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ABSTRACT Systemic vulnerabilities in the Internet of Things (IoT) pose a challenge for establishing
robust cybersecurity strategies. These challenges leave IoT devices susceptible to infection, often falling
victim to far-reaching Botnets. To counter these risks, Intrusion Detection Systems (IDS) are designed to
detect attacks within the network, mitigating the dangers presented by architecturally vulnerable IoT devices.
However, IDS solutions are designed to operate at the center of the network, requiring network traffic to be
forwarded inwards and consequently hampers reaction times while straining network resources. This paper
introduces an IoT Botnet detection pipeline composed of a novel network traffic visualization methodology
and a Convolutional Neural Network (CNN). The pipeline operates on an embedded system at the edge of
the network, transforming network traffic into a visual format for subsequent cyberattack classification by
the CNN. By leveraging the advantages of CNNs in efficiently classifying images, the pipeline achieves
high accuracy in detecting Botnet attacks while maintaining an efficient design. During testing, we applied
the pipeline to the N-BaloT and IoT-23 datasets and observed high cyberattack detection rates of 100%
and 99.78%, respectively. Furthermore, we observed a 2.4 times greater throughput (packets/second) and a

21.4% reduction in model size compared to a Deep Neural Network of similar accuracy.

INDEX TERMS Botnets, cybersecurity, convolutional neural network, intrusion detection systems.

I. INTRODUCTION

The Internet of Things (IoT) continues to fuel innovation and
growth across the medical, industrial, and energy sectors [1],
[2]. According to IoT Analytics® *“State of [oT-Spring 2023”
report, the number of IoT devices grew by 18% in 2022 to
14.3 billion active devices, with the growth expected to dip to
16% in 2023 [3]. The firm also predicts that the enterprise IoT
market will grow from $201 billion in 2022 to $483 billion
by 2027. In their Annual Internal Report (for 2018-2023),
Cisco predicts that by the end of 2023, 50% of all global
networked devices will be IoT [4]. Despite this strong growth,
integrating IoT devices introduces challenges for applying
strong cybersecurity controls within the network.
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Alongside their growth, IoT systems have experienced
severe difficulties in fending off cyberattacks [5], [6], [7],
[8], [9]. As part of their efforts to enhance Internet security,
the Open Worldwide Application Security Project (OWASP)
publishes a ranking of common cyberattacks against IoT
in their OWASP Top 10 Internet of Things. Within their
2018 rankings, vulnerabilities such as 1) Weak, Guessable,
or Hardcoded Passwords, 2) Insecure Network Services,
3) Insecure Ecosystem Interfaces, and 4) Lack of Secure
Update Mechanisms were identified as areas of concern [10].
The simple nature of these vulnerabilities highlights the cur-
rent deficiencies in IoT cybersecurity. Factors that contribute
to the insecurity of IoT include the increasing heterogeneity
of network infrastructure and a lack of secure coding prin-
ciples [11], [12]. In many applications, numerous vendors
and devices are required to maximize the use of distributed
sensors and cyber-physical systems. This influx of unique
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devices complicates the cohesive application of cybersecu-
rity policies throughout the network. The ongoing lack of
cybersecurity standards further reduces adherence to secure
coding practices during development. Limited computation
and authentication capabilities also contribute, weakening
resistance to eavesdropping, impersonation, and Denial of
Service (DoS) attacks [13], [14], [15], [16]. Altogether, these
weaknesses create the perfect conditions for compromising
vast numbers of devices.

Due to the simplicity of attacks against IoT devices,
it wasn’t long before hackers began gathering large num-
bers of compromised devices into larger networks known as
botnets. Infection of a device starts when a scanner iden-
tifies a potentially vulnerable device and reports it to a
central database [17], [18]. Depending on the sophistication
of the botnet, the central server will either attempt to brute
force the SSH login or exploit a known vulnerability on
the device. After securing access, the botnet will prevent
other hackers from gaining access by turning off remote
access features and will contact the command and control
(C2) server to download architecture-specific malware [19].
After this occurs, the device may attempt to scan for addi-
tional devices for infection, contribute towards a Distributed
Denial of Service (DDoS) attack, mine for cryptocurrency,
or maybe shut down. Botnet developers constantly update
their botnets for enhanced evasion or infection. The most
well-known botnet was the Mirai botnet, which achieved a
peak of 600,00 infections in 2016 and improved the Bashlite
botnet [17]. Advancements in the Mirai botnet included TCP
SYN scans based on pseudorandom IPv4 addresses for more
efficient victim identification. In 2023, the IZ1H9 botnet,
a Mirai-based botnet, was observed incorporating thirteen
new payloads to account for new vulnerabilities identified
in IoT devices [20]. Additionally, some botnet architectures
are shifting away from centralized C2 infrastructures towards
peer-to-peer (P2P) architectures to complicate eradicating the
botnet’s control system [21]. Due to the dangers posed by
these botnets, Intrusion Detection Systems (IDS) must iden-
tify botnet activity to prevent infection and isolate infected
devices.

Machine learning models are effective tools in identifying
cyberattacks and are frequently found in IDS roles [22], [23],
[24], [25], [26]. Compared to rule-based IDSs, ML models
are trained to identify abnormal behavior and signatures of
common attack types. Current solutions operate within cen-
tralized network architectures, drawing from deep resource
pools. For IoT devices, traffic must be forwarded internally
for processing, straining network resources and harming
response time. To improve response times, an IDS can be
introduced at the network’s edge; however, to remain cost-
effective, the IDS must be hosted on an embedded system.
This is challenging as many modern ML models have high
parameter counts, necessitating large storage volumes, which
are infeasible on low-cost embedded systems.

To address the limitations of deploying machine learn-
ing within an IoT environment, we introduce a lightweight
IoT Botnet Detection Pipeline. This pipeline is composed of
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2 stages: 1) anovel network traffic visualization methodology
and 2) a Convolutional Neural Network for network traffic
classification. By leveraging the advantages of the CNN in
classifying images, we achieve a 2.4 times greater throughput
compared to a Deep Neural Network and a reduction in the
number of trainable parameters by 21.4%. When coupled
with a Jetson Nano, the IoT Botnet Detection Pipeline keeps
pace with the throughput demands of IoT environments at a
low cost.

This paper contributes to the IoT cybersecurity literature in
the following manner:

1. Proposes a novel network traffic visualization methodol-
ogy for transforming network traffic into a visual format.

2. Introduces a Convolutional Neural Network model for
classifying visualized network traffic.

3. Compares the proposed IoT Botnet Detection Pipeline
against a Deep Neural Network (DNN) model and
Autoencoder (AE) model using two IoT Datasets:
N-BaloT [27] and 10T-23 [28]. The following metrics are
used:

a. Botnet Detection Accuracy

b. Botnet Classification Accuracy
c. Throughput (packets/second)
d. Model Parameter Count

This paper is organized as follows. In Section II, we will
discuss related works and explore alternative solutions for
detecting botnet activity within an IoT network. Next,
Section IIT will introduce the visualization methodology and
present examples of visualized network traffic. Section IV
will examine our machine learning models, including a
Convolutional Neural Network, Deep Neural Network, and
Autoencoder models. Botnet detection and classification
accuracy are presented and discussed in Section V. Finally,
we will summarize our work in Section VI.

Il. RELATED WORKS

There are many methods for detecting and preventing Botnet
infections and attacks within IoT ecosystems. For instance,
a hardening script may prevent the Botnet from executing
its payload [29], or an automated scanning tool may search
for Botnet fingerprints [30]. While these tactics are effective,
they rely on a database of signatures and may not adapt
to novel threats. In the hopes of adapting to novel attack
flows, research has shifted towards applying anomaly detec-
tion for identifying Botnet activity. For instance, an analysis
of Blockchain transactions among IoT devices may reveal
deviations from normal activity [31], [32], [33]. However,
most of the research has been centered around applying
deep learning models for implementing intrusion detection
capabilities. Advances in Deep Learning and the general
availability of high-powered computing resources have made
these solutions viable within traditional networks. Ongoing
research into these solutions spans from i) Deep Neural Net-
works (DNN), ii) Convolutional Neural Networks (CNN),
iii) Autoencoders (AE) and Generative Adversarial Models
(GAN), and iv) Long-Short Term Memory (LSTM) models.
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Beginning with the least complex model, Deep Neural Net-
works are a family of machine learning models where weights
and biases are trained based on the input and classification.
Huma et al. [34] explored the potential application of a Deep
Neural Network composed of 3 Recurrent Neural Networks
(RNN) and 3 Multilayer Perceptron Layers (MLP) within
the context of an Industrial Internet of Things (IIoT) setting.
Their research found that the model successfully detected
cyberattacks within the DS20S (98% accuracy) and UNSW-
NB15 (99% accuracy) datasets.

Next, Convolutional Neural Networks are another popular
class of Deep Learning models. Typically applied against a
matrix or image input, these models apply convolutions with
kernels and biases during classification. The most substan-
tial benefit of these architectures is that they require fewer
parameters when compared to a Deep Neural Network of
similar complexity. Research regarding a CNN approach was
conducted by Hussain et al. [35], in which they developed
an ensemble approach for detecting Denial of Service (DoS)
and scanning activity and achieved an overall accuracy of
98.89%. Additional research into CNN for botnet detection
includes [36], [37]. In [36], Ullah et al. explored the BoT-
IoT, MQTT-10T-IDS2020, and [0oT-23 datasets using 1D, 2D,
and 3D Convolutional Networks. In [37], Hairab et al. applied
a CNN model against the Bot-IoT dataset, achieving 91%
accuracy.

Autoencoders and Generative Adversarial Networks are
primarily used for expanding datasets with data of a similar
form; however, when a discriminator is introduced, they can
be used in classification and detection applications. Abdal-
gawad et al. [38] explored a potential solution using an
Adversarial Autoencoder (AAE) and a Bidirectional General
Adversarial Network (BiGAN) against the [oT-23 dataset,
which we will be using as well. During their research,
they found that they were superior to basic Machine Learn-
ing models (Random Forest, Support Vector Machine....)
and achieved an F1-Score of 0.99 for both the AAE and
BiGAN models. In addition to [38], the developers of the
N-BaloT dataset, Meidan et al. [27], used an Autoencoder
as a classifier in their research. In their implementation,
they used four hidden layers in the encoder and decoder,
which decreased the input size to 75%, 50%, 33%, and 25%
after each layer. Further, they trained models for each device
within the environment and conducted cyberattack detection,
achieving near-perfect accuracy. In contrast, we will develop
a multi-class classification Autoencoder model for general-
ized cyberattack detection across a diverse range of devices.
We discuss the differences between our Autoencoder imple-
mentation and the N-BaloT implementation in Section I'V.

Long-Short Term Memory (LSTM) models are another
popular model for detecting botnet attacks. These models
are popular as they inject some knowledge regarding previ-
ously recorded traffic. This is beneficial as many cyberattacks
have multiple stages and can be challenging to detect when
examining individual points in time. Alkahtani and Ald-
hyani [39] explored a classification model that combined a
CNN and an LSTM model. Throughout their research, they
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ran their classifier over the N-BaloT dataset and achieved
an accuracy of 100%. Other papers that applied an LSTM
included [40], [41]. In [40], Saharkhizan et al. designed an
ensemble method, combining multiple LSTM models for
cyberattack detection in Modbus network traffic. Through
their methodology, they achieved an accuracy of 99.62%.

Regarding the application of visualization methodologies,
data visualization as a pre-processing tool is not a new
concept in cybersecurity. The authors in [42] extracted the
binary image of infected IoT devices and converted them to
an image format prior to analysis. After analysis, the team
achieved 94% accuracy when working with DDoS attacks
and 81.8% accuracy for main malware families. Next, the
authors in [43] converted the payload of encrypted traffic to
identify malware. Using the ISCX VPN-NonVPN dataset, the
team achieved an F1 Score of 97.73% in detecting malware.
Finally, the work most similar to ours was [44]. In this
work, the authors converted the raw network traffic before
classification using the ResNet50 CNN to achieve a 94.50%
accuracy in their self-generated dataset. Our work differs as
we extract features from the packet metadata before analysis.
Further, we focused on developing a lightweight classifier for
applications within the network’s edge.

Regarding our previous research, we explored botnet
detection and classification within the N-BaloT and IoT-
23 datasets. During our research on the N-BaloT dataset,
we explored the heterogeneity tolerance of Deep Neural
Networks when classifying Miria and Gafgyt traffic within
a diverse environment of IoT devices [45]. Additionally,
we explored the potential application of an Autoencoder [46]
and a Convolutional Neural Network [47] for conducting
binary classification of botnet attacks in the N-BaloT dataset.
Lastly, we explored the application of a CNN on the [0T-23
dataset [48].

Our work expands on existing solutions by exploring the
effectiveness of a visualization methodology in improving
botnet detection at the network’s edge. In conjunction with
a Convolutional Neural Network, we achieve high accuracy
in detecting botnet attacks. Simultaneously, our pipeline has
high throughput and a low parameter count, ideal for embed-
ded systems. We compare our results with a deep neural
network and autoencoder of similar accuracy. Our Deep
Neural Network approach will not utilize the visualization
methodology and will serve as a baseline comparison. On the
other hand, our Autoencoder was designed for multi-class
classification and presented an alternative approach to the
model proposed by Meidan et al. in the N-BaloT paper [27].

IIl. VISUALIZATION METHODOLOGY

The proposed network traffic visualization methodology con-
verts network traffic into a visual format for classification
by a Convolutional Neural Network. To achieve this, the
methodology extracts metadata and packet statistics from
each incoming packet. The following metadata is extracted:
1) Source MAC Address, 2) Source IP Address, 3) Des-
tination IP Address, and 4) Destination Port Number. The
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extracted packet statistics include 1) The average size of
outbound packets, 2) The average size of both inbound and
outbound packets, 3) The number of packets from the Source,
and 4) The average time (jitter) between arrivals. This infor-
mation is then used to generate 12 features for our image
generation. The reasoning behind our features and how to
calculate them will be discussed in Section ITI-A. After gener-
ating our 12 features, the process by which they are organized
into a visual format will be presented in Section III-B.

A. DATASETS

During our research, we evaluated our pipeline against two
publicly available datasets, N-BaloT and IoT-23. First, the
N-BaloT dataset was collected by Meidan et al. in 2018,
examining the Mirai and Gafgyt (also known as BASHLITE)
botnets. We selected this dataset as it contained a hetero-
geneous network of 9 consumer IoT devices during both
botnets’ propagation and attack stages. Additionally, the
authors considered sub-classifications of Mirai and Gafgyt
activity, providing 5 Mirai and 5 Gafgyt sub-classifications.
The inclusion of sub-classifications further refines our iden-
tification of the botnets and indicates the infection stage from
which the IoT device is suffering.

Compared to alternative datasets, N-BaloT consists of
network traffic metadata statistics rather than raw network
traffic. To transfer machine learning models based on the
methodology introduced by Meidan, we need to complete
feature extraction on raw network traffic data. This is accom-
plished by collecting each packet’s MAC address, Source IP,
Destination IP, and port number. Meidan et al. collected these
statistics over 5 time windows: 100 milliseconds, 500 mil-
liseconds, 1.5 seconds, 10 seconds, and 1 minute. Each time
window accounted for 23 features, resulting in an overall
feature set of 115 features. However, we focused on only the
smallest time decay for our application, reducing our features
to 23. To optimize image generation, we further decreased
the feature set to 12 features, resulting in 2 x 2 blocks with
3 channels for an RGB image. To select the 12 remaining fea-
tures, we generated images for Benign and Mirai traffic under
different combinations of features. Our final features were
selected under 2 criteria: 1) the features created images with
significant variation between the Mirai and Benign images,
and 2) the features were not similar to already selected
features. Table 1 contains the final 12 features used in our
visualization methodology, with labels referring to the label
applied in the original N-BaloT dataset.

After evaluating our visualization methodology against the
N-BaloT dataset, we explored the IoT-23 dataset to validate
our methodology. Published in 2020 by Garcia et al., the
I0T-23 dataset examines 3 [oT devices and generated 23 oper-
ating scenarios, comprised of 3 benign and 20 malicious
scenarios. Within the malicious scenarios, the authors studied
11 classes of cyberattacks, including the Mirai Botnet, the
Torii Botnet, the Okiru Botnet, and a Trojan Malware sample.
A complete list of classes for the IoT-23 dataset is presented
in Table 2. Unlike the N-BaloT dataset, [oT-23 provides raw
network traffic in a .pcap file and a labeled Zeek flow, which
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TABLE 1. Features extracted for the visualization methodology.

N-BaloT Feature Description
Index
[27]
. . Packet count based on source
0 MI dir LS weight MAC-IP
. The average size of packets
! MI_dir_L5_mean based on source MAC-IP
. . Variance of packet size based
2 MI_dir L5_variance on source MAC-IP
15 H L5 weight Packet count based on source IP
16 H L5 mean The average size of outbound
- = packets
17 H_15 variance Variance of outbound packets
The average size of outbound
31 DR LS o packets based on destination IP
Packet size of inbound and
33 HH_LS5_magnitude outbound packets to a
destination IP
Root Squared sum of inbound
34 HH_LS5_radius and outbound packets to a
destination IP
Average jitter (time between
66 HH_jit_L5_mean arrivals) for packets based on
destination IP
Average packet size based on IP
81 HpHp_L5 mean il ot
The standard deviation of
82 HpHp_L5_std packet size based on IP and port

classifies the network traffic. Since our methodology was
initially developed around the N-BaloT dataset, we extracted
the metadata features from the raw traffic before applying
the visualization methodology. As stated, the MAC Address,
Source IP, Destination IP, and port number were collected,
and our 12 features were generated for each packet.

TABLE 2. N-BaloT and 10T-23 classes.

N-BaloT Classes  10T-23 Classes
0 | Benign Benign
1 Gafgyt - Combo Mirai
2 | Gafgyt— Junk Torii
3 | Gafgyt— Scan Trojan
4 | Gafgyt— TCP Gafgyt
5 | Gafgyt— UDP Kenjiro
6 | Mirai — ACK Okiru
7 | Mirai — Scan Hakai
8 | Mirai— SYN IRCBot
9 | Mirai — UDP Hajime
10 | Mirai — UDP plain  Mubhstik
11 HideAndSeek

Both datasets exhibited an imbalance between Benign and
Botnet activity. We took steps to balance these datasets and
did not conduct testing to determine how these imbalances
would impact our results; however, imbalances traditionally
result in challenges in properly detecting the underrepre-
sented classes. Within the N-BaloT dataset, the Mirai Botnet
represented the largest share (52.65%), the Gafgyt Botnet rep-
resented the second largest share (39.41%), and the Benign
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data represented the smallest share (7.94%). For binary clas-
sification, we introduced a dropout layer to retain 20% of
Botnet activity, and for multi-class classification, we took a
random sample of 90,000 packets for each class (10,000 for
each device). Regarding the [oT-23 dataset, the authors varied
their evaluation periods with packet captures varying from
1 hour to 112 hours and containing anywhere from 23,000
to 271,000,000 packets. To balance the dataset, we took a
100,000-packet sample from each observed class.

The diverse range of devices and botnets presented in the
N-BaloT and IoT-23 make them an ideal pair for under-
standing the proposed pipeline’s generalizability to future [oT
environments. The N-BaloT dataset offers a diverse range
of devices, examining 9 consumer IoT devices, whereas the
IoT-23 dataset explores a diverse range of botnets, studying
11 classes of botnet infection. While evaluation will be useful
for detecting the presence of a botnet, the datasets lacked
granularity to determine the type of activity undertaken by the
botnet. For instance, the botnet may have attempted to iden-
tify vulnerable devices, exploit vulnerabilities, or establish
command-and-control functionality. With this information,
we may better understand the health of our network and
fine-tune our response to the breach.

B. IMAGE GENERATION ALGORITHM

After calculating the 12 features according to Table 1,
our visualization methodology converts each packet into
a2 x 2 pixel area. 12 features are grouped into 4 sets of 3 and
assigned to the RGB channels of each pixel. This process is
presented in Figure 1. While any number of features can be
used, using an arrangement that does not fully populate the
perfect square of each sub-image will require zero padding
to optimize image generation. Each packet represents a sub-
image, with consecutive packets joined together to form a
complete image. As a result, each image represents a period
between the first and last packet. To optimize performance,
sub-images are organized into a perfect square. The process
of assembling the completed image from sub-images is pre-
sented in Figure 2. Additionally, Algorithm 1 provides an
implementation of image generation.

M =10, 1,2, 15, 16, 17, 31, 33, 34, 66, 81, 82]
( J L - Ik - J U J

P1 P2 P4

L J

+

P1|E2

P3 P4

FIGURE 1. Sub-image creation. Metadata for each packet, composed of
12 features, is grouped into 4 groups of 3 for a 2 x 2 RGB sub-image.

M = Packet Metadata
P = Pixel

For our analysis, 100 packets were used, forming a 20 x 20
RGB image. When considering the N-BaloT dataset, we con-
sidered a time window of 100 milliseconds between packets.
so that after every 100 milliseconds packets have half the
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P = Pixel |
| = Sub-Image — I

P3 P4

Iy Iip | Iiz | Ty || T20

1 PY 1 P Ly, Ly | oo | Ligo

10 Sub-Images (20 Pixels)
It

.
10 Sub-Images (20 Pixels)

FIGURE 2. Network traffic visualization technique. After conversion into a
sub-image, 100 packets are combined into a full image.

Algorithm 1 Visualization Methodology
INPUT:
p: Array of packets
n: Number of packets
OUTPUT:
image: image
1: Calculate a = \/n
2:fori <ndo
forj <3 do
image[2+(i//a)][2+(%a)][j] = plillj]
image[2x(i//a)][2x(1%a)+1][j] = plil[j+3]
image[2x(i//a)+1][2x(1%a)][j] = pli][j+6]
image[2x(i//a)+1][2x(i%a)+1][j] = plil[j+9]
end for
: end for

Lodaansw

impact on the moving average. While the original dataset
contained 115 features, our previous research showed that a
sub-sample of 12 features achieved the best results [32]. This
provided an optimal throughput while maintaining compara-
ble accuracy. A sample feature set from the N-BaloT dataset
is presented in Figure 3, containing samples collected from
the Danmini Doorbell. Before applying our visualization
methodology to the [oT-23 dataset, we needed to complete
feature extraction. After doing so, we received the sample
images presented in Figure 4.

IV. MACHINE LEARNING MODELS

After developing our visualization methodology and trans-
forming the N-BaloT and IoT-23 datasets, we designed
machine learning models for classifying the resulting images.
Three classes of machine learning models were used for this
evaluation: a Deep Neural Network (DNN), a Convolutional
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n} Eenﬁgn Dma b)ang}1 Combo c) Gafg_ﬁ Junk

d) Gafeyt Scan ¢) Gafgyt TCP f) Gafgyt UDP
g) Mirai ACK h) .\lii'ai Scan i) .\lir:ﬁ SYN
-
J) Mirai UDP k) Mirai UDPPlain

FIGURE 3. Sample traffic images generated from the N-BaloT dataset.

Neural Network (CNN), and an Autoencoder (AE). First, the
Deep Neural Network was selected for its simplistic design
and to serve as a baseline for evaluating the effectiveness of
our methodology.

During training, the feature sets will not be transformed
and will be supplied directly as inputs to our DNN models.
Next, the Convolutional Neural Network was selected as it is
popular for image analysis and classification within machine
learning. Compared to DNNs of similar accuracy and com-
plexity, CNNs have been found to have significantly reduced
parameter counts. Finally, the Autoencoder was chosen as
the initial N-BaloT researchers applied an Autoencoder to
evaluate their feature extraction methods. All three models
were implemented in Python and utilized the TensorFlow
libraries.

A. DEEP NEURAL NETWORK

Serving as our baseline evaluation model, Deep Neural
Networks are simple machine learning models composed
of layers of fully connected weights and biases, otherwise
known as multilayer perceptron layers (MLP). Our model
was based on our previous research regarding heterogene-
ity tolerance in Deep Neural Networks and was optimized
for detecting cyberattacks within a diverse range of IoT
devices [30]. Unlike our proposed methodology, the DNN
uses the feature set from the N-BaloT dataset, which is com-
posed of 115 features.

Deep Neural Networks are composed of interconnected
multilayer perceptron layers (MLP), in which the output of
each layer is determined by multiplying and adding a set of
weights and biases, respectively, followed by an activation
function. When designing our model, we tuned the number
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v a)Beﬁigﬁnm . b) Géfg&t o c) Hajiniev .
© d)Hakai ¢) HideandSeek ~ DIRCBot

" Ui Mubstik

“ ok T oTori 7 ) Trojan

FIGURE 4. Sample traffic images generated from the 10T-23 dataset.

of layers, the number of outputs for each layer, the activation
function for each layer, and the regularization applied to
each layer. To determine the best model, we optimized for
accuracy and a low parameter count (the number of weights
and biases). The final design for our DNN was composed of
4 layers:

1. Layer 1 — Input: 115, Output: 115, Activation: tanh, Reg-
ularization: L1 Regularization
2. Layer 2 — Input: 115, Output: 64, Activation: tanh, Regu-
larization: None
3. Layer 3 — Input: 64, Output: 32, Activation: tanh, Regu-
larization: None
4. Layer 4 — Input: 32, Output: 12, Activation: SoftMax,
Regularization: None
The number of outputs for our final layer was based on the
number of classes for each application: 1) Botnet Detection
— 2 outputs, 2) Botnet Classification of the N-BaloT dataset
— 11 outputs, and 3) Botnet Classification of the [0T-23
dataset — 12 outputs. A visual representation of our DNN
model is presented in Figure 5.

B. CONVOLUTIONAL NEURAL NETWORK
Our next model was a Convolutional Neural Network, a pop-
ular machine learning algorithm class for analyzing and
classifying images. The models differ from deep neural net-
works in that they train a set of filters using the convolution
function. Compared to the DNN, the convolution function
greatly reduces the number of parameters that must be trained
to achieve similar results.

The CNN is composed of a series of Convolutional Lay-
ers, which apply the Convolutional function with trained
kernels against the input. IN between each Convolutional
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Input Layer

MLP Layers

Output Laye

Feature 1

X1 {L-M (v —

Feature 2

X2

Feature 3 B\
+ X3

Featurk 115 H »
————»{ X115 — ‘ L4,11 ——t
Lay.er i Layer 2 Layer 3 Layer 4
Inpdt. 15 Input: 115 Input: 64 Input: 32
Output: 115 . . .

Output: 64 Output: 32 Output: 1

fctivation = fanh Activation =tanh  Activation = tanh Activation = softmax

L1 Regularization

FIGURE 5. The deep neural network model for baseline comparison of
our botnet intrusion detection system.

Layer, Max Pooling is used to reduce dimensionality and
highlight important features in our images. For classification,
the image is flattened and passed through a set of multilayer
perceptron layers. During testing, we adjusted the number of
Convolutional, Max Pooling, and MLP layers along with the
Convolutional Kernel Size, the Convolutional Kernel Stride,
the Convolutional Activation Function, the Max Pooling Ker-
nel Size, the Output size of each MLP layer, and the MLP
Activation Functions. After testing, we arrived at the follow-
ing model using an input 20 x 20x3 image:

1. Convolutional Layer 1 — Kernel: 2 x 2x12, Stride: 2,
Activation: ReLU

2. Max Pooling Layer 1 — Kernel: 2 x 2

3. Convolutional Layer 2 — Kernel: 2 x 2x16, Stride: 1,
Activation: ReLu

4. Max Pooling Layer 2 — Kernel: 2 x 2

5. Flatten Layer

6. MLP Layer 1 — Input:64, Output: 128, Activation:
Sigmoid

7. MLP Layer 2 — Input: 128, Output: 64, Activation:
Sigmoid

8. MLP Layer 3 — Input: 64, Output: 12, Activation: Sigmoid

The number of outputs for our final layer was based on the
number of classes for each application: 1) Botnet Detection —
2 outputs, 2) Botnet Classification of the N-BaloT dataset —
11 outputs, and 3) Botnet Classification of the [0T-23
dataset — 12 outputs. A visual representation of our CNN
model is presented in Figure 6.

C. AUTOENCODER

Lastly, we explored the application of an Autoencoder model
for our cyberattack classification. We included this class of
models as the N-BaloT team used them to evaluate their
feature extraction methodology when working with their
dataset. As such, this allows us to compare the effectiveness
of our methodology against existing research. Autoencoders
attempt to reconstruct the input features according to a
desired class. For instance, we may attempt to reconstruct a
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Benign image from the input data. For classification applica-
tions, we determine whether the input image is of the desired
class by taking the error between the input and output images.
If the error is low, we can conclude that the image is of the
reconstructed class, whereas a high error indicates that it is
not. To conduct multi-class classification, we are required to
create an Autoencoder model for each class and make our
selection based on the output with the lowest error.

The design of an Autoencoder is broken into two stages:
1) an Encoder and 2) a Decoder. The Encoder compresses
the input while the Decoder decompresses the image to the
reconstructed class. Based on our testing, we found that
the Autoencoder worked best when Convolutional Layers
were used for compressing and decompressing the input.
Our Encoder was composed of 2 Convolutional Layers,
which decreased the input size to 75% and then 50%. The
Decoder was composed of 2 Transpose Convolutional Layers.
‘We modified the size of our Convolutional kernels, the Stride
of our Kernels, and the Activation Function during testing.
The following describes our model’s construction:

1. Encoder:
a. Convolutional Layer 1 — Kernel: 2 x 2x9, Stride: 2,
Activation: ReLU
b. Convolutional Layer 2 — Kernel: 6 x 6x24, Stride 1,
Activation: ReLU
2. Decoder:

a. Transpose Convolutional Layer 1 — Kernel: 6 x 6x9,
Stride: 1, Activation: ReLU
b. Transpose Convolutional Layer 2 — Kernel: 2 x 2x3,
Stride: 1, Activation: ReLU
A visual representation of our Autoencoder model is pre-
sented in Figure 7. Additionally, samples of output from the
Benign, Kenjiro, and Muhstik Autoencoders are presented in
Figure 8.

V. RESULTS AND DISCUSSION

Evaluation of the IoT Botnet Detection Pipeline was con-
ducted using a Jetson Nano and considered the following
metrics: 1) Botnet Detection Accuracy (Binary Classification
Accuracy), 2) Botnet Classification Accuracy (Multi-Class
Classification), 3) Model Throughput in packets/second,
and 4) Model Parameter Counts. Before our evaluation,
we balanced our datasets to reduce overfitting to the most-
represented classes. For the N-BaloT dataset, we took a
random subsample of 10,000 packets for each class from each
device, bringing us to 890,000 packets. For the IoT-23 dataset,
we took 100,000 samples from each of the 23 scenarios to
receive 2,300,000 packets.

After balancing our datasets, we randomly assigned the
remaining packets to training, validation, and testing sets
with probabilities of 60%, 30%, and 10%, respectively.
For our Convolutional Neural Network and Autoencoder,
our training, validation, and testing sets were processed
via the network traffic visualization methodology. Since the
Deep Neural Network serves as our baseline model, no pre-
processing was completed. At this stage, the datasets were
classified and accuracy metrics were compiled.
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FIGURE 8. Autoencoder results when Benign, Kenjiro, and Muhstik
images are provided to the Benign, Kenjiro, and Muhstik Autoencoders.

In subsection V-A., we will present the results for Bot-
net Detection Accuracy. This metric indicates whether the
classifiers detected a botnet, regardless of the type of bot-
net. Along with detection accuracy, we will present our
True Positive Rate, False Positive Rate, True Negative Rate,
and False Negative Rate to provide additional insight into
model performance. In subsection V-B., we will present the
results for Botnet Classification Accuracy. This metric indi-
cates whether our classifiers can identify the Botnet behavior
that is present. For the N-BaloT dataset, 11 classes are
present, and for the IoT-23 dataset, 12 classes are present.
Subsection V-C. presents the throughput of our IoT Bot-
net Detection Pipeline and the Deep Neural Network. The
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throughput of our network traffic visualization methodology
and the Convolutional Neural Network will be analyzed as
the components of the pipeline. Subsection V-D. presents the
Model Parameter Counts for each model, which accounts for
the number of weights and biases that are trained for each
model. This is an important factor in the storage requirements
to host each classifier. Lastly, we will discuss our results in
subsection V-E.

A. BOTNET DETECTION ACCURACY

Botnet Detection Accuracy measures how well the proposed
pipeline detects whether a botnet is present, regardless of
the type of botnet that was active. During operation, our
models predicted whether a botnet was present (True) or not
(False). Predictions were compared against the observed data,
providing us with the True Positive (TP, Botnet observed
and predicted), False Positive (FP, Benign traffic observed,
but Botnet predicted), True Negative (TN, Benign traffic
observed and predicted), and False Negative (FN, Botnet
traffic observed, but Benign traffic predicted). Accuracy was
calculated according to Equation (1), providing our first
metric.

| TP + FP 0
ccuracy =
Y= TPXFPYTN + FP

We applied our Deep Neural Network, Convolutional Neu-
ral Network, and Autoencoder models against the N-BaloT
dataset, as seen in Table 3. Based on our results, all three mod-
els performed very well at detecting whether botnet activity
was taking place. The CNN performed the best with 100%
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accuracy, followed closely by the AE at 99.99% accuracy and
the DNN at 99.85% accuracy.

TABLE 3. Binary classification metrics - N-BaloT.

Model Accuracy TPR FPR TNR FNR
DNN 99.85% 99.90% 0.54% 99.46% 0.10%
CNN 100% 100% 0% 100% 0%

AE 99.99% 100% 0.9% 99.1% 0%

Next, we examined the [0T-23 dataset, receiving the results
presented in Table 4. Similar to our N-BaloT results, all
three models had accuracies of >99%, with the Autoencoder
performing the best at 99.84%, the Convolutional Neural
Network in second at 99.78%, and the Deep Neural network
in third with 99.75%.

TABLE 4. Binary classification metrics - l1oT-23.

Model | Accuracy TPR FPR TNR FNR
DNN 99.75% 99.87% 4.40% 95.60% 0.13%
CNN 99.78% 99.87% 1.91% 98.09% 0.13%

AE 99.84% 99.98% 3.10% 96.90% 0.02%

To provide further depth to our analysis, we examined
the True Positive Rate (TPR, Equation (2)), False Posi-
tive Rate (FPR, Equation (3)), True Negative Rate (TNR,
Equation (4)), and False Negative Rate (FNR, Equation (5)).
These metrics allow us to analyze our misclassifications,
indicating whether the models displayed a preference for
misclassifying Benign or Botnet behavior. In cybersecurity
applications, it is preferred to have a higher False Positive
Rater as misclassified Benign traffic may be inspected and
cleared, whereas misclassified Botnet traffic will go unde-
tected and cause damage within the network. Across the
N-BaloT and IoT-23 datasets the DNN, CNN, and AE exhib-
ited a greater False Positive Rate, with the DNN presenting
the greatest FPR at 4.40%. None of our False Negative Rates
exceeded 0.13%, which was an ideal outcome.

TP
TPR= —— 2)
TP + FN
FP
FPR= —— 3)
TN + FP
TN
INR = ———— 4
TN + FP
FN
FNR= ——— ©)
TP + FN

B. BOTNET CLASSIFICATION ACCURACY

Next, we expanded our analysis to the accuracy of the models
when considering the type of attack launched in the N-BaloT
and [0oT-23 datasets. Since N-BaloT is comprised of 10 sub-
classifications of Mirai and Gafgyt activity, we considered the
classification of the overall group along with the individual
attack characteristics. Beginning with the general classes,
we observed high accuracy for all three models. The highest
accuracy was the Convolutional Neural Network at 99.83%
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accuracy, followed by the Deep Neural Network at 99.57%,
and then the Autoencoder at 97.87%. As we can see, the
DNN and CNN models continued to perform well when our
classification was expanded; however, the AE model experi-
enced a dip in accuracy. This trend will continue as we expand
our classification to the sub-classes and shows a weakness
in the AE model when expanding past binary classification.
To further explore the results, we calculated the confusion
matrices for each model, as shown in Figures 9 (Deep Neu-
ral Network), 10 (Convolutional Neural Network), and 11
(Autoencoder). When examining the misclassifications of the
Autoencoder, we see that the model had a greater challenge
when correctly classifying the Gafgyt data, often mistaking it
for Mirai data.

N-BaloT Botnet Classification - DNN

= Benign [[100%" 0.0%  0.0%

z Mirai  0.0% | 99.2% 0.8%

2 Gafgyt 0.0% 02% | 99.8%

O Benign  Mirai Gafgyt
Predicted

FIGURE 9. Confusion matrix for botnet classification of the N-BaloT
dataset using the deep neural network.

N-BaloT Botnet Classification - CNN

2 Benign | 100% 0.0% 0.0%

% Mirai  0.0% 99.6% 0.4%

2 Gafgyt  0.0% 0.1% 99.9%

O Benign  Mirai  Gafgyt
Predicted

FIGURE 10. Confusion matrix for botnet classification of the N-BaloT
dataset using the convolutional neural network.

N-BaloT Botnet Classification - Autoencoder

2 Benign [100.0% 0.0% 0.0%

E Mirai  0.0% 98.5% 1.5%

2 Gafgyt 0.0% 3.1% 96.9%

o Benign Mirai Gafgyt
Predicted

FIGURE 11. Confusion matrix for botnet classification of the N-BaloT
dataset using the autoencoder.

Following our general classification of Mirai and Gafgyt
activity within the N-BaloT data, we studied our models’
accuracy for detecting the sub-classifications. We found
that the classification accuracy dropped considerably for the
11 classes (1 benign, 5 Mirai, and 5 Gafgyt) for all three
models. Among the three models, the Deep Neural Network
achieved the highest accuracy at 78.74%, followed by the
Convolutional Neural Network at 69.29% and the Autoen-
coder at 66.87%. To better understand our CNN model’s
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N-BaloT Botnet Activity Classification - CNN
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FIGURE 12. Confusion matrix for Mirai and Gafgyt sub-classification of the N-BaloT dataset using the convolutional neural network.

IoT-23 Cyberattack Classification - CNN
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FIGURE 13. Confusion matrix for cyberattack classification of the 10T-23 dataset using the convolutional neural network.

drastic drop in accuracy, we present its confusion matrix in activity, and the Gafgyt Combo and the Gafgyt Junk activity.
Figure 12. From the confusion matrix, we see that the model By taking a deeper look at the visualized sample data in
had difficulty in differentiating between the Mirai UDP and Figure 2, we note that these sub-classes were visually similar
Mirai ACK activity, the Gafgyt UDP and the Gafgyt TCP and are the most likely cause of these misclassifications.
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Lastly, we examined the classification accuracy when
working with the IoT-23 Dataset. Regarding the overall
accuracy, the Deep Neural Network achieved an accuracy
of 72.22%, the Convolutional Neural Network achieved an
overall accuracy of 76.31%, and the Autoencoder achieved
an accuracy of 66.80%. In this situation, the visualization
methodology performed better than the traditional approach;
however, it still stumbled when applied under the Autoen-
coder. Examining the confusion matrix of the CNN model
Figure 13, we note that the model had difficulty distinguish-
ing between the Mirai, Gafgyt, and Kenjiro botnets. This
was an unexpected result as the model had performed very
well when comparing the Mirai and Gafgyt data from the N-
BaloT dataset. A possible explanation is that since Mirai and
Gafgyt are from the same family, the diversity of botnets in
I0T-23 caused the differences to become less notable during
classification.

C. THROUGHPUT

After considering each model’s detection and classification
accuracy on the N-BaloT and [0T-23 datasets, we calculated
their throughput on a Jetson Nano. When processed by our
proposed methodology, packets will undergo a three-stage
process. First, they will be collected by the Jetson Nano.
By setting the Jetson Nano as the local Access Point/Router,
traffic will automatically be collected as it flows between
the local and external networks, having a negligible impact
on throughput. Second, packets will be passed through the
network traffic visualization procedure. During testing, this
required an average of 35 microseconds per packet, equat-
ing to a throughput of roughly 28,500 packets per second.
Lastly, each image is classified by the Convolutional Neural
Network.

For a comparison with botnet detection without the pro-
posed pipeline, we offer throughput for the Deep Neural
Network and Convolutional Neural Network in Table 5.
Using a batch size of 64 packets, the Deep Neural Net-
work achieved a throughput of 7000 packets per second.
We observed a throughput of 17,000 packets per second
for our Convolutional Neural Network. This translates to a
roughly 2.4 times greater throughput of our CNN versus the
DNN model.

TABLE 5. Classification throughput.

Model | Throughput (packets/second)
DNN 7,000
CNN 17,000

Combined, these results show that the proposed pipeline
takes 95 microseconds to process and classify a single packet.
However, during steady-state operation, the maximum perfor-
mance of the pipeline is measured by the worst performance
of the three stages, which, in this case, is our CNN classifier.
As aresult, the observed throughput of the pipeline is 17,000
packets per second.
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We only included results for our Deep Neural Network and
Convolutional Neural Network for our analysis. To complete
classification with the autoencoder model, we needed a gen-
erator and classifier for each class. Due to this architecture,
the models could be run sequentially or in parallel, leading
to greater inconsistencies in the overall throughput of the AE
model.

The proposed methodology was designed for deployment
on the Jetson Nano, which can process up to 472 gigaflops
while maintaining the cost and form factor of a high-end
embedded device. This supplies ample processing power at
a lower cost compared to standalone servers with GPUs. For
applications where the Jetson Nano would be too expensive,
the methodology may be deployed on a Raspberry Pi 3,
which can process up to 12 gigaflops. We expect this to
drop our CNN throughput to roughly 510 packets per sec-
ond. If we consider the IoT-23 dataset, we saw an overall
average of 436.85 packets per second when monitoring a
3-device network. Based on these results, both the Jetson
Nano and Raspberry Pi are sufficient, with the Raspberry Pi
struggling when exposed to higher loads. Additional testing
is required for more expansive IoT networks, and results may
differ depending on the type of IoT devices present in the
environment.

D. PARAMETER COUNTS

Our last objective was to evaluate the number of parameters
trained for the model. Due to the lightweight design of IoT
devices, storage is limited, and our machine learning mod-
els should be accurate while maintaining a small footprint.
A comparison of parameter counts between our three mod-
els is presented in Table 6, with the Deep Neural Network
composed of 23,207 trainable parameters, the Convolutional
Neural Network composed of 18,231 trainable parameters,
and the Autoencoder composed of 189,756 trainable param-
eters. Based on these results, the visualization methodology
allowed us to decrease the number of parameters by 21.4%.
The Autoencoder was high for this approach as we created a
model for each cyberattack class. If we had only focused on
binary classification, we would have seen a parameter count
of 15,812, less than what was needed for our CNN model.

TABLE 6. Machine learning model parameter counts.

Model | Parameter Count
DNN 23,207
CNN 18,231

AE 189,756

E. DISCUSSION

Based on our results, our proposed IoT Botnet Detec-
tion Pipeline achieves very high botnet detection accuracies
when applied to two independent datasets, the N-BaloT and
[oT-23 datasets. A summary of our cyberattack detection
and multi-class classification is presented in Table 7. When

73557



IEEE Access

D. Arnold et al.: Network Traffic Visualization Coupled With CNNs

the visualization pipeline is applied towards binary classi-
fication, it achieved 100% accuracy against the N-BaloT
dataset using the Convolutional Neural Network and 99.84%
against the [oT-23 dataset using an Autoencoder. Similarly,
the technique was successful at classifying between general
Mirai and Gafgyt activity, with the CNN providing the best
accuracy at 99.83%. While we were successful in botnet
detection, substantial improvement is required in achieving
greater multi-class classification, as our models could not
achieve accuracy greater than 78%.

TABLE 7. Classification accuracy.

N-BaloT IoT-23
Model | Binary Mirai Multi- Binary Multi-
Class. v Class. Class. Class.
Gafgyt
DNN 99.85% | 99.57% 78.74% 99.75% 72.22%
CNN 100% | 99.83% 69.29% 99.78% 76.31%
AE 99.99% | 97.87% 66.87% 99.84% 66.80%

Upon further investigation of our multi-class classification
results for our IoT-23 datasets, we see that the methodology
experienced difficulty identifying the Trojan and Kenjiro bot-
nets. If we examine visualized samples of the observed Trojan
activity and model’s predictions in Figure 14, we observe
that their traffic displays very similar characteristics. This
highlights a limitation in our methodology in identifying
activity with similar behavior. A potential solution to this
challenge may be to increase the size and number of layers for
our Convolutional Neural Network; however, this will have
an adverse impact on our performance. Alternatively, we may
pivot from botnet classification to classifying the stage of
infection. For instance, we may classify activity related to
reconnaissance, attempts at vulnerability exploitation, indi-
cators of command-and-control functionality, and denial of
service. These classes would offer a stronger indication of the
severity or stage of the cyberattack to the detection engineer.

Despite struggling with multi-class classification, our
models excelled at binary classification, and we are con-
fident that these results will hold when exposed to new
environments. When searching for our datasets, we based
our selection on the diversity of consumer IoT devices and
botnets. The N-BaloT dataset studied 9 consumer IoT devices
during the propagation and attack stage of the Mirai and
Gafgyt botnets. Since only 2 Botnets were investigated,
we expanded our investigation to a second dataset, the [oT-23
dataset. The IoT-23 dataset examined the effects of 11 bot-
nets against 3 devices. Since our methodology was equally
effective in detecting malicious activity across both datasets,
we are confident that these results will hold against other IoT
environments.

Compared to our Deep Neural Network, which did not uti-
lize the visualization methodology, our Convolutional Neural
Network achieved better accuracy, throughput, and parameter
counts during binary classification of both datasets. Further,
we achieved high accuracy while only using 12 features
compared to the 115 used by the DNN model. We considered
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FIGURE 14. Visualized network traffic of Benign, Trojan, Hakai, and
HideandSeek activity from the 10T-23 dataset.

these findings important as the DNN is the most straight-
forward Deep Learning algorithm, showing the flexibility of
the pipeline approach in lightweight cyberattack detection for
IoT devices.

Additionally, our expansion of the Autoencoder model
performed well in binary classification within the N-BaloT
and IoT-23 datasets. Our model differed from the model
proposed by the N-BaloT authors, as ours was designed for
device-agnostic attack detection. In contrast, the N-BaloT
authors trained a model for each device within the environ-
ment. However, additional work needs to be done to improve
multi-class classification.

VI. CONCLUSION

Through our research, we evaluated a novel network traffic
visualization methodology for botnet detection and classifi-
cation within an Internet of Things environment. Coupled
with a Convolutional Neural Network, we showed that the
methodology achieved >98% accuracy across the N-BaloT
and [oT-23 datasets. Further, compared to a baseline Deep
Neural Network model, we achieved comparable accuracy
while reducing the parameter count by 21.4% and achieving
a 2.4 times greater throughput. However, we found that the
model struggled to achieve a classification accuracy greater
than 76% when expanding the classes to the specific cyberat-
tack.

In addition to showing proficiency in automated botnet
detection, the network traffic visualization methodology may
be integrated into the existing workflow for cyberattack
detection engineers. Based on our sample images presented
in Figures 3 and 4 (with a sub-sample in Figure 14), we can
observe clear trends when comparing the Benign and Botnet
traffic. By integrating these images into engineering dash-
boards, personnel can receive a visual indicator of the general
health of their network. Shifts in the color or pattern of
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the visualized traffic may indicate an ongoing cyberattack.
By identifying these shifts, staff may catch the cyberattack
and initiate incident response procedures in a timely manner.

While we were successful in our objective of creating a
lightweight IoT Botnet Detection Pipeline, there are many
avenues for future exploration. First, highly skilled threat
actors go to extensive lengths to evade detection. To evade our
proposed solution, the attacker’s traffic would need to present
similar characteristics to Benign network traffic. This could
be easily accomplished during reconnaissance as the attacker
could present themselves as a regular user; however, this
becomes more challenging as the attacker progresses through
their cyber kill chain, exploiting vulnerabilities and estab-
lishing command-and-control functionality. In our future
research, we’ll determine whether easily masked activity,
such as reconnaissance and scanning, can be identified by our
methodology.

Additionally, evaluation of the IoT Botnet Detection
Pipeline’s adaptability to novel attack chains is an ongoing
effort. Since the evolution of existing threats can occur in
any direction, it’s difficult to assess how our pipeline would
react to these changes. Potential solutions to this challenge
include expanding our feature selection to the payload of the
network traffic. When designing the network traffic visual-
ization methodology, it was desirable to focus on the packet’s
metadata to speed up image generation. However, the payload
may contain critical information that may reveal how the
adversary exploited the target device. Identifying methods
for interpreting the payload is a core research direction for
identifying these unseen threats.
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