111

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1

Figure 4.32 MaxNNet: The normalized pdf’s for Hidden neurons (a) #13, (b) #14, (¢)
#15, and (d) #16 After the application of Hyperbolic Tangent Transfer Function

112

normalized pdf’s of hidden neurons after the hyperbolic tangent transfer function. The
function (see Figure 4.25) are populated into the maximum region after they are
multiplied with the output layer weights and added together such a way that the estimate
of the maximum rank of the input is sufficiently close enough to the desired maximum
rank. Figure 4.33 depicts the histograms of the input, the actual MaxNNet output and the
true maximum rank. By looking at Figure 4.33, one can see that the pdf of the actual
MaxNNet is fairly close to that of the desired maximum rank.

Testing results are shown in Figure 4.34. In Figure 4.34, ‘+’ sign shows the
estimates for MaxNNet, ‘x’ sign displays the estimates for MedNNet, and ‘o’ sign depicts
the estimates for MinNNet. Moreover, straight lines indicate the desired values. Random
numbers in Figure 4.34a were generated between [0.8 1] and [0.1 0.3] for parts (a) and (b)
respectively. The SSE of testing random numbers between [0.8 1] are 0.0038, 0.0042,
and 0.0144 for MaxNNet, MedNNet, and MinNNet respectively. The MaxNNet does a
better sorting than those of the other two neural networks. Since the input to the
MaxNNet is close to 1 which moves the outputs of the hidden neurons to 1 and results in
better sorting. On the other hand, the MedNNet still does as good as the MaxNNet does
since MedNNet is taking the average of its inputs. The MinNNet is not as good as
MedNNet, since the input to the MinNNet moves the outputs of the hidden neurons away
from the theoretical minimum of the hyperbolic tangent transfer function. But the result
of MinNNet is still promising. Furthermore, the SSE of testing random numbers between
[0.1 0.3] are 0.0218, 0.0084, and 0.0066 for MaxNNet, MedNNet, and MinNNet

respectively. In this part of the testing MinNNet does the best sorting.

(@)
1500 T T T T T T T T

10004 |
500k
0 * } 131] 1]

(b)
2000 . ; T T T T T T

1000 -

()
3000 '] +] i L L + i

2000
1000

Figure 4.33 MaxNNet: Histograms for (a) Input data, (b) MaxNNet, and (c) Maximum

114

(a) (b)

1.2 T T Y 1 J a R T
part (a) O-QL/"\,\/-—\/\W;’-{

, . T T S T T

' ' 0.8- T

0.7} 1

0.6 X =

\ % J;% x ‘
X

0.6t : 0.s- o \] KT 4

Sl V

x ok |
Q.4r X Kx 9
X
0.4t part (b)] .
0.3F .
e T i | nz
BRI e ST ey Famemn |
S T e on o | 0.1 F—"~ N NN AN
0= .' 2 = - (0 — - : :

0 10 20 30 40 0 i0 20 30 40

Figure 4.34 (a) Testing Results of MaxNNet, MedNNet and MinNNet for random
numbers that were generated between, part(a) [0.8 1], part (b) [0.1 0.3], (b) Testing
results of MaxNNet, MedNNet, and MinNNet for random numbers that were
generated between [0.1 0.9]

115

Because the input to this neural network hold the outputs of the hidden neurons in the
minimum region of the hyperbolic tangent function. On the other hand, the averaging
process in the MedNNet still gets a better SSE than that of MaxNNet. Likewise, the
MaxNNet’s result is also as good as that of the other two neural network filters. In Figure
4.34b, the random numbers were generated between 0.1 and 0.9. The SSE’s are 0.0739,
0.0665, and 0.0960 for MaxNNet, MedNNet and MinNNet respectively. In this case,
MedNNet does a better testing than that of other two neural networks. However, the
results from MinNNet and MaxNNet are still promising in the sense that they can be used
effectively in finding the good estimates of the minimum and the maximum ranks of their

input.

4.6 Neural Network Filters for Detection

Applying split-spectrum processing in ultrasonic signals combined with order
statistic filters improves the signal-to-noise ratio of backscattered signals [63, 64, 82].
The performance of the order statistic filters is gotten better where signal and noise have
good statistical separation representing a particular rank, such as minimum, median, or
maximum. Our objective in this section is to replace the conventional order statistic
filters with the neural network order statistic filters. Using neural network filters provides
faster responses and eases the hardware implementation of these filters using VLSI
technology [29-31]. The neural network structure that is given in Figure 4.5 can be
developed as a hardware implementation of any member of the order statistic filter.

Specific type of neural network filters can be created by simply creating the

116

comprehensive input training matrix and the output target vector which consists of the
desired ranks of each column of its training matrix. The neural network filter is called
minimum detector when the rank is minimum, median detector when the rank is median.
and the maximum detector when the rank is maximum.

The block diagram of split-spectrum processing is shown in Figure 4.35. The
received broad-band signal is partitioned in several narrow-band channels as shown in
Figure 4.35. The output of these channels are normalized at the end of each block
referred as band-pass filters and sent to an order statistic filter. We normalized the output
data between 0 and 1 because of the fact that the neural network filters were trained on
the numbers which were randomly selected between 0 and 1. There are three important
issues in split-spectrum processing. These are the number of partitions (how many band-
pass filters are used), correlation amongst partitions, and statistical information in each
partition. There is an upper limit on the number of partitions that can be chosen without a
large amount of overlap amongst the partitions. The correlation between partitions can
simply be reduced by reducing the size of the frequency band of each channel. This
might also reduce the recovery of backscattered echoes. Correlation is not as critical to
the performance of the split-spectrum processing as selecting the frequency range which
contains the information of grain echoes, yet this knowledge is not generally known a
priori.

MinNNet, MedNNet, and MaxNNet are replaced the conventional order statistic
filters. The total number of bandpass filters was chosen as forty. Because of the fact that

the neural network filters that were designed in this chapter have 40 input neurons. The

117

total number of input neurons in a neural network filter can be selected as any number.
They are tested using experimental data to show how a neural network filter can utilize
the statistical information that is buried in different frequency bands to improve the

signal-to-noise ratio in noisy environments.

Received Broad-Band Signal

| band-pass filter at f) Normalization Order
Statistic
|, | band-pass filter at f; Normalization Rank
—’
X(k)
band-pass filter at f4o Normalization [— Filter
fao>f30>...>)

Figure 4.35 The Block Diagram of SSP

Testing results are shown in Figure 4.36. As stated earlier, forty bandpass filters
are used in the SSP. In Figure 4.36, the frequencies of the channels reside within the
frequency range of 2.875-11.625 MHz and the bandwidth of the channels is 2 MHz. In

addition, target echo is at location of 430 (SNR is 0 dB). In can be observed that the

118

[34)

OiLﬂ'm.l.'l.‘g"l.u:;.u._ .la‘v.. ‘:l.l "'l“l N h%‘fv‘ﬁ‘d {..l.u. ‘ .J; PN . .. |.u.. . ."WW!‘.V‘ .. .li

U
¢ 8 200 3 a0 s oo os 8C scc 1oco

[R -1V - - -~ ot ¥ g (V197 1] s
L — - — T - ' ' - :
0PAw}d&—gﬁMywJLu‘**MAN!*?#%,?MMKUWk!f~¥FwKqﬂhﬁﬁmﬁﬂﬂﬁﬂw?ﬂmﬁfﬁﬁv‘dh%
- l) [) 0 . ») ’) '

-1

e 1CC 200 3¢0 3C¢C £Ce €02 700 ece 208 10CC
1 M i
N | i |
¢ b!" i j\ & [} | |
G' AW Y PV 0ty | TSNl N AW A

c pfols) 200 cisly 400 £00 (ale] Efos] 32 310l 31CC2

1;

C iC 2C0 300 400 gCe ECC 700 gco sco

Figure 4.36 Frequency Range of Bandpass Filters is 2.875-.1 1.6?5 MHz wnh the
Bandwidth of 2 MHz. Target echo is at location 430 (a) Noisy Signal with a Single
Echo, (b) The Output of MaxNNet, (c) The Output of MedNNet, (d) The Output of

MinNNet

119

MedNNet and the MinNNet do a better target detection than that of MaxNNet because
the training of MaxNNet causes the MaxNNet to have similar weights at the end of its
training phase (see Figure 4.8). On the contrary, when we look at the output of

MaxNNet, the target echo is still detected successfully.

4.7 Conclusion

It has been shown how to implement order statistic filters using neural networks.
Examples of neural network filters are given. These filters are MinNNet, MedNNet, and
MaxNNet. Testing results show that the MedNNet does a better sorting than that of
MinNNet and MaxNNet. Furthermore, we examined the Hinton diagrams and the
probability density functions of each hidden neuron. Analytical results reveal that the
hidden neurons in MedNNet active around the l;niddle region of their hyperbolic tangent
functions where the learning takes place. As a result, MedNNet is faster in training and
offers desirable testing results in sorting. On the other hand, MinNNet, and MaxNNet
active either at the beginning or at the end of their hyperbolic tangent functions where
there is less learning. This results in poor performance in both training and testing phases
of these neural network filters.

The training matrix for each type of filter is prepared using random numbers
between 0 and 1. Each column of this training matrix consists of numbers from certain
subsets of [0,1]. The total number of training vectors in each subset and the values for
the boundaries of these subsets are chosen randomly. The training output vector consists

of the minimum, or the median, or the maximum rank of each columns. The performance

120

is not 100% accurate. However, experimental results show that utilizing neural network
filters in split-spectrum processing achieves a desirable sorting in noisy environments.

In summary, the neural network filters have been presented to replace the
conventional order statistic filters in the field of signal and image processing. These
neural network filters have the following properties: 1) the response is real-time once they
are trained, 2) all hidden neurons have the same structure which makes its hardware
implementation easy using VLSI design techniques. Based on experimental observations,
neural network order statistic filters can be efficiently used in split-spectrum processing

in order to detect flaw echoes in grain scattering noise.

CHAPTER Y

NEURAL NETWORKS FOR ULTRASONIC GRAIN SIZE DISCRIMINATION

In this study, the grain power spectrum neural network (GPSNN) has been
developed to classify the ultrasonic backscattered grain signals for material
characterization [53, 61, 63, 64, 66, 82, 83, 86]. The GPSNN has 32 input nodes, 13
hidden neurons determined adaptively, and one summing output node. A set of 4490
training sets is used to train the neural network. A new set of 12572 testing sequences is
utilized to test the GPSNN performance. The samples tested for grain size discrimination
are steel with grain sizes of 14 and 50 microns. GPSNN achieves a recognition
performance of over 98%. Thxs high level of recognition suggests that the GPSNN is a

promising method for ultrasonic nondestructive testing.

5.1 Introduction

The importance of evaluating the microstructure of materials ultrasonically has
been long recognized [53, 62]. In particular, it is high interest to estimate grain size or
classify materials based on the scattering properties of their microstructure.
Backscattered grain echoes are random signals that bear information related to both the
grain size and frequency of sound. In ultrasonic grain size characterization a model for
the grain signal consists of the convolution of components representing the contribution
of the measuring system impulse response (i.e., the interrogating uitrasonic wavelet) and

the grain scattering function. This function contains information related to many random

physical parameters such as grain size, shape, orientation, boundary characteristics. and
chemical constituents. Consequently, the grain scattering signal becomes random and
exhibits a great deal of variability in the time domain. Therefore, spectral analysis is
often adopted as an alternate method for signal characterization [63, 64, 82, 83, 86].

In the Rayleigh scattering region (the wavelength, A, is larger than the average
grain diameter, A) the scattering coefficients vary with the third power of the grain
diameter and the fourth power of the frequency, while the absorption coefficient increases
linearly with frequency [53]. The model for attenuation coefficient for a given frequency,

_f, and at a distance, z, can be modeled as

a(z, f)=b,(2)f +b,()A’ f* (5.1)

where by(z) is the absorption constant and bs(z) is the scattering constant. Inspection of
the Equation (5.1) suggests that the high frequency component of the interrogating
ultrasonic wavelet backscatters with higher intensity than the lower frequency
components. This situation results in a higher expected frequency than that of the
original interrogating wavelet.

In this study, we have developed the design procedure for a neural network to
discriminate the frequency signatures inherent in ultrasonic grain scattering signals. This
method, called the grain power spectrum neural network (GPSNN), offers practical
advantages such as real-time processing, adaptability and training capability [13, 21, 27,

45, 54, 70, 88]. GPSNN deduces the relationship between the measurement power

spectrum and the classification output without knowing the scattering model, physical
parameters, or the solution methodology. With the neural network, as each set of input
vectors is applied to the neural network, the hidden layers configure themselves to
recognize certain frequency features of the input vectors related to the scattering
properties of the materials. After the GPSNN is fully trained, each hidden neuron will
represent certain frequency characteristics of the total input space. Therefore, when the
power spectrum of a new grain scattering signal is applied to GPSNN, each neuron is able

to respond to the presence of a particular subset of frequency information which it was

trained to recognize.

5.2 Design of GPSNN

To discriminate the frequency signatures inherent to grain signals, the
backpropagation algorithm [21] is used to design the GPSNN. The block diagram of
GPSNN is shown in Figure 5.1. The input data is normalized and segmented where it
represents information pertaining to a predefined region of materials. This data is used as
the input to the power spectrum processor using the Fast Fourier transform algorithm.
Then, the power spectrum of segmented data is applied to a three layer fully
interconnected neural network for classification. A set of desired output values (0 for
grain Type-1 and 1 for grain Type-2) is then compared to the estimated outputs of the
neural network for every set of input values of the power spectrum of the backscattered
grain echoes. The weights are appropriately updated by backpropagating the gradient of

the output error through the entire neural network. In this study, an adaptive hidden

124

neuron algorithm is utilized in the design of the GPSNN (see Chapter 2). This adaptive
hidden neuron algorithm is promising for determining the optimal number of hidden
neurons.

The experimental data, used for both training and testing the GPSNN, is obtained
using a broadband transducer with a 6.22 MHz center frequency and a 3 dB bandwidth of
2.75 MHz. A total of 38 experimental data sets were measured. Each experimental data
set is composed of 512 points sampled at 25 MHz. This sampling frequency satisfies the
Nyquist rate and reduces the correlation among the data points. Furthermore, the sparse
sampling is also beneficial in reducing the neural network size.

The experimental data sets are normalized by removing the mean and dividing it
with standard deviation. This normalization is highly desirable because it desensitizes the
neural network to the signal offset and/or signal gain. Normalization is given in Equation
(2.2) (see Chapter 2).

The block diagram of the GPSNN is shown in Figure 5.1. The input signal to the
power spectrum block is created using a sliding window. The size of the sliding window
is 64 samples, and the step between two successive windows is one sample. The first set
is taken from the beginning of the experimental data. The second set is taken from the
second sample of the experimental data, and this is repeated until the window covers the

entire 512 samples of the measured signal. The power spectrum, X,(k<2), of each input

set is calculated by

X, (kQ) = FFT{x(nT)}.Conj{ FFT{x(nT)}} (5.2)

First Set Experimental Data
I |
| P |
Second Set Last Set
x(nT)

Power ‘8%0—'

Spectrum y

Neural Decision

64 32 Network Box

Figure 5.1 Block Diagram of the Ultrasonic Grain Power Spectrum Neural Network
(GPSNN)
where x(nT) is the normalized sampled value of the grain echoes, T is the time sampling
interval, FFT is the Fast Fourier transform, and € is the frequency sampling interval. The
first 32 samples of X,(k€2) which span the entire grain frequency range are taken into
consideration as an input to the neural network for signal classification. The output of

this neural network, y, is given as

126

y = W° tanh(W" X),

y <n — Type-1 Grain Signal

y > n — Type -2 Grain Signal (5.3)
where W* | W° are the weight matrixes for the hidden layer and the output layer
respectively, and X is the input vector. Then, the output, y, is applied to the decision
block in order to classify the grain size. A value of 0.54 is chosen for the threshold, 7, to
help decide whether the input grain signal is Type-1 or Type-2. This value is found using
the output density functions (see Figure 5.2) of the training grain signals for Type-1 and
Type-2. The output density functions are estimated using the Parzen method. Hence, an

estimate of the density function from samples can be obtained as:

1 Y=Y . <
f,00= Z],_/=Type—lor'l'ype-2 54
no, 5 o,

where {yi, i =1, 2, ..., n} is the neural network output for Type-1 or Type-2, ¢() is the
Gaussian density function (i.e., ¢(y) e), and constant g; is chosen to be 0.25 for our
experimental data (j = 1 for Type-1 and j = 2 for Type-2).

The key issue in the design of a neural network is determining the number of
hidden neurons. The improper selection of hidden neurons may perform satisfactory for
design data, but fails significantly for test data or causes unsatisfactory convergence (i.e.,
neural network is not fully trainable. To avoid these problems an adaptive hidden neuron

algorithm for determining the number of hidden neurons is required [27, 65, 78, 79].

127

This adaptive technique starts with three hidden neurons and then adaptively increases the
number of hidden neurons until convergence is guaranteed. Sum-square-error (SSE) is
used as a measure of performance for the neural network. This error is used in updating
the neural network weights using a backpropagation algorithm. When the SSE does not
meet the appropriate criterion after 5000 epochs (an epoch is defined as one sweep

through all training samples), the number of hidden neurons is increased by one (see

Chapter 2).

5.3 Experimental Results

The experimental data, applied for both training and testing the GPSNN, is
obtained using a broadband transducer with a 6.22 MHz center frequency and a 3 dB
bandwidth of 2.75 MHz. A total of 38 experimental data sets was measured. The
material applied for the microstructure is two steel blocks, type 1018, with two different
grain sizes, 15 microns and 50 microns. Each experimental data set is composed of 512
points sampled at 25 MHz. This sparse sampling frequency satisfies the Nyquist rate and
offers reduced correlation among the data points. Sparse sampling is also beneficial in
reducing the size of the neural network an improving the overall efficiency of the grain
size classification system.

From measured experimental data, a set of 4490 training sequences was
assembled to train the grain power spectrum neural network. A new set of 12572 testing
sequences was utilized to test the GPSNN performance. Figure 5.3 shows a sample of 4

A-scans (i.e., amplitude scan) of Type-1 and 4 A-scans of Type-2 measured grain signals.

128

The corresponding power spectra of these A-scans are shown in Figure 5.4. Both the A-
scans and their power spectra exhibit random pattern and a set of features that can be used
directly for classification is not recognizable. However, due to the scattering theory of
the microstructure, the grain signal backscattered from larger grains is expected to display
lower frequency content than the grain signal backscattered from smaller grains. But this
trend in frequency content is not readily quantifiable due to random peaks and dips in the
power spectra. Therefore, a trained neural network is conceivable to recognize the
microstructure signals backscattered from materials with different grain sizes.

Table 5.1 shows the training statistics of GPSNN. The number of inputs to the
neural network is 32 which represents a power spectrum of grain spanning frequency 0-
12.5 MHz. It should be noted that 4490 training data sets were applied 52225 times to
estimate the optimal number of hidden neurons and their weights in order to satisfy the
SSE criterion. Table 5.2 presents testing results for the GPSNN. Note that 28 additional
experimental grain signals (14 measurements for Type-1: gr106-gr119; 14 measurements
for Type-2: gr206-gr219) are used to test the trained neural network grain classifier.
Since all these signals are segmented, a total of 12572 testing sequences is used. As
shown in Table 5.2, the GPSNN achieves an average recognition of 98%. This
performance is impressive and statistically reliable since 17062 data segments are used in
training and testing the neural network. Furthermore, this high level recognition is
desirable and practical since it is applied to a short data segment which represents

information pertaining to a small depth of about 6.5 mm of steel samples.

129

T

3.5

2.5

o
w
{

Figure 5.2 Density Functions of the Output of GPSNN for Type-
Signals

2.5 3

1 and Type-2 Grain

(a) (®)
1 1
ol AN
- -1
10 20 . 40 60 80 Q 20 40 €0 80

.
;
%

- -1
10 20 40 60 80 0 20 40 60 80
1 1
olr\/\ o\ A \/WW\P‘ |

|fMﬁ\/\/‘f\/\f\/\/“’\/VA !

- -1
10 20 40 60 80 0 20 40 60 80
1 1

[d\ \/\/,/
oM WM

- -1
10 20 4Q 60 80 0] 20 40 60 80

Figure 5.3 Examples of Backscartered Grain Signals, (a) Type-1 Slignal‘s and (b) Type-2
. Signals ’

(@)
100
50
0 10 20 30 40
50
0 10 20 30 40
100i
WL N
o— J\-u-/_j /_.
0 10 20 30 40
200
100 - A_/\/\/\
o \ Van
o 10 20 30 40

(®)
200
100} KA ;
Q = I
o] 10 20 30 40
200
0
0 10 20 30 40
200,5
100 \
0 /\/‘/\/\A e
0 10 20 30 40
200
A |
0]
0 .10 20 30 40

Figure 5.4 Power Spectrum of Grain Signals Shown in Figure 5.3

Table 5.1. Training statistics for GPSNN using Experimental Data

GPSNN
Number of Sample Vectors 4490 o
Number of Inputs 32
Number of Outputs 1
Number of Hidden Neurons 13
Epoch 52225

The success of GPSNN may be obscured if there is no understanding of the
optimality of the neural network. In this study, Hinton diagrams are used to explain the
optimal characteristics of the neural network. Hinton diagrams are named for Geoffrey
Hinton who used this method to display neural network weights. Figure 5.5a depicts the
Hinton diagram of the GPSNN. The first row shows the weights from the first hidden
neuron to the input nodes, the second row depicts the weights from the second hidden
neuron to the input nodes, and so on. Note that the number of rows is equal to the
number of hidden neurons. Figure 5.5b depicts the weights from the hidden neurons to
the output neuron. Since there is only one output neuron, the number of rows in the
Hinton diagram is one. Inspection of Hinton diagrams reveals that all hidden nodes
contribute to the decision process and the optimal design of the neural network has been
realized. Furthermore, there is no situation suggesting that a set of weights yields very

large values, very low values, or predictable values. Such observations indicate that

(84
“

(a)

HeBloowmmO e
Elﬂ—ol.as.
-B-D-EE.E

@ meeg.n
efla0®moeng
*HBemo . ww
-B.Ucnoul
B-aJewpgon

*BHea0@e
@-00-0088
BiBow - owoow

BEBCO e« a|Bn

BefHQo .

S0 s {Jos . @y
e 0O 0agon
BIBs00wwoon
*BHOo@BEO®
@000 - @.em
Boe0@c]n
HBaeo. ‘@

*HBlmow [

‘BIPWD e 0o eo0ow
a
4]

WeNoo . 0w

o800
ao0a .
® v w0
00 -0
0e«os
o 00 o
ao0oo0Q
e o] .
o0+ o
0oQoo
DO e s
(8]
*s0o0
a
0
0
a
a
e
a
a
0o
aao-aq
0«0 .
Osapn
oD
Oooo
*s DO .
0O0o.
00 en
s 00
.DD..

BOO000cowooa

dmefJooc.Wepo0o
Do s@asgo
.aaDD.-DEDDa
c8dl@Bowe -@B0
0@JQg e
SlHevDa@®. .B.DD
-8..“—0. .EI.DQ
*BeC0wes .pp. .
HlBoonewmap

(b)

.aa

IEUI jle Jadg

playing the Estimated Weights of GPSNN, (a) wh weights,

k7
a
3
ok
g5
23
g
%
- D
d
g

Figure

134

overfitting is avoided since an adaptive search for the number of nodes in the hidden layer

is implemented.

5.4 Time Signature Recognition

An alternative to using the GPSNN for grain signal classification is to train the
neural network directly using A-scan data. In this study we have repeated training the
neural network by applying the A-scan (64 samples) to the neural network directly. This
method is called the grain amplitude neural network (GANN). As discussed earlier, no
notable feature can be recognized in A-scan signals due to the random amplitude and
phase of the backscattered echoes. In spite of this randomness, it is desirable to probe A-
scans using GANN in order to detect any unforeseeable grain scattering characteristics
that may exist in the time domain.

To achieve the above objective, an adaptive hidden neuron algorithm is used to
determine the number of nodes in the hidden layer. Similar to the training technique of
GPSNN, a total of 4,490 training sequences are assembled to train the GANN. A new set
of 12,572 testing sequences are utilized to test the GANN performance. Table 5.3
presents the training statistics of GANN. A suboptimal network is obtained by applying
4,490 data sets using 77,875 training iterations. The density function of the GANN
output for the Type-1 grain and Type-2 grain signals significantly overlaps. These
density functions are shown in Figure 5.6. Consequently, a major difficulty is
encountered using GANN for classifying A-scans. The testing results offer a far from

desirable 71% correct classifying. This would indicate that there is no significant

manifestation of an underlying pattern in the grain A-scan that can be detected by GANN
for classification. What appears to be inconsistent is that the neural network performed
successfully when the power spectrum of the same grain A-scan was used for
classification. This superb performance of GPSNN can be attributed to adequate
differences in the power spectrum of the signal, governed by frequency dependent
attenuation and scattering (see Equation 5.1) that allows the neural network to adapt for
recognition. On the contrary, the A-scan contains and displays information related not
only to the power spectrum but also to the random phase spectrum. This random phase
interferes with and obscures the inherent frequency characteristics of grain A-scans
needed for properly training GANN.

To probe the evaluation of the ultrasonic grain signals even further, the
autocorrelation of the A-scans (i.e., the inverse Fourier transform of Xp(k€2)) was used to
train the neural network for recognition. The grain autocorrelation neural network is
called GACNN. Table 5.4 presents the training statistics of GACNN. The density
function of the GACNN outputs are shown in Figure 5.7. Like the performance of
GPSNN, the GACNN offers an excellent grain size recognition performance of 92.75%
(see Table 5.5). This is expected of GACNN since the autocorrelation of the grain signal

conveys the same frequency characteristics as the power spectrum itself.

5.5 Conclusion

In this study we have developed a neural network that is designed to classify the

power spectrum of the backscattered grain signals (i.e., the A-scan) using ultrasound.

136

The backscattered grain echoes are random signals that bear information related to the
grain size and frequency of sound. However this information is not readily quantifiable
and lacks uniquely recognizable features. Therefore, the neural network becomes
appealing for classifying these signals because they are trainable. In this study, an
adaptive hidden neuron algorithm is used to determine the optimal number of neurons
both in the hidden layer. The optimal values for neural network weights are estimated
using the backpropagation algorithm. Experimental measurements of steel grains are
utilized to train and test the grain power spectrum neural network. This network shows a
remarkable 98% classification performance. Parallel classification performance is also
achieved when training the neural network using the autocorrelation of grain signals.
These results are encouraging and suggest that neural networks are potentially useful for
nondestructive testing and quality control. Furthe_:rmore, the grain power spectrum neural
network renders practical advantages such as real-time processing, adaptability and
training capability. It is important to point out that similar neural network designs can be

used in medical ultrasonic imaging for tissue characterization and diagnosis.

Table 5.2 Summary of the Testing Results for the GPSNN

TYPE-1 Percent TYPE-2 Percent
Grain Signal Recognition Grain Signal Recognition
gr106 98.44% gr206 98.21%
grl07 100% gr207 93.98% -
gr108 100% gr208 95.99%
grl09 94.20% gr209 100%
grl010 97.99% gr210 95.99%
grill 92.20% gr2ll 100%
gril2 100% gr212 93.98%
grll3 99.77% gr213 98.66%
grll4 99.55% gr2l4 100%
grlls 97.55% gr215 98.21%
gri16 94.20% gr216 100%
gril7 96.88% gr218 100%
grii8 99.55% gr219 100%
grl19 100% gr220 100%

Table 5.3. Training statistics for GANN using Experimental Data

GPSNN
Number of Sample Vectors 4490
Number of Inputs 64
Number of Outputs 1
Number of Hidden Neurons 18
Epoch 77875

Table 5.4. Training statistics for GACNN using Experimental Data

GPSNN
Number of Sample Vectors 4490
Number of Inputs 32
Number of Outputs 1
Number of Hidden Neurons 10
Epoch 36545

1.8

1.6

0.8

0.6

T

04

T

0.2

Figure 5.6 Density Functions of the O
Signals

utput of GANN for Type-! and Type-2 Grain

140

3.5

2.5

1.5¢

o
[¢)]
T

Figure 5.7 Density Functions of the Output of GACNN for Type-1 and Type-2 Grain
Signals

Table 5.5 Summary of the Testing Results for the GACNN

TYPE-1 Percent TYPE-2 Percent
Grain Signal Recognition Grain Signal Recognition
gr106 98.66% gr206 83.29%
grl07 96.21% gr207 75.27%
gr108 94.20% gr208 87.08%
grl09 86.19% gr209 84.63%
grl10 99.33% gr210 95.99%
grill 88.41% gr2ll 94.65%
gril2 84.85% gr212 85.30%
grii3 87.08% gr213 98.21%
grl 14 87.30% gr214 98.88%
grl15s 98.21% gr215 100%
grllé6 97.10% gr216 100%
gri17 94.87% gr217 100%
grl18 90.86% gr218 100%
gri19 91.09% gr219 100%

141

142

CHAPTER VI

SUMMARY AND CONCLUSION

In this study, three novel deconvolution neural network models (i.e., DNN,
ADNN, and PDNN) have been developed in order to detect and resolve multiple
interfering target echoes in noisy environments. In Chapter 2, DNN was introduced as
the first neural network model. Experimental target echoes with/without noise were used
to train it. We got very promising results where obtained in detecting and resolving
multiple echoes in the presence of noise (SNR=8 dB). We developed Autoassociative
neural network to improve the SNR in the input signal. Then, the improved signal is
applied to DNN. By utilizing ANN and DNN, the problem of detection in scattering
noise is implemented using two processing stages which are removing the noise and
detecting the target echoes. ADNN was able to detect echoes with SNR of 4 dB. An
alternative neural network model, PDNN, has been developed in Chapter 3. PDNN
allows to estimate statistical parameters of target and noise classes and this is
advantageous for PDNN which can use these parameters for echo detection. It has been
observed that the PDNN achieves the same performance as ADNN does with less number
of weights. PDNN uses the Gram-Charlier coefficients describing the target echoes and
the distribution of the scattering noise. Flaws are detected successfully with SNR of 3
dB. These deconvolution techniques are very effective for the problem of detection in the

field of ultrasonic signal processing. Results show that the deconvolution neural

143

networks recognize multiple target echoes and lock into the signature of these echoes.
Overall, the deconvolution neural networks offer a high probability of detection for a
reasonably low signal-to-noise ratio signals.

We improved the backpropagation learning algorithm by utilizing the adaptive
hidden neuron algorithm. In the design of neural networks, the unknowns are the number
of input neurons, and hidden neurons. The number of input neurons are equal to the
length of the target echo in case of DNN and ANN. In case of PDNN, it is equal to the
number of Gram-Charlier coefficients which is 4. The number of hidden neurons is
problem dependent and has to be changed adaptively during the training phase. Adaptive
hidden neuron algorithm increases the number of hidden neurons as needed and causes
the neural network solutions to escape from local minimum and reach the global
minimum. At the end of each training phase, we used the Hinton diagrams of the neural
network weights to evaluate the optimality of the solution.

Another approach to detect the flaws in grain scattering noise is to utilize a
method called split-spectrum processing. We developed three order statistic neural
network filters to replace the conventional ones in the split-spectrum processing detection
algorithm. These methods are minimum, median, and maximum order statistic neural
network filters. Testing results show that the output of these neural networks are not
100% accurate. On the other hand, these neural networks provide good estimates of the
input rank, reliability, and usefulness to achieve the sorting goal. In addition, all hidden
neurons have the same structure which makes its hardware implementation easy using

VLSI design techniques. Testing results show that the performance of these filters is

144

improved when signal and noise have good statistical separation representing a particular
rank, such as minimum, median, and maximum. We estimated the probability density
function of the hidden neurons and the output neuron to analyze the performance of the
order statistic neural network filters. We further employed the Hinton diagrams of the
neural network weights to investigate their optimality. And we found out that the
MedNNet does a superior sorting than that of MinNNet and MaxNNet. The activation
levels for the hidden neurons of MedNNet are in the middle region of hyperbolic tangent
function where the learning takes place. On the other hand, for MinNNet and MaxNNet,
the activations are either at the end or at the beginning of hyperbolic tangent functions
where there is less significant learning and adaptation.

In this study, we have developed a neural network that is designed to classify the
backscattered grain signals (i.e., the A-scan) based on their power spectrums. The
backscattered grain echoes are random signals that bear information related to both the
grain size and the frequency of ultrasound. However, this information is not readiiy
quantifiable and lacks uniquely recognizable features. Therefore, the neural network
becomes appealing for classifying these signals because they are trainable. In this thesis
an adaptive hidden neuron algorithm is used to determine the optimal number of hidden
neurons in the hidden layer. The optimal values for neural network weights are estimated
using the backpropagation learning algorithm. Experimental measurements of steel
grains are utilized to train and test the grain power spectrum neural network. This

network shows a remarkable 98 % classification performance.

BIBLIOGRAPHY

[1] Alexandre F., Guyot F. and Haton J. P., "The Cortical Column: A New Processing
Unit for Multilayered Networks," Neural Networks, Vol. 4, pp. 15-25, 1991.

[2] Anaya J. J., Ullate L. G., and Fritsch C., "A Method for Real-Time Deconvolution,"
IEEE Transactions On Instrumentation and Measurement, Vol. 41, No. 3,
1992.Company Limited, 1963.

[3] Atiya A. F., "An Unsupervised Learning Technique for Artificial Neural Networks,"
Neural Networks, Vol. 3, pp. 707-711, 1990.

[4] Baba N., "A New Approach for Finding the Global Minimum of Error Function of
Neural Networks," Neural Networks, Vol. 2, pp. 367-373, 1989.

[5] Bichsel M. and Seitz P., " A Maximum Information Approach to Layered Networks,"
Neural Networks , Vol. 2, pp. 133-141, 1989.

[6] Blum E. K. and Li L. K., "Approximation Theory and Feedforward Networks," Neural
Networks, Vol. 4, pp. 511-515, 1991.

[7] Bounds D. G., Lloyd P. J. and Mathew B. G., "A Comparison of Neural Network and
Other Pattern Recognition Approaches to the Diagnosis of Low Back Disorders,"
Neural Networks, Vol. 3, pp. 583-591, 1990.

[8] Bressloff P. C. and Taylor J. G., "Discrete Time Leaky Integrator Network With
Synaptic Noise," Neural Networks, Vol. 4, pp. 789-801, 1991.

[9] Buonomano D. V., Baxter D. A. and Byme J. H., "Small Networks of Emprically
Derived Adaptive Elements Simulate Some Higher-Order Features of Classical
Conditioning," Neural Networks, Vol. 3, pp. 507-523, 1990.

[10] Carpenter G. A., "Neural Network Models for Pattern Recognition and Associative
Memory," Neural Networks, Vol. 2, pp. 243-257, 1989.

[11] Carpenter G. A., Grossberg S. and Reynolds J. H., "ARTMAP: Supervised Real-Time
Learning Classification of Nonstationary Data by a Self-Organizing Neural
Network," Neural Networks, Vol. 4, pp. 565-588, 1991.

[12] Chen S., Mulgrew B., and Grant P. M., “A Clustering Technique for Digital
Communications Channel Equalization Using Radial Basis Function Networks,”
IEEE Transactions On Neural Networks, Vol. 4, No. 4, pp. 570-579, July 1993.

146

[13] Cherkassky V. and Lari-Najafi H., "Constrained Topological Mapping for
Nonparametric Regression Analysis,” Neural Networks, Vol. 4, pp. 27-40, 1991.

[14] Chiou C. and Schmerr L. W., “A Neural Network Model for Ultrasonic Flaw
Sizing,” Nondestr, Test. Eval., Vol.10, pp. 167-182.

[15] Cichocki A. and Unbehauen R., Neural Networks for Optimization and Signal
Processing, John Wiley and Sons, 1992.

[16] Daunicht W. J., "DEFAnet- A Deterministic Neural Network Concept for Function
Approximation," Neural Networks, Vol. 4, pp. 839-845, 1991.

[17] Deprit E., "Implementing Recurrent Back-Propagation on the Connection Machine,"
Neural Networks, Vol. 2, pp. 295-314, 1989.

[18] Doya K. and Yoshizawa S., "Adaptive Neural Oscillator Using Continuous-Time
Back-Propagation Learning," Neural Networks, Vol. 2, pp. 375-385, 1989.

[19] Eberhardt S. P., Daud T., Kems D. A., Brown T. X. and Thakoor A. P.,
"Competitive Neural Architecture for Hardware Solution to the Assignment
Problem," Neural Networks, Vol. 4, pp. 431-442, 1991. :

[20] Farhat N. H. and Bai B., "Echo Inversion and Target Shape Estimation by
Neuromorphic Processing," Neural Networks, Vol. 2, pp. 117-125, 1989.

[21] Freeman J. A. and Skapura D. M., Neural Networks Algorithms, Applications. and
Programming Techniques, Addison-Wesley Publishing Company, October 1991.

[22] Fuyjita O., "A Method for Designing the Internal Representation of Neural Networks
and Its Application to Network Synthesis," Neural Networks, Vol. 4, pp. 827-837.
1991.

{23] Giraud B., Liu L. C., Axelrad C. B. and Axelrad H., "Optimal Approximation of
Square Integrable Functions by a Flexible One-Hidden-Layer Neural Network of
Excitatory and Inhibitory Neuron Pairs," Neural Networks, Vol. 4, pp. 803-815,
1991.

[24] Grossberg S. and Schamajuk N. A., "Neural Dynamics of Adaptive Timing and
Temporal Discrimination During Associative Learning," Neural Networks, Vol. 2,

pp- 79-102, 1989.

[25] Guez Y., Donohue K. and Bilgutay N. M., "A Neural Network Architecture for
Ultrasonic Nondestructive Testing," IEEE Ultrasonics Symposium Proceedings,

pp. 777-780, 1991.

147

[26] Hepp D. J., "An Application of Backpropagation to the Recognition of Handwritten
Digits Using Morphologically Derived Features,” SPIE, Vol. 1451 Nonlinear
Image Processing II, pp. 228-233, 1991.

[27] Hirose Y., K. Yamashita and Hijiya S., "Back-Propagation Algorithm Which Varies
the Number of Hidden Units," Neural Networks, Vol. 4, pp. 61-66, 1991.

[28] Ho K. C., Chan Y. T. and Ching P.C., "Adaptive Time-Delay Estimation in
Nonstationary Signal and/or Noise Power Environments," [EEE Transactions On
Signal Processing, Vol. 41, No. 7, 1993.

[29] Hollis P. W. and Paulos J. J., "Artificial Neural Networks Using MOS Analog
Multipliers,"” Int. Conf. Neural Networks, 1988.

[30] Hollis P. W. and Paulos J. J., "Artificial Neural Networks Using MOS Analog
Multipliers," Journal of Solid-State Circuits, Vol. 25, No. 3, pp. 849-855, 1990.

[31] Hollis P. W. and Paulos J. J., "A Neural Network Learning Algorithm Tailored for
VLSI Implementation,"[EEE Transactions On Neural Networks, Vol. 5, No. 5,
1994.

[32] Homik K., "Approximation Capabilities of Multilayer Feedforward Networks,"
Neural Networks, Vol. 4, pp. 251-257, 1991.

[33] Homik K., Stinchcombe M. and White H., "Multilayer Feedforward Networks are
Universal Approximators," Neural Networks, Vol. 2, pp. 359-366, 1989.

[34] Homik K., Stinchcombe M. and White H., "Universal Approximation of an
Unknown Mapping and its Derivatives Using Multilayer Neural Networks,"
Neural Networks, Vol. 3, pp. 551-560, 1990.

[35] Hush D. and Horne B. G.,"Progress in Supervised Neural Networks: What's New
Since Lippman? " IEEE Signal Processing Magazine, pp. 8-39, January 1993.

[36] Jain K. A., Fundamentals of Digital Image Processing, Prentice Hall, 1989.

[37] Joerding W. H. and Meador J. L., "Encoding A Priori Information in Feedforward
Networks," Neural Networks, Vol. 4, pp. 847-856, 1991.

[38] Kammerer B. R. and Kupper W. A., "Experiments for [solated-Word Recognition
with Single and Two-Layer Perceptrons,” Neural Networks, Vol.3, pp. 693-706,

1990.

148

[39] Kechriotis G., Zervas E., and Manolakos E. S., “Using Recurrent Neural Networks
for Adaptive Communication Channel Equalization,” IEEE Transactions On
Neural Networks. Vol. 5, No. 2, pp. 267-278, March 1994.

[40] Kendall M.G. and Stuart A., The Advanced Theory of Statistics, Charles Griffin &
Company Limited, 1963.

[41] King T., "Using Neural Networks for Pattern Recognition: Recognizing and
Learning Patterns is One Thing Neural Nets Do Best," Dr. Dobb's Journal, pp. 14-

20, January 1989.

[42] Klimasauskas C., "Neural Nets and Noise Filtering," Dr. Dobb's Journal, pp. 32-48,
January 1989.

[43] Kobuchi Y., "State Evaluation Functions and Lyapunov Functions for Neural
Networks," Neural Networks, Vol. 4, pp. 505-510, 1991.

[44] Kom G. A., "A New Environment for Interactive Neural Network Experiments,"
Neural Networks, Vol. 2, pp. 229-237, 1989.

[45] Kulkarni A. D., "Solving Ill-Posed Problems With Artificial Neural Networks,"
Neural Networks, Vol. 4, pp. 477-484, 1991.

[46] Lang K. J., Waibel A. H. and Hinton G. E., "A Time-Delay Neural Network
Architecture for Isolated Word Recognition," Neural Networks, Vol. 4, pp. 23-43,

1991.

[47] Lee Y. H. and Fam A. T., “An Edge Gradient Enhancing Adaptive Order Statistic
Filter,” IEEE Trans. Acoust., Speech, Signal Processing. Vol. ASSP-35, no. 5,
pp. 680-695, May 1987.

(48] Levin E., "A Recurrent Neural Network: Limitations and Training," Neural
Networks, Vol. 3, pp. 641-650, 1991.

[49] Levin E., Gewirtzman R. and Inbar G. F., "Neural Network Architecture for
Adaptive System Modelling and Control," Neural Networks, Vol. 4, pp. 185-191,

1991.

[50] Masters T., Practical Neural Network Recipes in C++, Academic Press Inc., 1993.

{51] Moore K. L., "Artificial Neural Networks: Weighing the Different Ways to
Systematize Thinking," IEEE Potentials, pp. 27-28, 1992.

149

[52] Mougeot M., Azencott R. and Angeniol B., "Image Compression With Back
Propagation: Improvement of the Visual restoration Using Different Cost
Functions," Neural Networks, Vol. 4, pp. 467-476, 1991.

[53] Nguyen D. D. and Lee J. S. J., "A New LMS-Based Algorithm for Rapid Adaptive
Classification in Dynamic Environments," Neural Networks, Vol. 2, pp. 215-228,

1989.

[54] Papadakis E. P., “Ultrasonic Attenuation Caused by Scattering in Polycrystalline
Metals,” Journal of the Acoustical Society of America, Vol. 37, pp. 703-710,
1965.

[55] Papoulis A., Signal Analysis, Mc Graw-Hill Book Company, 1977.

[56] Perlovsky L. I. and McManus M. M., "Maximum Likelihood Neural Networks for
Sensor Fusion and Adaptive Classification," Neural Networks, Vol. 4, pp. 89-102,

1991.

[57] Rabiner L. R., Sambur M. R., and Schmidt C. E., “Applications of a Nonlinear
Smoothing Algorithm to Speech Processing,” IEEE Trans. Acoust.. Speech,
Signal Processing, vol. ASSP-23, pp. 552-557, Dec. 1975.

[58] Rajavelu A., Musavi M. T. and Shirvaikar M. V., "A Neural Network Approach to
Character Recognition," Neural Networks, Vol. 2, pp. 387-393, 1989.

[59] Rigler A. K., Irvine J. M. and Vogl T. P., "Rescaling of Variables in Back
Propagation Learning," Neural Networks, Vol. 4, pp. 225-229, 1991.

[60] Sachse W., Sribar I.Grabec, "Intelligent Processing of Ultrasonic Signals for
Quantative Material Testing," IEEE Ultrasonics Symposium Proceedings, pp.

767-776, 1991.

[61] Samad T., "Back Propagation With Expected Source Values," Neural Networks
Vol. 4, pp. 615-618, 1991.

[62] Sanger T. D., "Optimal Unsupervised Learning in a Single-Layer Linear Feedword
Neural Network", Neural Networks, Vol. 2, pp. 459-473, 1989.

[63] Saniie Jafar, Ultrasonic Signal Processing: System Identification and Parameter
Estimation of Reverberant and Inhomogeneous Targets, August 1981.

[64] Saniie J. and Bilgutay N. M., “Quantitative Grain Size Evaluation Using Ultrasonic
Backscattered Echoes,” Journal of the Acoustical Society of America, Vol. 80,
pp- 1816-1824, Dec. 1986.

150

[65] Saniie J. and Jin X. M., “Spectral Analysis for Ultrasonic NDE Applications Using
AR, Prony and MUSIC Methods,” Journal of the Acoustical Society of America,
pp- tbd, October 1996.

[66] Saniie J. and Nagle D. T., “Analysis of Order-Statistic CFAR Threshold Estimators
for Improved Ultrasonic Flaw Detection,” IEEE Transactions on Ultrasonics.

Ferroelectrics, and Frequency Control, Vol. 39, No. 5, September 1992.

[67] Saniie J., Nagle D. T., and Donohue K. D., “Analysis of Order Statistic Filters
Applied to Ultrasonic Flaw Detection Using Split-Spectrum Processing,” IEEE
Trans. on ultra., ferro., and freq. control, Vol. 38, no. 2, pp. 133-140, March 1991.

[68] Saniie J., Unluturk M. and Chu T., "Frequency Discrimination Using Neural
Networks with Applications in Ultrasonics Microstructure Characterization,”

IEEE Ultrasonics Symposium Proceedings, pp. 1195-1199, 1992.

[69] Saniie J., Wang T., and Bilgutay N. M., “Analysis of Homomorphic Processing for
Ultrasonic Grain Signal Characterizations”, IEEE Transactions on Ultrasonics.
Ferroelectrics. and Frequency Control, pp. 365-375, May 1989.

[70] Saniie J., Wang T., and Jin X., “Performance Evaluation of Frequency Diverse
Bayesian Ultrasonic Flaw Detection,” J. Accoust. Soc. Am. 91 (4), Pt. 1, pp.
2034- 2041, April 1992.

[71] Shawe J. S. and Cohen D. A., "Linear Programming Algorithm for Neural
Networks," Neural Networks, Vol. 3, pp. 575-582, 1990.

[72] Shoemaker P. A., Carlin M. J. and Shimabukuro R. L., "Back Propagation Learning
With Trinary Quantization of Weight Updates," Neural Networks, Vol. 4, pp. 231-
241, 1991.

[73] Sietsma J. and Dow R. J. F., "Creating Artificial Neural Networks That Generalize,"
Neural Networks, Vol. 4, pp. 67-79, 1991.

[74] Silverman R. H. and Noetzel A. S., "Image Processing and Pattern Recognition in
Ultrasonograms by Backpropagation,” Neural Networks, Vol. 3, pp. 593-603,
1990.

[75] Sontag E. D. and Sussmann H. J., "Back Propagation Seperates Where Perceptrons
Do," Neural Networks, Vol. 4, pp. 243-249, 1991.

[76] Specht D. F., "Probabilistic Neural Networks," Neural Networks, Vol. 4, pp. 109-
118, 1990.

151

[77] Takadoya M., Notake M., Yabe Y., Ogi T., Kitahara M. and Achenbach J. D..
"Quantitative Evaluation Of Defects By Neural Network." Nondestr, Test. Eval..
Vol. 8-9, pp. 443-451, 1992.

[78] Tao Y., "Approximation of Functions on a Compact Set by Finite Sums of a
Sigmoid Function Without Scaling,” Neural Networks, Vol. 4, pp- 817-826, 1991.

[79] Tenorio D. and Tenorio M. F., "Short Utterance Recognition Using Network With
Minimum Training," Neural Networks, Vol. 4, pp- 711-722, 1991.

[80] Tollenaere T., "SuperSAB: Fast Adaptive Back Propagation with Good. Scaling
Properties," Neural Networks, Vol. 3, pp. 561-573, 1990.

[81] Unluturk M. S. and Saniie J., “Deconvolution Neural Networks for Ultrasonic
Testing,” 1995 IEEE Ultrasonics Symposium pp- 715-719, 1995.

[82] Unluturk M. and Saniie J., ‘Neural Networks for Ultrasonic Grain Size
Discrimination,” 1996 IEEE Ultrasonics Symposium, 1996.

[83] Van Der Maas H. L. J., Verschure P. F. M. J. and Molenaar P. C. M., "A Note on
Chaotic Behavior in Simple Neural Networks," Neural Networks, Vol. 3,pp- 119-
122, 1990.

[84] Van Hulle M. M. and Orban G. A., "Representation and Processing in a Stochastic
Neural Network: An Integrated Approach,"” Neural Networks, Vol. 4, pp. 643-655,
1991.

[85] Wang T., Ultrasonic Signal Processing and Pattern recognition in Evaluating the
Microstructure of Materials, December 1987.

[86] Wang T., Saniie J., and Jin X., “Analysis of Low-Order Autoregressive Models for
Ultrasonic Grain Signal Characterization,” IEEE Transactions on Ultrasonics,

Ferroelectrics, and frequency control, vol. 38, No. 2, March 1991.

[87] Watanabe S. and Yoneyama M., "An Ultrasonic Visual sensor Using Neural
Networkand its Application to Automatic Object Recognition," IEEE
Ultrasonics Symposium Proceedings, pp. 781-784, 1991.

[88] White H., "Connectionist Nonparametric Regression: Multilayer Feedforward
Networks Can Learn Arbitrary Mappings," Neural Networks, Vol. 3, pp. 535-549,
1990.

[89] Winters J. H. and Rose C., "Minimum Distance Automata in Parallel Networks for
Optimum Classification," Neural Netwoks, Vol. 2, pp. 127-132, 1989.

152

[90] Wong K. M. and Chen S., “Detection of Narrow-band Sonar Signals Using Order
Statistical Filters,” IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-
35, no. 5., pp 597-613, May 1987.

[91] Yao Y., Freeman W., Burke J., B. and Yang Q., "Pattern Recognition by a
Distributed Neural Network: An Industrial Application," Neural Networks, Vol. 4,
pp.- 103, 121, 1991.

[92] Youn D.H., Ahmed N., and Carter G. C., "On Using the LMS Algorithm for Time

Delay Estimation,"IEEE Transactions On Acoustics. Speech. and Signal
Processing, Vol. ASSP- 30, No. 5, 1982.

